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Abstract
In a previous paper, Mihoubi et al. introduced the (ri,...,rp)-Stirling numbers
and the (r1,...,7p)-Bell polynomials and gave some of their combinatorial and

algebraic properties. These numbers and polynomials generalize, respectively, the r-
Stirling numbers of the second kind introduced by Broder and the r-Bell polynomials

introduced by Mezé. In this paper, we prove that the (rq, ..., 7,)-Stirling numbers of
the second kind are log-concave. We also give generating functions and generalized
recurrences related to the (r1,...,7p)-Bell polynomials.

1. Introduction

In 1984, Broder [2] introduced and studied the r-Stirling number of the second
kind {}}, which counts the number of partitions of the set [n] = {1,2,...,n}
into k non-empty subsets such that the r first elements are in distinct subsets. In
2011, Mez§ [8] introduced and studied the r-Bell polynomials. In 2012, Mihoubi
et al. [12] introduced and studied the (ri,...,7p)-Stirling number of the second
empty sul;se’t; such that the elements of each of the p sets Ry := {1,...,r1},
Ry :={ri+1,....r1+re}, ..., Ry :={ri+-rp1+1,...,m+--+1rp}arein
distinct subsets.

This work is motivated by the study of the r-Bell polynomials [8] and the (ry, ..., rp)-
Stirling numbers of the second kind [12], in which we may establish

e the log-concavity of the (r1,...,r,)-Stirling numbers of the second kind,



e generalized recurrences for the (r1,...,r,)-Bell polynomials, and
e the ordinary generating functions of these numbers and polynomials.
To begin, by the symmetry of the (rq1,...,r,)-Stirling numbers with respect to

T1,...,Tp, let us suppose that r; <7y <--- <7y, and throughout this paper we use
the following notation and definitions

rp = (ry,...,mp), |rpli=r14+--+1p,

Py (zrp) o= (z41p) (4 7p) ™" (2 +1p) 222, tER,

nt|rp_1]
By, (z51p) Z {n+|rp|} 2 n>0

= E+mrp

and e; denotes the i-th vector of the canonical basis of RP.
In [12], the following were proved:

Sk
By (2:1p) = exp (—=2) > Py (k;1y) o (1)
k>0 ’

n‘Hrpfll

n+ [rp| k

P, (z;r,) = { p } Z=. (2)
kX:;J k+ "p rp

For later use we define the following numbers

r,_1|— r Tp— . . ,
ak (rp_1) = (1)1 37 H[} Gyl =gt t gy

. i1 p—1
1=k p

where [Z] are the absolute Stirling numbers of the first kind.
Upon using the known identity

=3 -1 [

=0 J
we may state that we have
|l‘,,_1\
> an (rpo)uf = (@)™ ()L 3)
k=0

In our contribution, we give more properties for the r,-Stirling numbers and the
rp-Bell polynomials. The paper is organized as follows. In the next section we prove

that the sequence ({”,:;I:p} ; 0<k<n+ I'p1> is strongly log-concave and we
P I‘p
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give an approximation of {"kt_qupl} when n — oo for a fixed k. In the third section
P ‘r

we write B, (z;rp) in the basis {Bnir (2;7p) : 0 <k <|rp_1|} and Bpim (251p)
in the family of bases {szm (z;rp +jep) :0<j < n} . As consequences, we also
give some identities for the r,-Stirling numbers. In the fourth section we give the
ordinary generating functions of the r,-Stirling numbers of the second kind and the
r,-Bell polynomials.

2. Log-Concavity of the r,-Stirling Numbers

In this section we discuss the real roots of the polynomial B, (z;r,), the log-
concavity of the sequence ({"Hr?l} ,0<k<n+ |rp_1|) , the greatest maximiz-

ing index of { } and we give an approximation of {"‘Hr’)l} when n tends to

infinity. The case p = 1 was studied by Mez8 [9] and another study is done by Zhao
[15] for a large class of the Stirling numbers.

In what follows, for illustration or if the order of ry,...,r, is unknown, we write
the polynomial B, (z;r,) as By, (2;71,...,7rp) for which r1,...,r, are taken in any
order.

Theorem 1. The roots of the polynomial By, (z;1;,) are real and non-positive.

To prove this theorem, we use the following lemma.

Lemma 2. Let j,p be nonnegative integers and set

B(J) (Z rp) = exp( ) % (ZTP exp (Z) B, (Z; rp))v

where g := 0 and By, (z;10) := Z {7}2*. Then, we have
B’r(zj) (Z;rp)zzrpijBn (Z;Irlw")rpvj) ifj<rp7
BY) (z;1,) = By (2571, 1, 5) if 5 > 1,

with deg BY) = n + Irp|. In particular, we have BY+y) (z;1p) = By (251p41) -



Proof. The definition of BY (z;rp) and the identity (1) show that we have

exp (z) BY) (z;1))

& ZktTe
= 9 an (k;rp) R
k>0

. Sktrp—J
= Y () k) (k) (b ) e

k>max(0,j—rp)

Then, for 0 < j < 7, we obtain

. n r r . Zk""rp_j
exp (2) BY (z13) = 37 (k4 1) (k-4 7)™ - (k22 (k)L T
k>0 ’
=277 exp (2) Bn (2371, -+ Tpy )
and for j > r, we obtain
() n r rp—1 j A
exp (2) BY (z5my) = D (k+my)" (k)™ (k)22 (k) S
k>j—rp
AT AT AT T Zk
=D (B0 (bt )™ (k4 )22 (b4 )™ 5
k>0 ’
=exp (2) Bn (z;7r1,...,7p,7) -
It is obvious that we have deg BY) =n+ |rp| and for j = rp41 > 1, we obtain
By (z;1p) = By (%371, ., py Tpt1) = B (251p41) - O

Proof of Theorem 1. We will show by induction on p that the roots of the poly-
nomials B, (z;r,) are real and non-positive. Indeed, for p = 0 the classical Bell
polynomial B,, (z;rg) = B, () has only real non-positive roots and for p = 1 the
polynomial By, (z;r7) is the r1-Bell polynomial introduced in [8] and has only real
non-positive roots. Assume, for 1 <r; <ry <-.. <1p, that the roots of the poly-
nomial B, (z;r,) are real and negative, denoted by z1,..., Zntlr,_,| With 0 > 21 >
2 Zpypr, |- We will prove that the polynomial B,gj) (z;rp) has only real non-

positive roots and we conclude that the polynomial B, (z;rp41) = i) (z;1rp)
(see Lemma 2) has only real non-positive roots.

Firstly, we examine the polynomials B,gj ) (z;rp) for j < rp. Indeed, the above
statements show that the function

fa (z;1,) == exp (2) BY) (2;1,) = 2™ exp (2) By (2; 1)



vanishes at 20,21, .., 2nq|r,_,| With 20 =0> 21 > -+ > 2,4, || and 29 = 0 is of
multiplicity r,. Lemma 2 gives

d (1) rp—1

P (fn (z3rp)) =exp(2) By, (z;1p) = 2" 7" exp (2) By (2571, -, Tp—1,Tp, 1)
and by applying Rolle’s theorem to the function f, (z;r,) we conclude that its
derivative d% (fn (2;1p)) vanishes at some points zy,..., Ty, ,| With 0 > 21 >
21 > X3 2 0 2 Tpypr, 4| 2 Zntlr, |- Consequently, the polynomial Bfll) (z;1rp)
vanishes at z1,..., Ty, ,| and at o =0 (with multiplicity r, — 1). The number

of these roots is (n+ |rp_1]) + (r, — 1) = n + |rp| — 1. Because B (z;rp) is of
degree n+ |rp| (see Lemma 2), it must have exactly n+|r,| finite roots; the missing
one, denoted by x4 |r,_ |41, cannot be complex. By the fact that the coefficients of
2% in By, (2;71,...,7p—1,7p, 1) are positive, the root Tpi|r,_|+1 Must be negative
too. So, the polynomial BY (z;rp) has n + |rp_1] + 1 real negative roots and
z = 0 is a root with multiplicity r, — 1. Similarly, we apply Rolle’s theorem to the
function d% (fn (z;rp)) to conclude that the polynomial BY (z;rp) has n+|r,_1|+2
real negative roots and z = 0 is a root with multiplicity r, — 2, and so on. So, the
polynomials By(lo) (z;1p), BV (z50p) ..y Bff”_l) (z;rp) have only real non-positive
roots.

Secondly, we examine the polynomials BY (z;1p) for rp < j < rpiq. Indeed, we
have BY") (0;rp) # 0 and consider the function

drr—1

an (z;1p) = exp(2) B,(L’“Pfl) (z;rp) = zexp (2) Bp (2,71, .+, Tp—1,Tp, Tp—1) -

As it is shown above, this function has n + |r,| — 1 real negative roots and the root
z = 0, then Rolle’s theorem shows that its derivative

dre

an (2 rp) = exp (2) Bgrp) (% rp) =exp (2) By (2571, - 7TI)—17TP’T;U)

has at least n + |rp| — 1 real negative roots. This means that the polynomial
BU?) (z; rp) =By (271, .., Tp—1,Tp,Tp)

has at least n + |r,| — 1 real negative roots and because it is of degree n + |rp],
the missing one cannot be complex. By the fact that the coefficients of z* in
By, (z;7r1,...,7p—1,Tp, Tp) are positive, this root must be negative too. So, the poly-
nomial B{™ (z;rp) has n+|r,| real negative roots. Similarly, apply Rolle’s theorem
to di%fn (z;r,) and conclude that the polynomial By Y (z;rp) has n + |r,| real
negative roots and so on. So, the polynomials B’ (z51p) 500, Bre+y) (z;1,) van-
ish only at negative numbers. Then, the polynomial B,, (z;rp+1) = i) (z;1p)
(see Lemma 2) has only real negative roots. O



Upon using Newton’s inequality [6, p. 52], which is given by

Theorem 3. (Newton’s inequality) Let ag, a1, ..., a, be real numbers. If all the
n .
zeros of the polynomial P(x) = > a;x* are real, then the coefficients of P satisfy
k=0
2 1 1 .
a; > 1+ <) 14+ — ] ait1ai-1, 1<i<n-—1,
i n—i

we may state that:

Corollary 4. The sequence {{nkﬂ:pl} , 0<k<n+ |I'p_1|} is strongly log-concave
p rp

(and thus unimodal).

This property shows that the sequence ({Z}r ,0 < k < n) admits an index
K € {0,1,...,n} for which {;}r is the maximum of {Z}r . An application of

Darroch’s inequality [3] will help us to localize this index.
Theorem 5. (Darroch’s inequality) Let ag, a1,..., a, be real numbers. If all the
zeros of the polynomial P(z) = Y a;x* are real and negative and P(1) > 0, then

k=0
the value of k for which ay is mazimized is within one of P'(1)/P(1).

The following corollary gives a small interval for this index.

Corollary 6. Let K, be the greatest marimizing index of {Z}r . We have
i 2

Bpt1(1;1p)
K, - = — 1 1.
‘ nt|rplrp ( B, (1; rp) (rp + ) <

. n+lr . . .
Proof. Since the sequence { & Jri’l}rp is strongly log-concave, there exists an index
K for which {"tImll < ..o < f it > ... > {"Hm Then, on
n+rp|,ry, { Tp }!‘p {Kn+‘rp"rp }!‘p { n+rp }I'p )

applying Theorem 1 and Darroch’s theorem, we obtain

dian <Z’ I‘p) ‘z:l

‘Kn+|rp|,rp o B, (1;1‘1’) o

It remains to use the first identity given in [12, Corollary 12] byz-L (B, (z;r,)) =
Bry1(z51p) = (24 71p) Bn (251p) - O



3. Generalized Recurrences and Consequences

In this section, different representations of the polynomial B, (z;r;,) in different
bases or families of basis are given by Theorems 7 and 10. Indeed, a representation
in the basis {By4+x (#;7p) 1 0 <k <n+ |rp,_1|} is given by the following theorem.

Theorem 7. We have
\I‘p,1|
B, (Z§ rp) = Z g (I'p—l) Btk (Z§ Tp) )
k=0
[rp—1]
B (2Tpiq) = Z g (Tp—1) Brsk (237p;s -+, Tpaq) -
k=0

Tm

Proof. Upon using the fact that (k +r,)™ =5 (=1)™ 7 [”"] (k+7p) , we get

j=0
B, (z;r,) = exp ( ZP (kirp) —
k>0
< r _jlrm] FPo (k;rp) n+j P
e ()Y (- mJH—Mkm) 2
== gl (k+rp)™ k!

Tm
i [r
= Z (—1)"™~7 [ ]m} By (zivp —Tmen), m=12....p—1,
—

and with the same process, we obtain

Tp—1
rp_1 p—1 Tp—1 .
AT ED SR DI Tl 4 Y Ve E RIS

71=0 Jp—1=0 Jp71

z ) X [ [

o= 1 U
[rp—1]
= Y ak (rpo1) Buyk (2:7p)
k=0
This implies the first identity of the theorem.
Now, from Lemma 2 we can write
d’rt1
exp (— T (27 exp (2) By (z;1p))
lrp—1l A

= ) ar(rp-1)exp(—2) (2"7 exp (2) Buyk (2:7)) 5

dz"r+1



[rp—1]

which gives by utilizing Lemma 2: B, (2;1p41) = > ag (Yp—1) Bnir (257p, Tpt1) -
k=0

We can repeat this process g times to obtain the second identity of the theorem. [

So, the r,-Stirling numbers admit an expression in terms of the usual r-Stirling
numbers given by the following corollary.

Corollary 8. We have

[rp—1] .
n+ [rp| _ n+Jj+7p ]
{ k—l—?“p }rp N JZ { k‘—|—7«p TPGJ (I'p—l).

=0

Proof. Using Theorem 7, the polynomial B,, (z;r,) can be written as follows:

Irp—1] o1l nt n+j+r
50 6y B ) = 3 ey S {1
p Tp

=0 j=0 k=0
n‘Hrp—ll ‘rp—ll .
= "> R
- Y F Y wmnd
k=0 j=0 ket ™

nt|rp_1|

and since B, (z;1,) = > {"kﬂii‘}r 2# the identity follows by identification. [
0 P

In [12], we proved the following:

S B (s57y) o = Bo (2exp (8) 5, exp (= (exp (£) — 1) + ryt).
n>0 ’

The following theorem gives more details on the exponential generating function of
the r,-Bell polynomials and will be used later.

Theorem 9. We have

t’rL
ZB”JH,L (z;1p) = By, (zexp (t);rp) exp (z (exp (t) — 1) + rpt)
n>0 ’

[rp—1]

dm+k
= ag (rp—1) = (exp (z (exp (t) — 1) +rpt)) .
k=0



Proof. Use (1) to get

tn e Zk tn
ZBner (Z;rp) E = Z eXp ZP() k I‘p) (k’ +r ) + y —

! n!
n>0 n>0 k>0

2k ex r
= exp ( ZPO (k;rp) (k+1p)" p((:!—i- »)?)

k>0

= B, (zexp (t);rp)exp (2 (exp (t) — 1) + rpt).
For the second part of the theorem, use Theorem 7 to obtain

[rp—1]

t" t"
ZBner (Z§ rp) E = Z ag (rpfl) ZBn+m+k (Z; Tp) ;
n>0 ’ k=0 n>0 ’
[rp—1]
dm+k tn
= Z ai (rp_1) — T ZB 2;7rp) — o
k=0 n>0
[rp—1l dm+k
= ag (rp—1) gy (exp (2 (exp (t) — 1) + rpt)) .
k=0

Using combinatorial arguments, Spivey [13] established the following identity:

s EE L0

k=0 j=0

where B,, is the n-th Bell number, i.e., the number of ways to partition a set of n
elements into non-empty subsets. After that, Belbachir et al. [1] and Gould et al.
[7] showed, using different methods, that the polynomial By, (2) = Bpym (2;0)
admits a recurrence relation related to the family {z'B; (z)} as follows:

By ( EZ{ ()i, ()

k=0 j=0

Recently, Xu [14] gave a recurrence relation on a large family of Stirling numbers
and Mihoubi et al. [11] extended the relation (4) to r-Bell polynomials as follows:

Brens @)= 23" (1) B 0 )

k=0 j=0
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Other recurrence relations are given by Mez8 [10]. The following theorem generalizes
the Identities (4) and (5), and the Carlitz’s identities [4, 5] given by

Busm (157) :i{m+T}Bn(l;k+r),

— k+r ],

s+ s
By, (1;7 4+ s) :Z [k‘—l—r:| (—=1) an+k (L;r),
k=0 T

and shows that B, 4, (z;1;,) admits 7-Stirling recurrence coefficients in the families
of basis

{#' By, (51 + je,) : 0 < j <n},
{szeri(z;T—i-j):OSiS lrp—1|, OSan},

where B,, (1;7) is the number of ways to partition a set of n elements into non-empty
subsets such that the r first elements are in different subsets.

Theorem 10. We have

" (n+r i .
Bpym (z31p) = Z{ . p} 2! B (231p + jep) s
j=0 J +Tp Tp

[rp—1] n
n+r ; .
B Ging) = 30 " a0y B i+ ),

r
20307+p

2" By, (z;1p +nep) = Z {

n-+r n—j
} (1" By (z:13).
=0 "

J+rp .

Proof. Let T, (z;1p) := > [ D ?_t::} 2I By, (231 +jep)> ‘;—ﬂ, The second iden-
n>0 \j=0

tity given in [12, Corollary 12] by

2 (exp (2) B (2:1,)

exp (2) By, (2,1, +€p) = o

can be used to get
47

exp (2) Bm (2,1, + jep) = a2 (exp (2) B (2;1p)) - (6)

Identity (6) and the exponential generating function of the r-Stirling numbers (see
21) X

n+r A
S{IT = e -1 e )

!
Py AV AU R



11

prove that
. ;1
T (z31p) = ZBm (z31p + jep) 27 — (exp (1) — 1)7 exp (rpt)
>0 J:
(2 (exp (1) — 1))’
= exp (rpt ;}d . (exp (2) B, (z;1))) i .
3>

Now, by the Taylor-Maclaurin expansion we have

L exp () B (sim,)) L

S = e () B ().
§>0

So, this identity and Theorem 9 show that we have
t
T (z31p) = exp (rpt — z) exp (zexp () By, (zexp (¢ ZB”‘H” Z;Tp) E
n>0

By comparing the coefficients of ¢" in the two expressions of T, (z;r,), the
first identity of this theorem follows. The second identity follows by replacing
By, (z;1p + jep), as given by its expression in Theorem 7 by

|rp—1|
Z a; (Tp—1) Bmi (257 4 7p) -
=0
For the third identity, let A := 377, [?I:;’L (=1)"" Bpyj (z;1p) . We use Identity
(1) and the known identity (k + 7,)" = > [?i:”] k7 (see [2]) to obtain
=0 Pry

kE_n . .
= exp ( ZP (k;rp) % [n * rp] )" (k+rp)’

k>0 j=0 J+Tp
z n—+r i
=(-1)"e P, (k;rp) — Pl (k=)
(—1)" exp ( 1§) p k! ZL—FTP]T ( p)
= (—1)"exp ( ZP (k;rp) k' —k;—rp—krp)ﬁ
k>0
= exp ( ZP (ksrp) k
k>n
=z"exp ( ZP (k+n;rp) k.
k>0
=2"B,, (z;rp + nep) . O

As consequences of Theorem 10, some identities for the r,-Stirling numbers of
the second kind can be deduced as is shown by the following corollary.
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Corollary 11. We have

z’“:{mﬂrpl} { n+rp } _{n+m+|rp|}
=ity ) k=it k+mp r,,’
2": Mg tlrpl) [ntrpl ey fmet il e

j k+n+Tp r, j+’l"p Tp k+’l"p+’fl I'p+7zep7

Z{m+j+|rp|} [n+rp} (—1)" 7 =0, k<n.
= ktrp ), Li+7el,, 7

§H

Proof. From the first identity of Theorem 10 we have
" (n+ Tp ; .
Bt (2;1p) = Z , 2! B (231p + jep)

which can be written as

n4+m-+|rp—1| m4|rp—1|
Zp {n+m+|rp|} zk:zn:{n—i-rp} i i {m+|rp} i
k=0 kit rp j=0 IHTe i=0 vt e,
n4+m+|r,_1| k
_ Zp sz{m+|rp|} { n+rp } _
k=0 G k—itrp Tp

Then, the desired identity follows by comparing the coefficients of z* in the last
expansion. Using the definition of By, (z;r),) and the third identity of Theorem 10,
the second and the third identities of the corollary follow from the definition

eyl m+ |ty +n
k
By, (z;rp +ney) = Z {k+rp+n} z
k=0 p rp+nep
and the expansion

n+rp

j+ry m+j (25 Tp)

m+]+|"p ‘ .
Z YmA4 g+ |rp] Zk
kE+mrp .

k=0

By, (z;rp +nep) = 27 " [

Jj=

n
n-+r
=yl
m+n+|rp_1|

|
Es
- & Z’““i{%ﬁ'u;t::bw-j

k=0 j=0

m+|rp_1| n .
K m+j+[rp [n+rp n—j
-1 .
P VD M VA N )

k=—n Jj=
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4. Ordinary Generating Functions

The ordinary generating function of the r-Stirling numbers of the second kind [2]
is given by

k
Z n—+r n_ H _(r . 1

n>k
An analogous result for the r,-Stirling numbers is given by the following theorem.

Theorem 12. Let
>  [n+|r,| k
Bn(z;r):zg{ p}z.
2 =kt ),

Then, we have

n + |I‘ | k| | 1 T 1 ”'p;lk"”lrp—ll )
p tn:t—i-rp_l - - 1— .
Z{k+|rp|}rp t t H ( (rp+3)t) ",

n>k 7=0

_ 1\ 1\ "=t Zk—|r,,,1\tk

. n _
Shne=(3) (7)) T 5 —
n>0 k2lrpa| T (1= (rp +7) %)
j=0

Proof. Use Corollary 8 to obtain

Z{”‘H%} tn_z{ n+ [ry| }tn
k+ |rp| k+rp_a] +1p rp

rp n>k

n>k
ORI > e
= j Tp—
St al o),
[rp—1]
-7 n+r}7 n
= G,j(I'p,l)t J Z { } t 5
=0 nSigg Bt ),
and because {kﬂfptﬁ”p}rp =0forn==Fk,...,k+|rp_1] — 1, we get

§ : [rp—1]
n+ |rpl n+ry B
t" = t" E (r )t
{k+rp|} Z {k+|rp1|+rp a; (rp 1)

n>k rp n>k+|rp_1] p 7=0

The first generating function of the theorem follows by using (3) and (7). For the
second one, use the definition of B,, (#;r,) and the last expansion. O



14

Acknowledgments The authors would like to acknowledge the support from the
RECITS’s laboratory and the PNR project 8/U160/3172. The authors also wish to
thank the referee for reading and evaluating the paper thoroughly.

References

(1]

3]

[4]

[5]

[6]

(10]

(11]

(12]

(13]

(14]

(15]

H. Belbachir, M. Mihoubi, A generalized recurrence for Bell polynomials: An alternate
approach to Spivey and Gould Quaintance formulas. Furopean J. Combin. 30 (2009), 1254—
1256.

A. Z. Broder, The r-Stirling numbers. Discrete Math. 49 (1984), 241-259.

J. N. Darroch, On the distribution of the number of successes in independent trials, Ann.
Math. Stat. (1964), 1317-1321.

L. Carlitz, Weighted Stirling numbers of the first and second kind — I. Fibonacci Quart.18
(1980), 147-162.

L. Carlitz, Weighted Stirling numbers of the first and second kind — II. Fibonacci Quart.18
(1980), 242-257.

G. H. Hardy, J. E. Littlewood, G. Ploya, Inequalities (Cambridge: The University Press,
1952).

H. W. Gould, J. Quaintance, Implications of Spivey’s Bell number formula, J. Integer Seq.
11 (2008), Article 08.3.7.

I. Mez8, The r-Bell numbers. J. Integer Seq. 14 (2011), Article 11.1.1.
I. Mez8, On the maximum of r-Stirling numbers. Adv. Applied Math. 41 (2008), 293-306.

I. Mez8, The Dual of Spivey’s Bell Number Formula, J. Integer Seg. 15(2) (2012), Article
12.2.4.

M. Mihoubi, H. Belbachir, Linear recurrences for r-Bell polynomials. Preprint.

M. Mihoubi, M. S. Maamra, The (r1,...,rp)-Stirling numbers of the second kind. Integers
12 (2012), Article A35.

M. Z. Spivey, A generalized recurrence for Bell numbers. J. Integer Seq. 11 (2008), Article
08.2.5.

A. Xu, Extensions of Spivey’s Bell number formula. Electron. J. Comb. 19 (2) (2012),
Article P6.

F. Z. Zhao, On log-concavity of a class of generalized Stirling numbers. Electron. J. Comb.
19 (2) (2012), Article P11.



