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Abstract

Over the past decade, various properties of the irrational factor function I(n) =
le,llnpl/" and strong restrictive factor function R(n) = prllnp”*l have been
investigated by several authors. This study led to a generalization to a class of
arithmetic functions associated to elements of PSLy(Z). In the present paper, we
study the possible influence of the eigenvalues of an element A of PSLy(Z) on
the behavior of the associated arithmetic function fa(n) = Hp,,”npA(”), where
A(z) = (az+b)/(cz+d) is the linear fractional transformation induced by the matrix
A. In particular, we obtain results on the local density of eigenvalues through their
natural connection to a particular surface.

1. Introduction and Statement of Results

There has been recent interest in examining the behavior of the arithmetic functions
fa(n) defined on natural numbers n in terms of the action of a matrix A in PSLy(Z).
Given an element

a b
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of PSLy(Z), one may consider the linear fractional transformation induced by A,

az+b
cz+d’

Alz) =
and define the arithmetic function given for each positive integer n by
fa(n) = H pA),
p¥[In
These functions generalize the two arithmetic functions
I(n) =[] »"*
p¥|In

and

R(n)= [ »"
p¥lIn
which were introduced by Atanassov in [2] and [3]. These multiplicative functions
satisfy the inequality
I(n)R(n)* > n,

for each n > 1, with equality if and only if n is square-free. If S(n) denotes the
square-free part of n and if n is k-power free, then S(n) satisfies the inequalities

S(n) > nt/(k=1)

and
I(n) > S(n)Y/*=D > pl/(=1)%

On the other hand, if n is k-power full, then S(n) satisfies the inequality
I(n) < S(n)'/k,

In this fashion, I(n) roughly measures how far a given integer n is away from being
either k-power free or k-power full.

In [11], two of the authors more fully develop this measure by studying weighted
combinations I(n)*R(n)? for real-valued o and (3. In [10], Panaitopol showed that
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for each n > 1. Alkan and two of the authors [1] established an asymptotic formula
for G(n) and proved that the sequence {G(n)/n},>1 is convergent. They further
obtained results that show that I(n) is very regular on average. Further improve-
ments have recently been obtained by Koninck and Kétai [7]. Asymptotic formulas
for certain weighted real moments of R(n) were obtained in [9].

In the above more general setting, one realizes I(n) and R(n) as fa,(n) and

fa,(n), respectively, with
0 1
=V

1 -1
we1 ]
Results on averages of fa(n) have recently been established in [12]. That work

generalizes I(n) and R(n) to a class of elements of PSLy(Z) and explores some of
the properties of these maps.

and

For each given matrix A and a positive real number x, we define the weighted
average

Ma(@)= > (k%) Fa(n).

1<n<lz

We also consider )\j and A}, the positive and negative real eigenvalues of A, re-
spectively. Thus, /\X and A\, are solutions of the quadratic equation

A2 —tr(A)\ + det(A) = 0,

with

a+d+/(a+d)?+4
Xf = > M)

and

)\__aerf (a+d)*+4
;= ardm v . @

Furthermore, A} and A} satisfy the inequalities A} < 0 < A} and the identity
M, =-1

In the present paper, for a large () and a much larger =, we consider the following
subset of PSLy(Z):

o 2

A(Q,x)—{A—{ Z]:lga,b,c,dSQ,ad—bC——l,

Y _ log M4(x)
(Gron i) e}
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Figure 1: The surface S.

where the surface S is given by
S={(z,y,2) € R3: 1< x,z < 2,xy=—1}

(See Figure 1.)
The map
\IJQ,I: A(Q, IE) - Sv
defined by
ey _ log M4(x)
Vg..(A) = (G,Q/\A’ T logz )’

associates to each matrix A € A(Q,z) a unique point on S. In the first and second
coordinates of such a point on S, the eigenvalues )\z and A, of A are normalized,
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as )\j is divided by @ and X is multiplied by @). Furthermore, )\jg is close to a +d,
which can be 2Q) at most. It follows that )\z /Q < 2, with very few exceptions.

For the sake of simplicity, we restrict our attention to the case when )\jg /Q is in
the interval (1,2) and leave to the reader to make the adaptation to the case when
A%/Q is in the interval (0,1), as the two cases are similar.

In the third coordinate of such a point on S, we observe that for any A with
positive entries, fa(n) > 1 for all n. It follows that M4 (z) > x/2. Hence,

log M 4(x) S1_ log 2
log = logz’

Finally, for simplicity’s sake, we consider only the case when z is in the interval
(1,2). In like manner, one can study the case when z is in the interval (2, c0).

In the present paper, our purpose is to investigate the possible influence of
the eigenvalues )\fg and A, of A on the behavior of the associated arithmetic
function fa(n). We seek to understand the joint distribution of A}, A}, and
(log Ma(z))/logz, that is to say, the image of W, on S. More precisely, for
a given point (a, —1/c, 3) on S we consider, for each small § > 0, the neighborhood
Va,p,s of (a, =1/, B) in S given by

Va,ﬁ,5 = {(m,y,z) €Ss: |.Z'—Oé| < 57|Z_ﬁ| < 6}

We would like to estimate the number of matrices A in A(Q, z) for which ¥q ,(A)
lies in V4 g,5. We expect the number of such matrices to grow like a constant times
0%2Q?% as Q and z tend to infinity, with = much larger than @, while § > 0 is kept
fixed. This leads us to consider the limit of the ratio

#{Vo,Vass))  #{A€ AQ,2): Vo (A) € Vass)
5202 - 5202 ’
as x approaches infinity and then @) approaches infinity. Lastly, we take the limit
of this expression as § — 0.

Our main result can be summarized as follows.

Theorem. Fiz a point (o, —1/c, 3) € S, where a and B are real numbers such that
1< a,B<2. Then we have

24 (-« .
. =4 > o
girr(l) lim lim #{A € A(Q7$)SQZ§,I(A) € Vapo} ={ n2 (ﬂ — 1) N e %
—0 Q—o00 x—00 0’ lfﬁ< .

Thus, the images via ¥, of almost all matrices A lie on the part of the surface S
where z > x, depicted in blue in Figure 1. If we fix two points P, = (ay,—1/aq, 31)
and P = (ag,—1/as,f2) on that part of the surface S and compare the local
densities of the points in Vg , (A(Q,z)) around P; and respectively Ps, as a direct
consequence of our theorem we deduce the following corollary.
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Corollary. Let o and f3; be real numbers such that 1 < a; < 3; < 2 for j € {1,2}.
Then we have
o #HAEAQ2): You(A) € Vayss) _ (Br—an)(B— 1)
lim lim lim : —_— = .
0-0Q—ocz—oc #{A € AQ,2): Vqu(A) € Vayp6t (B2 —a2)(B1—1)

2. Proof of the Theorem

We begin the proof by fixing an « and £ in the interval (1,2) and a § > 0 small
enough so that « and 8 belong to the interval (1 + §,2 — §). We also consider the
set of matrices

Da,ﬁ,é,Q,w={[ Z Z } € AQ,2):1<a,bc<d<Q,ad—be=—1,

(a—8Q<a+d< (a+96)Q,
(616)d<b<(ﬂ1+5)d}.

The cardinality of Dy g.6,0,» is given by
#Dapoge= », Y. #(ab):1<ab<dad—bc=—1,

1<d<Q 1<c<d
ged(e,d)=1

(@=0)Q <a+d< (a+0)Q,
(B-—1-08)d<b< (B—1+8)d} (3)

- ¥ > o

1<d<Q 1<c<d
ged(e,d)=1
(a—6)Q<d+(ce~1) /A< (a+8)Q
(B—1—8)d<c<(B—1+8)d

Here, ¢ is used to denote the unique multiplicative inverse of ¢ modulo d in the
interval [1,d]. The second step in (3) follows from the fact that the conditions
1 <b<dand ad— bc = —1 force b to equal ¢. Hence, a is uniquely determined
and given by a = (bc — 1)/d. Furthermore, the contribution of the terms in (3) for
which d < (o — §)Q/2 is zero. Indeed, since a < d, we see that if d < (a — 0)Q/2,
then a +d < (a — §)Q.

Hence, setting ¢ = d, © = c and y = ¢, we obtain #D, s, in the form
#Do 6,00 = Z #{(2,9) € Qups.0qNZ*: 2y =1 (mod q)}, (4)
(a=0)Q/2<q<Q
where
Qo550 = {(w0) ER*: 1 <uw< g, (@—0)gQ —¢° S uv < (a+6)qQ — ¢°,
(B-1-0)g<v<(B-1+10)q}
(5)
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We estimate the summand in (4) by using a lemma due to Boca and Gologan [5].

Lemma 1 (Lemma 2.3 from [5]). Assume that ¢ > 1 and h are two integers,
that T and J are intervals of length less than q, and that f: T x J — R is a C!
function. Then for any integer T'> 1 and any ¢ > 0, we have

3 f(a,b)=%//f(az,y>dxdy+s,

a€Z,beJ
ab=h (mod q) IxJ
ged(b,g)=1
with
o|T
E =0, (T2|f||ooq1/2+e ged(h, q)1/2 + T”fooqu/QJre ged(h, q)1/2+w> |

where ¢(q) is the Euler totient function, ||f||co and ||V f||c denote the sup-norm of
f and |0f /0x| + |0f /Qy| on the region T x T, respectively.

We break the region Q4 5,0, into squares of side length L = [Q"] for some
0 < 7n < 1, and denote by I; those squares lying entirely within Qg5 0, and
B; those squares which intersect both €, g s 0,4 and its complement in R2, where
1<j<nandl<i<m for some natural numbers n and m. We have

#{(u,v) € Qap6.0,q: ab=1 (mod q)} = Z #{(u,v) € I;: ab=1 (mod ¢)}

1<j<n

+ Z #{(U,U) € B; N Qa,ﬁ,é,Q,ql

1<i<m

ab=1 (mod ¢)}.
By Lemma 1, each of the summands on the right-hand side above is equal to

%LQ +O0c(g"/*+).

If we take €' to be the subset of Q4 35,0, formed by removing from Q4 35.50.4

an Lv/2-width neighborhood of the boundary of Q4 4,504, then we find that Q' C
UIj - Qa,ﬁ,é,Q,q and

Area(Q.8,6,0.4) — Area(Q') = O(qL).
Hence,

Area (U Ij) = Area(Q4.3,5,0,q) + O(QL).

Since

Area (Ulj) = Z #{(u,v) € I;: ab=1 (mod q)}

1<j<n

_ n¢(;1) 2+ Oe(nql/Q-s-E)7
q
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nl? = Area(Qa.5,5,0,4) + O(QL),

and in particular

Thus,

Z #{(u,v) €l;: ab=1 (mod q)} = n%;])[,z + Oe(nq1/2+e)

1<j<n

— %(Area(ﬂam@q) +0(QL))

10, (QQq”Z“)

L2
P(q
= 52)Area(ﬂa,5,57Q7q) + O(L)

Q5/2+e
ro.(25).

Similarly, we find that m = O(Q/L) and

0< > #{(u,v) € BiNQapsqq: ab=1 (mod q)}

1<i<m
< Y #{(wv) € Bizab=1 (mod )}
1<i<m
3/2+e
= m%ﬁ + Oc(mg'/**) = O(L) + O, (Q L ) '

Taking n = 5/6, we have

#H{(w,0) € Qapsqq ab=1 (mod q)} = %Areamaﬁ,am +OQ7/F).
Thus,
#Do,p5.Qc =M+ E, (6)
where
M = > ¢(g) Area(§2q,6,5,Q.9); (7)
(@—6)Q/2<q<Q
and

b= > Ea 5.0, = 0:(Q"/57). (8)
(a—8)Q/2<q<Q



INTEGERS: 14 (2014) 9

To examine the main term M in (7), we recall from the definition of the set Q4. 8,5.0.4
in (5) that
(@=6)4Q —¢* <uv < (a+8)qQ — ¢*.

We first note that when o > [ and ¢ is small enough, all the areas Area(2q,8,6,0,9)
are zero for all values of ¢. Indeed, if o > 8 and (u,v) € Area(Q2 5,6,0,q), then

(@a—=1-0)F < (a—0)qQ —¢* <uw < qu < (B—1+0)¢>

This shows that for § > 0 small enough, all of the sets Area(£2q 8,5,0,4) are empty. In
what follows we will restrict to the case a < 8. From the position of the hyperbolas
uwv = (a—0)qQ — ¢ and uv = (o + 6)qQ — ¢, the horizontal lines v = (p — 1 — d)q
and v = (p — 1 4 d)q, and their points of intersection with the boundary of the
square [1,¢] X [1,q], we find that

Qa,ﬁ,&,Q,q = ‘C n ([]wq} X []qua

where L is the “parallelogram shaped” region that lies between the hyperbolas and
horizontal lines.

It is easy to see that if ¢ < (o — §)Q/(8 + J), then L lies completely outside
the square [1,q] x [1,q]. Furthermore, one can verify that if (a« — 0)Q/(a + 9) <
g < (a+9)Q/(8 — 9), then L intersects the square [1,q] x [1,¢] but does not lie
entirely inside it. This forces £ to lie close enough to the boundary of the square
[1,¢] x [1, ¢], so that the total contribution of these values of ¢ to the main term M
is negligible. Hence, we are left with the sum

Z 9(9) Area(L). 9)

PE
(a+8)Q/(8—-0)<q<Q

Here, Area(L£) is asymptotic to the area of the parallelogram. That is, if § is small
enough, then we have

Area(L) ~ 25q [(a“)qQ—cﬁ B (a—é)qQ—qT s (%)

(8—-1)q (6—-1)q
12qQ (10)
=5-1
as Q — oo. Inserting (10) into (9), we obtain
468°Q ¢(q)

(a+8)Q/(8—-0)<q<Q

We estimate the summation in (11) by employing the following result from [4].
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Lemma 2 (Lemma 2.3 from [4]). Suppose that a and b are two real numbers
such that 0 < a < b, ¢ € N* and f is a piecewise C* function defined on [a,b]. Then
we have

b b
3 @f(q)zﬁ/f(x)dx—k() log b Hflloo+/|f'(50)\d:C

a<q<b q

Applying Lemma 2, we get

Q
1
> oa) _ @ / dt + O(log Q). (12)
(a+6)Q/(8—6)<q<Q 1 (a+8)Q/(8—6)
Then inserting (12) into (11), we find that
M 4 o
e e () )

as () — oo first and then followed by § — 0.
Next, we consider the set of matrices

CapsQue = {{ Z Z} € AQ,x):1<a,b,d<ec<Q,ad—bc= -1,

(@a—0)Q<a+d< (a+6)Q,
(515)c§a§(51+5)0}.

Estimating the cardinality of Cq s5,5,,« in a similar fashion to that in (3), we write

#Co.5,6,Q,0 = Z Z 1.

1<c< 1<d<c
ses@ gcd(c7<7);1 (14)
(@—68)Q<c—d+d< (a+6)Q
(B=0)c<e—d<(B—1+0)c

The equality in (14) follows by noticing that the conditions 1 < a < ¢ and ad —bc =
—1 force a to equal ¢ — d, where d is the multiplicative inverse of d modulo ¢
in the interval [1,¢]. Furthermore, let us note in (14) that the terms for which
¢ < (a—9)Q/2 have no contribution to the sum. Indeed, the inequality (o —§)Q <
¢ —d + d implies (o — §)Q < 2q. Hence, setting ¢ = ¢, z = d and y = d, we obtain
#Co.3,6,Q,2 in the form

#Capsae= >, #(@y) €TapsaqnL ay=1(mod q)}, (15)
(a—8)Q/2<4<Q
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where

Ta604={(u,v) ER*:1<u,v<gq,
(@=8HQ—qg<u—v<(a+6)Q —q, (16)
(2-08-0)g<v<(2-040)q}.

Applying Lemma 1 as before, we obtain

P(q
#{(z,y) €Ta 604N 72 - zy =1 (mod q)} = (5—2)Area(Fa75757Q,q) an
+Ed 55040
where
Eqp5.0.q = 0(QY°7). (18)
Then inserting (17) and (18) into (15), we get
#Cap5,Qe =M + F, (19)
where o)
M’ = > L Area(T'a p.5.0.4) (20)
(a—=9)Q/2<q<Q
and
E= Y Ehpsge=0Q1F). (21)

(=0)Q/2<q<Q
From the definition of the set T'y 55,04 in (16), we see that

Lap.6.0.q=MN([1,q x[1,q]),

where M is the parallelogram that lies between the slant lines v = u+ ¢ — (o +9)Q
and v = u4+¢—(a—3§)Q and the horizontal lines v = (2——4§)g and v = (2—+9)q.
First, we observe that if o > (3, then for § small enough all parallelograms M lie
outside the square [1,¢] x [1,¢]. In this situation, the sets I'y g0, are empty.
Hence, the main term M’ is zero.

In what follows, we consider the case when a < 3. If ¢ < (a — §)Q/(6 + 9),
then the parallelograms M still lie outside the square [1, g] x [1,¢]. Hence, we may
restrict to the interval [(a — 0)Q/(8 + 9), Q).

Next, if g belongs to the interval [(aw — §)Q/(8 + ), (o + §)Q/(8 — J)], then M
intersects the square [1, ] X [1, ¢] but is not entirely contained in it. This forces M
to lie close to the boundary of the square [1, ¢ x [1, ¢g], so that all those values of ¢
satisfying this property have negligible contribution to the main term M’.

Hence, we may restrict the summation over g to the interval [(a+§)Q/(8—9), Q).
For all such values of g, we see that M is entirely contained in the square [1, g] x[1, ¢]
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and its area is equal to exactly 462¢Q). Hence, the main term in (20) is given by
¢(q) ¢(q)
We S Magg-ie Y M,
(a+8)Q/(B—6)<q<Q (a+8)Q/(B—6)<q<Q

Using Lemma 2, we find that

> Pl _ @ (1 - O‘J_ré) +O(log q)- (23)

2
@roe/rn<ace T @)

Then inserting (23) into (22), we see that
M’ 4 a+o
S (T 24
w1 55): 2

as ) — oo first and then followed by § — 0.

On combining the above estimates for #Dn g50,0 and #Cu 8,50, When 3 is
larger than « and recalling that both quantities are zero when [ is less than «a, we
deduce that

(07 (07
4(1-2 4(1-2
#Da 6,500 T #Ca,5,6,Q, ( ﬂ) ( ﬂ)

Yy Jim | lim 5202 =\ G- T T o tess
0, if o < B
4 08—« . )
L a(55) o=
0, if a > 0.
(25)

We have the following result, which is essentially Theorem 1.1 from [12].

a b
-]
of determinant —1 with a,b,c,d > 1, there are positive real-valued constants K 4
and ¢ such that

Lemma 3. Given a matriz

Ma(z) :KAx1+(a+b)/(c+d)+OA(x1/2+(a+b)/(c+d) exp{—c’(log .T)S/S(log log 1,)71/5}).

For the sake of completeness, we outline a sketch of the proof of Lemma 3.
Consider the Dirichlet series

n

Fa(s) = i fA(Sn)-
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One can show that F4(s) converges in the half plane Rs =0 > 1+ (a+b)/(c + d)
and has an Euler product in that region. Write

(s =(a+b)/(c+d)
((2s —2(a+b)/(c+d))

Furthermore, one can show that ((2s — 2(a + b)/(c + d)) ~'Ta(s) is analytic on a
larger half-plane o > 0y. Hence, F4(s) is meromorphic there with a simple pole at
s=1+(a+0b)/(c+d).

Next, we utilize a variant of Perron’s formula and write

n L[ (s (atb)/(et ) .
S (- nm=g [ ey O

FA(S) = TA(S).

n<x

where 14 (a+b)/(c+d) < ¢ <5/4+ (a+b)/(c+d). We need to apply the zero-free
region for ((s) due to Korobov [8] and Vinogradov [14] in the region

o >1—co(logt)~3(loglogt)~1/?

for t > tg, in which

L O(lee 1273 (loe loe £)1/3
RO O((logt)™*(loglogt)™/”).

(See the end-of-chapter notes for Chapter 6 in Titchmarsh’s classical book [13]; see,
also, Chapters 2 and 5 in Walfisz’s book [15].) We then fix 0 < U < T < z, let
v=1/24 (a+b)/(c+d) and

n=v—cologl)~?3(loglogU)~'/3,
and deform the path of integration into the union of the line segments
Y1,79: s =c+it, if |t| > T;
Y2,78: s =c T, ifv<o<c
v3,v7: s =v+it, ifU <t <T;

Y4,Y6: s = o £ iU, ifngagy;

V518 =mn+1it, if [t| <U.
Here, we note that the integrand is analytic on and within this modified contour.
Hence, by the residue theorem
1 a+b
Tal1+
I+ (a+b)/(c+d)24+ (a+b)/(c+d))C(2) c+d

9
« x1+(a+b)/(c+d) +ZJ]€7
k=1

MA(I') =
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with the main term coming from the residue at the simple pole at s = 1 4 (a +
b)/(c+ d). Note that we will take

1 a+b
AT (@tb)/ctd)@t(atd)crd)i@ A (1 * c+d>

in the statement of the lemma.

Ka=

We estimate the integral along our modified contour and make use of the well-
known bounds

O(t1=)/2) if0 <o <1and [t| > 1;
[C(o +it)] = ¢ O(logt), ifl1 <o <2
o(1), if o > 2.

(See Theorem 1.9 in Ivié’s classical book [6].) Upon collecting all estimates, we have
the statement of the lemma.
Lemma 3 shows us that

log M4 (x) ) a+b
log x c+d’

as x — 00. Since
a+b _a det(A) _é+ det(A)
c+d ¢ clc+d) d dlc+d)’

when d > ¢ we see that

log Ma(x) b _ (L
log = | dz )’

as ¢ — 0o. When ¢ > d, we have

log Ma(z) a :o(i>7

log z c

as T — oo.

We partition A(Q, z) into two subsets, according to whether 1 < max(c, d) < /Q
or max(c,d) > /@. There are at most O(Q?/?) matrices of the first type, and for
the second type we have O(1/d?) = O(1/Q) and O(1/c?) = O(1/Q) when d > ¢
and ¢ > d, respectively, as ) — oo.

We note that the § in our definitions of Dq 85,0, and Cu g,5,0,» should be re-
placed by an expression of the form 6 +0z(Q), where the function é(Q) = O(1/Q),
but in what follows we let @ tend to infinity before letting § tend to zero, so in our
case we may replace one by the other.

Since 1+ (a+b)/(c+d) < B+ 0 < 2, we find that a < ¢, and similarly b < d. So
the conditions a,b < d and a,b < cin Dy g5.Q,» and Co 8,5,0.« are satisfied. Thus,
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lim | #Passe + #Capsqe  #{A € AQ7): Yo.u(A) € Vass}
zgrolo 62Q? 52Q?

as Q — oco. Upon combining this with (25), the theorem is proved.

-9(5v3)
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