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SPECIAL SETS OF PRIMES IN FUNCTION FIELDS
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Abstract
When investigating the distribution of the Euler totient function, one encounters
sets of primes P where if p 2 P then r 2 P for all r|(p � 1). While it is easy
to construct finite sets of such primes, the only infinite set known is the set of all
primes. We translate this problem into the function field setting and construct an
infinite such set in Fp[x] whenever p ⌘ 2 or 5 modulo 9.

1. Introduction

The Euler totient function is given by �(n) = #{1  k  n : (k, n) = 1}. Lehmer’s
totient problem (also sometimes called the Carmichael conjecture) asks whether
there exists an integer n0 such that �(n) = �(n0) implies n = n0. Ford [2] proved
that any such n0 must be greater than 101010

. The general strategy of proof (first
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initiated by Carmichael [1]) is to construct two large set of primes P and P 0 such
that every p in P or P 0 is a divisor of a potential n0. If one could show the sets of
primes P and P 0 to be infinite, it would follow that no such n0 exists (see [3] for
more details). These sets of primes both have the property that if p is in the set and
r|(p� 1) with r a prime, then r is in the set. Obviously finite sets of this form are
easy to construct, and the set of all primes is an infinite set with this property. It is
unknown whether there are any nontrivial infinite sets of primes with this property.

Though this question is rather formidable over the integers, it becomes more
tractable if we consider the rings of integers of function fields instead. For q a prime
power let Fq be the finite field with q elements. We consider monic, irreducible
polynomials in Fq[x] to be the appropriate analogue of prime numbers, as every
monic polynomial can be factored as a product of these polynomials (see [5] for more
details). In the function field setting, the relationship between a special infinite set
of irreducible polynomials and the Euler totient function is lost, as here the Euler
totient function is relatively simple. However, progress towards the problem in the
function field setting could shed light on the integer side, and at the very least
would indicate the feasibility of such a set P.

We now formulate the central question of study. Let P and Q be monic, ir-
reducible polynomials in Fq[x] and let P have constant term ↵P . Consider a set
S ⇢ Fq[x] such that if P 2 S and Q|(P � ↵P ), then Q 2 S. Call such a set an
F -set (think F for factor). The requirement that we subtract the constant term of
P rather than just 1 is to maintain analogy with the integers. When p is an odd
prime, p� 1 is never a prime since p� 1 is divisible by 2. Similarly, the polynomial
P � ↵P is never irreducible, because it is always divisible by x.

As with the integer case, finite sets and the set of all monic and irreducible
polynomials are easy examples of F -sets. On first thought it is unclear whether
nontrivial, infinite F -sets could exist. The following theorem resolves this question
for certain p.

Theorem 1.1. Let p 2 Z be a prime such that p ⌘ 2 or 5 modulo 9. Then there is
a nontrivial infinite F -set in Fp[x].

More generally, we believe the following is true.

Conjecture 1.2. For any finite field Fq, there exists a non-trivial, infinite F -set.

2. Proof of Main Result

To begin the proof of Theorem 1.1, we recall the definition of the order of a poly-
nomial. The order of a polynomial f is the smallest positive integer e such that
f |(xe � 1); see Lemma 3.1 of [4] for a proof of the existence of the order for ev-
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ery polynomial. We also require the following theorem (we state the theorem in a
somewhat weaker form, as this su�ces for our purposes).

Theorem 2.1 ([4], Theorem 3.35). Let q be a prime power. Let f(x) be an
irreducible polynomial in Fq[x] of degree m and order e. Let t be a positive integer
such that the prime factors of t divide e but not qm�1

e . Assume also that qm ⌘ 1
mod 4 if t ⌘ 0 mod 4. Then f(xt) is irreducible in Fq[x].

We now construct the elements that form our nontrivial infinite F -set in Fp[x].
In the course of our arguments we see why we must restrict p to be congruent to 2
or 5 modulo 9.

Lemma 2.2. Let p ⌘ 2 or 5 modulo 9, f0 = x2 + x + 1 and set f`(x) = f0(x3`
).

Then f` is a monic, irreducible polynomial in Fp[x] for all non-negative integers `.
If g0(x) = x2�x+1 and g`(x) = g0(x3`

) then g` is a monic, irreducible polynomial
in Fp[x] for all non-negative integers `.

Proof. Suppose p ⌘ 2 mod 3. Then f0(x) = x2 + x + 1 is irreducible in Fp[x]. If
f0(x) were reducible, there would be a root r 2 Fp such that

0 ⌘ r2 + r + 1 ⌘ (r � 1)(r2 + r + 1) ⌘ r3 � 1 mod p, (1)

with r 6⌘ 1 as 3 6⌘ 0 mod p. Then the order of r in F⇥p is 3, but as the order of F⇥p
is p� 1 ⌘ 1 mod 3, such an r is impossible.

The order of f0(x) is e = 3, since f0(x)|(x3 � 1). In order for the conditions of
Theorem 2.1 to hold, we need t = 3` and t coprime to p2�1

3 . This is equivalent
to the condition p2 6⌘ 1 (mod 9). Since p ⌘ 2 mod 3, this excludes p ⌘ 8 mod 9.
Therefore, by Theorem 2.1, the polynomials f`(x) = f0(x3`

) are irreducible when
p ⌘ 2 or 5 modulo 9 (and are clearly monic).

We similarly see that g0(x) = x2�x+1 is also a monic, irreducible polynomial in
Fp[x]. By Theorem 2.1 the polynomials g`(x) = g0(x3`

) are monic and irreducible
since g0(x) has order 6 and p ⌘ 2, 5 (mod 9).

A straightforward induction argument proves the following.

Lemma 2.3. We have the following factorization:

f`(x)� 1 = x3`

(x + 1)g0(x)g1(x) · · · g`�1(x)

g`(x)� 1 = x3`

(x� 1)f0(x)f1(x) · · · f`�1(x). (2)

This lemma shows that f`(x)�1 and g`(x)�1 have very restricted factorizations,
which allows us to prove our main result.
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Proof of Theorem 1.1. Recall that a set S is an F -set if whenever P 2 S and Q
then Q 2 S if Q is monic and irreducible and Q|(P �↵P ), where ↵P is the constant
term of P . The set

F := {f`(x)}1`=0 [ {g`(x)}1`=0 [ {x� n}1
n=�1 (3)

is an infinite, nontrivial F -set. To see this, by Lemma 2.3 the factors of f` minus
its constant term and g` minus its constant term are always in F . All that remains
is to check that the factors of the other terms in F (minus their constant terms)
are in F . This follows immediately by construction, as these remaining terms are
simply x. Note all elements are monic and irreducible.

We must show that F is nontrivial. To do so, we simply must exhibit one monic,
irreducible polynomial that is not in F . First consider p = 2. Then f`(x) = g`(x)
for any `, so F = {f`(x)}1`=0 [ {x} [ {x + 1}. Now note that x3 + x + 1 is
irreducible over F2, but x3 + x + 1 is not in F . Thus F is an infinite, nontrivial
F -set.

Now let p > 2 with p ⌘ 2 or 5 modulo 9. Then x + 2 2 Fp[x] is irreducible but
not in F , hence F is an infinite, nontrivial F -set.
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