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ON THE DIOPHANTINE EQUATION X2 − KXY + Y 2 + LX = 0
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Abstract
For any given positive integer l, we prove that there are only finitely many integers

k such that the Diophantine equation x2−kxy +y2
+ lx = 0 has an infinite number

of positive integer solutions (x, y). Moreover, we determine all integers k such that

the Diophantine equation x2−kxy+y2
+ lx = 0, 1 ≤ l ≤ 33, has an infinite number

of positive integer solutions (x, y).

1. Introduction

In [2], Marlewski and Zarzycki proved that the Diophantine equation

x2 − kxy + y2
+ x = 0 (1)

has an infinite number of positive integer solutions (x, y) if and only if k = 3. Some

computer experiments suggest that for many integers k there are infinitely many

positive integer solutions, so they hoped that it is possible to characterize positive

integer solutions of the equation x2 − kxy + y2
+ lx = 0 in the general case.

Recently, Yuan and Hu [5] showed that the equation

x2 − kxy + y2
+ 2x = 0 (2)

has an infinite number of positive integer solutions (x, y) if and only if k = 3, 4;

and the equation

x2 − kxy + y2
+ 4x = 0 (3)
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has an infinite number of positive integer solutions (x, y) if and only if k = 3, 4, 6.

The main purpose of the present paper is to determine integers k such that the

equation

x2 − kxy + y2
+ lx = 0, (4)

where l is a given positive integer, has an infinite number of positive integer solutions

(x, y).

In this paper, we use a completely different method to deal with this problem.

The main result is as follows.

Theorem 1. For any given positive integer l, there are only finite many integers k
such that equation (4) has an infinite number of positive integer solutions (x, y).

For positive integers l with 1 ≤ l ≤ 33, by the method indicated in the proof of

the main theorem, we compute and list all (k, l) such that equation (4) has infinitely

many positive integer solutions (x, y) (see the table at the end of Section 4).

2. Lemmas

In this section, we will present the lemmas that will be needed in the proof of the

main theorems.

Lemma 2. ([2, Theorem 1]) If positive integers x, y, k satisfy equation (1), then

there exist positive integers c, e such that x = c2, y = ce, and gcd (c, e) = 1.

Lemma 3. If positive integers x, y, k satisfy equation (4) with gcd (x, y, l) = 1,

then there exist positive integers c, e such that x = c2, y = ce, and gcd (c, e) = 1.

Proof. It follows from (4) that if p is a prime number, then p |x implies p |y. In

particular, l is prime to p. Let x = pµx1 and y = pνy1 with gcd (p, x1y1) = 1.

Substituting these values of x and y into equation (4) we have

p2νy2
1 = pµ

(pνkx1y1 − pµx2
1 − lx1),

which implies that µ = 2ν since gcd (lx1, p) = 1. This means that x = c2, y = ce,
and gcd (c, e) = 1.

To prove our results, we need some results on continued fractions.

Definition 4. The fraction

a0 +
1

a1 +
1

a2+ 1

a3+
...+ 1

aN
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is called a finite continued fraction, and denoted by [a0, a1, . . . , aN ]. It is called

a continued fraction when N = +∞. For simplicity, usually it is denoted by

[a0, a1, a2, . . . , aN , . . .]. We call αn = [an, an+1, . . .] the (n + 1)-st complete quo-

tient of the continued fraction α = [a0, a1, . . . , an, . . .].

Lemma 5. ([1, Theorem 10.8.1]) Let d be a positive integer which is not a square.

Then the (n+1)-st complete quotient αn of the continued fraction α =
√

d is of the

form √
d + Pn

Qn
, P 2

n ≡ d (mod Qn),

where Pn and Qn are positive integers.

Lemma 6. ([1, Theorem 10.8.2]) Let d, Pn, and Qn be as in Lemma 5. Then the

quadratic equation

x2 − dy2
= (−1)

nQn

has a positive integer solution (x, y). If l �= (−1)
nQn and |l| <

√
d, then the

Diophantine equation

x2 − dy2
= l

has no integer solutions (x, y).

The proof of the following lemma is well-known, so we omit the proof here.

Lemma 7. Let d > 1 be a positive integer which is not a square and c �= 0 a given

integer. If the Diophantine equation

x2 − dy2
= c (5)

has a positive integer solution (x, y) with gcd (x, y) = 1, then equation (5) has

infinite many positive integer solutions (x, y) with gcd (x, y) = 1.

Lemma 8. ([3, Theorem 108a]) Let N, D be positive integers and D not a square.

Suppose that x0+y0

√
D is the fundamental solution of the Pell equation x2−Dy2

= 1

and the equation

u2 −Dv2
= −N, u, v ∈ Z, (6)

where gcd (u, v) = 1, is solvable. Then (6) has a solution u0 + v0

√
D with the

following property;

0 < v0 ≤
y0

√
N�

2(x0 − 1)
, 0 ≤ u0 ≤

�
1

2
(x0 − 1)N. (7)

Lemma 9. ([4, Theorem 2]) Let N, D be odd positive integers with D non-square.

Suppose that the equation

x2 −Dy2
= 4, gcd (x, y) = 1 (8)
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is solvable and let x0 + y0

√
D be the least solution. If the equation

u2 −Dv2
= −4N, u, v ∈ Z, (9)

where gcd (u, v) |2, is solvable, then (9) has a solution u0 +v0

√
D with the following

property:

0 < v0 ≤
y0

√
N�

(x0 − 2)
, 0 ≤ u0 ≤

�
(x0 − 2)N. (10)

3. Proof of Theorem 1

Proof. Since gcd (x, y, l) = 1, by Lemma 3 we have x = c2, y = ce, gcd (c, e) = 1.

Substituting these values of x and y into equation (4), we have c2−kce+e2
+ l = 0.

It follows that

(2c− ke)2 − (k2 − 4)e2
= −4l. (11)

Case (i). 2 |k. Let k = 2k1. Then from (11), we have

(c− k1e)
2 − (k2

1 − 1)e2
= −l.

Since �
k2
1 − 1 = [k1 − 1, 1, 2k1 − 2],

where (k1 ≥ 2, k1 ∈ Z+
), we therefore have Q2t−1 = 2k1 − 2, Q2t = 1, t > 0. By

Lemma 6, if equation (11) has a positive integer solution (c, e) and |l| < k1, then

we have

−l = (−1)
2t−1Q2t−1 = −2k1 + 2,

which is possible only when l = k − 2.

Case (ii). 2 � k and 2 |e. Let e = 2e1. Then from (11), we have

(c− ke1)
2 − (k2 − 4)e2

1 = −l.

Since �
k2 − 4 = [k − 1, 1, (k − 3)/2, 2, (k − 3)/2, 1, 2k − 1],

where k ≥ 5 is odd, a short computation shows that

Q6t+1 = 2k − 5, Q6t+2 = 4, Q6t+3 = k − 2,

Q6t+4 = 4, Q6t+5 = 2k − 5, Q6t+6 = 1, t ≥ 0.

By Lemma 6, if equation (11) has a positive integer solution (c, e) and |l| < k, then

we have

−l = (−1)
nQn = −2k + 5, 4,−k + 2, 1,
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which is possible only when l = k − 2,−4,−1.

(iii) 2 � ke. Then from (11), we have

(2c− ke)2 − (k2 − 4)e2
= −4l.

Since �
k2 − 4 = [k − 1, 1, (k − 3)/2, 2, (k − 3)/2, 1, 2k − 1],

where k ≥ 5 is odd, similarly, we have

Q6t+1 = 2k − 5, Q6t+2 = 4, Q6t+3 = k − 2,

Q6t+4 = 4, Q6t+5 = 2k − 5, Q6t+6 = 1, t ≥ 0.

By Lemma 6, if equation (11) has a positive integer solution (c, e) and 4|l| < k,

then we have

−4l = (−1)
nQn = −2k + 5, 4,−k + 2, 1,

which is possible only when l = −1.

To sum up, we derive that if equation (11) has a positive integer solution (c, e),
then k < 4l, which implies the theorem.

Remark. If l = dl1, d, l1 ∈ Z and the equation x2−kxy+y2
+l1x = 0 has infinitely

many positive integer solutions (xn, yn), n = 1, 2, . . ., then the equation

u2 − kuv + v2
+ lu = 0

has infinitely many positive integer solutions (un, vn), n = 1, 2, . . ., where un =

dxn, vn = dyn.

In view of the arguments in the proof of Theorem 1, the Remark and Lemmas 6-

8, for a given positive integer l, to find all possible integers k such that the equation

x2− kxy + y2
+ lx = 0 has infinitely many positive integer solutions (x, y), we only

need to find all k1 = k/2 such that the equation

x2 − (k2
1 − 1)y2

= −l, gcd (x, y) = 1

has a positive integer solution (x, y) with 1 < k1 ≤ l ≤ 33, y ≤
�

33/2(x0 − 1) < 5;

and to find all integers k such that the equation

x2 − (k2 − 4)y2
= −4l, gcd (x, y) |2

has a positive integer solution (x, y) with 1 < k ≤ 4l ≤ 132, y ≤
�

132/(x0 − 2) <
7, x0 ≥ 5. This can be easily done by MATHLAB. The following is the list of the
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computation.

l k l k
2 3, 4 18 3, 4, 5, 7, 8, 11, 20

3 3, 4, 5 19 3, 9, 12, 21

4 3, 4, 6 20 3, 4, 5, 6, 7, 10, 12, 22

5 3, 5, 7 21 3, 4, 5, 6, 9, 13, 23

6 3, 4, 5, 8 22 3, 4, 7, 8, 13, 24

7 3, 6, 9 23 3, 4, 6, 10, 11, 14, 25

8 3, 4, 6, 10 24 3, 4, 5, 6, 8, 10, 14, 26

9 3, 4, 5, 7, 11 25 3, 5, 7, 15, 27

10 3, 4, 5, 7, 12 26 3, 4, 9, 12, 15, 28

11 3, 4, 7, 8, 13 27 3, 4, 5, 7, 11, 13, 16, 29

12 3, 4, 5, 6, 8, 14 28 3, 4, 6, 8, 9, 16, 30

13 3, 9, 15 29 3, 7, 11, 13, 17, 31

14 3, 4, 6, 8, 9, 16 30 3, 4, 5, 7, 8, 10, 12, 17, 32

15 3, 4, 5, 7, 8, 10, 17 31 3, 6, 12, 18, 33

16 3, 4, 6, 10, 18 32 3, 4, 6, 10, 14, 18, 34

17 3, 5, 9, 11, 19 33 3, 4, 5, 7, 8, 13, 19, 35

4. The Equation 2x2 − kxy + y2 + x = 0

In this section, we consider a variation of the above problem. We ask the same

question for the equation

2x2 − kxy + y2
+ x = 0, (12)

i.e., for which k, equation (12) has infinitely many positive integer solutions (x, y).

To our surprise, it is much difficult to completely solve this question.

Lemma 10. If positive integers x, y, k satisfy equation (12), then there exist posi-

tive integers c, e such that x = c2, y = ce, and gcd (c, e) = 1.

Proof. It follows from (12) that if p is a prime number, then p |x implies p |y. Let

x = pµx1 and y = pνy1 with gcd (p, x1y1) = 1. Substituting these values of x and y
into equation (12) we have

p2νy2
1 = pµ

(pνkx1y1 − pµx2
1 − x1),

which implies that µ = 2ν since gcd (x1, p) = 1. This means that x = c2, y = ce,
and gcd (c, e) = 1.

Theorem 11. Equation (12) has infinitely many positive integer solutions (x, y) if

and only if the equation x2 − (k2 − 8)y2
= −1 has a positive integer solution.
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Proof. If (x, y) is a positive integer solution of equation (12), by Lemma 10, we have

x = c2, y = ce, gcd (c, e) = 1. Substituting these values of x and y into equation

(12), we have

2c2 − kce + e2
+ 1 = 0. (13)

We divide the proof into two cases.

Case 1 2 |k. Let k = 2k1. Then from (13), we have

(e− k1c)
2 − (k2

1 − 2)c2
= −1.

Since �
k2
1 − 2 = [k1 − 1, 1, k1 − 2, 1, 2k1 − 2],

where (k1 ≥ 2, k1 ∈ Z+
), so we have Q2t = 2k1 − 3, Q2t = 1 or 2, t > 0. By Lemma

6, equation (12) has no solutions in this case.

Case 2 2 � k. From (13) we have 2 � e. We divide the proof into two subcases.

(i) 2 |c. Let c = 2c1. Then from (13), we have

(e− kc1)
2 − (k2 − 8)c2

1 = −1. (14)

Therefore, in this case, equation (12) has a positive integer solution (x, y) if and

only if the equation x2 − (k2 − 8)y2
= −1 has a positive integer solution.

(ii) 2 � kec. From (13), we have (2e− kc)2− (k2− 8)c2
= −4, and we derive that

1− 1 ≡ 4 (mod 8) by taking modulo 8, which is a contradiction.

In conclusion, by Lemma 6 and the above arguments, equation (12) has infinitely

many positive integer solutions (x, y) if and only if the equation x2−(k2−8)y2
= −1

has a positive integer solution. This completes the proof of Theorem 11.

Finally, we propose a conjecture which is closely related to equation (12). It is

generally believed that there are infinitely many primes of the form u2 − 8, so we

believe that the following conjecture is true.

Conjecture 12. There are infinitely many positive integers k such that the equation

x2 − (k2 − 8)y2
= −1 has a positive integer solution (x, y).

If the above conjecture is true, then by Theorem 11, there are infinitely many

positive integers k such that equation (12) has infinitely many positive integer so-

lutions (x, y).
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