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Abstract
Let K be a field. Generalizing the binomial coefficient polynomials

(
X
n

)
, the New-

ton interpolation basis polynomials relative to an infinite sequence a = (ai)∞i=0 of
distinct elements of K are defined by

[X
n

]
a
=

∏n−1
i=0

X−ai
an−ai

∈ K[X ]. There is a

complete and natural set of relations for these polynomials, namely,
[X
m

]
a

[X
n

]
a
=

∑m+n
l=max(m,n)[m,n, l]a

[X
l

]
a
, where the coefficients [m,n, l]a are in K for all m,n, l.

We derive formulas for the [m,n, l]a that uniquely characterize the linear iterative
sequences and the sequences of squares and triangular numbers and are expressed,
respectively, in terms of the q-multinomial coefficients and the ordinary multinomial
coefficients. We also use these relations to find a D-algebra presentation of the ring
Int(S,D) = {f ∈ K[X ] : f(S) ⊆ D} of integer-valued polynomials on S in D, where
D is any integral domain with quotient field K and S is any subset of D such that
an ∈ S and

[X
n

]
a
∈ Int(S,D) for all n.

1. Introduction

Let a = (ai)∞i=0 be an infinite sequence of distinct elements of a field K. The nth
a-binomial coefficient polynomial

[X
n

]
a
, for any nonnegative integer n, is the (unique

degree at most n) interpolating polynomial of the n+ 1 points (a0, 0), (a1, 0), . . . ,
(an−1, 0), (an, 1) in K2. Equivalently, one sets

[
X

n

]

a

=
n−1∏

i=0

X − ai
an − ai

.

Two examples that are important from a combinatorial perspective are as follows.

Example 1.1.
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1. Let n = (0, 1, 2, 3, . . .). If K is of characteristic zero, then

[
X

n

]

n

=

(
X

n

)
=

X(X − 1)(X − 2) · · · (X − n+ 1)

n!
∈ Q[X ] ⊆ K[X ]

is the nth binomial coefficient polynomial.

2. Let q = (1, q, q2, q3, . . .) denote the sequence of powers of a fixed q ∈ K that
is neither zero nor a root of unity. Then

[
X

n

]

q

=
(X − 1)(X − q)(X − q2) · · · (X − qn−1)

(qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)

is the nth Gaussian binomial coefficient polynomial.

The a-binomial coefficient polynomials
[
X
n

]
a
for n ∈ Z≥0 form a K-vectorspace

basis of K[X ], which we call the Newton basis of K[X ] (relative to a). Although
there are explicit formulas for the coefficients of a polynomial in K[X ] with respect
to the Newton basis of K[X ] relative to a (see Section 6), there are more efficient
ways of computing the coefficients [13] [14], including the following.

Proposition 1.2 (Newton basis theorem). For any polynomial f ∈ K[X ] of degree
at most n, there exist unique elements ck = δka(f) of K such that

f =
n∑

i=0

ci

[
X

i

]

a

.

Moreover, the ck can be computed iteratively from the equations

ck = bk −
k−1∑

i=0

ci

[
ak
i

]

a

, k = 0, 1, 2, . . . , n,

where bk = f(ak) for all k. Conversely, given any b0, b1, . . . , bn in K, if the ck are
defined recursively as above, then f =

∑n
i=0 ci

[X
i

]
a
is the interpolating polynomial

of the n+ 1 points (a0, b0), (a1, b1), . . . , (an, bn) of K2.

Proof. Substitute a0, a1, . . . , an successively for X into the given expression for f
and solve for ck in the kth resulting equation.

From the Newton basis theorem it follows that there are unique elements [m,n, l]a
of K, depending on a, m, n, and l, such that

[
X

m

]

a

[
X

n

]

a

=
m+n∑

l=0

[m,n, l]a

[
X

l

]

a

. (1.1)



INTEGERS: 14 (2014) 3

It is easy to show that the coefficients [m,n, l]a determine the terms of the sequence a
uniquely up to a linear transformation (Proposition 2.7). Moreover, the coefficients
[m,n, l]a reflect various arithmetic properties of the sequence a. For instance, their
“boundary” values coincide with two a-analogues of the binomial coefficients

(
n
k

)
.

To define them we first define the a-analogue of n! to be the nth a-factorial n!a =∏n−1
i=0 (an − ai) (the reciprocal of which is the leading coefficient of

[X
n

]
a
). By [4,

Lemma 16], if a is “simultaneously ordered” in the sense of [3, Theorem 19], or
more broadly in the sense discussed later in this section, then n!a coincides with
“the ‘correct’ number-theoretic generalization of the factorial” discussed in [4].

Example 1.3. Let n be a nonnegative integer.

1. n!n = n!, where n = (i)∞i=0.

2. n!q = (qn − 1)(qn − q) · · · (qn − qn−1), where q = (qi)∞i=0.

3. n!s = (2n)!/2 for all n > 0, where s = (i2)∞i=0.

4. n!t =
(2n)!
2n and n!2t = (2n)!, where t = ((i2 + i)/2)∞i=0 and 2t = (i2 + i)∞i=0.

The two a-analogues of
(n
k

)
are

[
n

k, n− k

]

a

=
n!a

k!a(n− k)!a

and [
an
k

]

a

=
k−1∏

i=0

an − ai
ak − ai

.

The first expression is symmetric with respect to k and n− k, but the second need
not be. Moreover, the two are equal for all n, k if and only if a is an arithmetic
sequence (Corollary 1.7).

From Eq. (1.1) it is straightforward to show that [m,n, l]a = 0 if l < max(m,n),
and at the “boundaries” l = m+ n and l = m, l = n one has

[m,n,m+ n]a =

[
m+ n

m, n

]

a

and

[m,n,m]a =

[
am
n

]

a

, [m,n, n]a =

[
an
m

]

a

,

respectively (Proposition 2.2). In this sense the coefficients [m,n, l]a interpolate
both a-analogues of the binomial coefficients

(n
k

)
.

In Sections 4 and 5 we find simple formulas for the coefficients [m,n, l]a uniquely
characterizing particular arithmetically and combinatorially significant sequences
a. The following elementary result, which can be proved by equating coefficients in
the multinomial expansions of (1 + S)t(1 + T )t and (1 + S + T + ST )t in Z[S, T ],
is the motivating example.
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Proposition 1.4. One has

(
X

m

)(
X

n

)
=

m+n∑

l=max(m,n)

(
l

l −m, l− n,m+ n− l

)(
X

l

)

for all m,n ∈ Z≥0. Equivalently, for any sequence a of distinct integers, one has
[m,n, l]a =

( l
l−m,l−n,m+n−l

)
for all m,n, l, where one sets

( l
n1,n2,...,nr

)
= 0 if ni is

negative for some i, if and only if a is an arithmetic sequence.

In Theorem 1.5 below, we express the coefficients [m,n, l]a for the sequence
a = q, where q = (qi)∞i=0, in terms of the well-known q-multinomial coefficients( n
n1,n2,...,nr

)
q
[9] [15]. (Their definition is recalled in Section 4.) These arise natu-

rally in several contexts, including combinatorics, linear algebra and algebraic and
projective geometry over finite fields, quantum calculus, and the theory of quantum
groups [10] [11]. It is well-known, for example, that if q ∈ Z is a prime power,
then

(n
k

)
q
is equal to the number of k-dimensional subspaces of an n-dimensional

vectorspace over the finite field Fq [9, Theorem 1] [15, Proposition 1.7.2].

Theorem 1.5 (with Angela Adams, Ryan DeMoss, Margaret Freaney, and Andrew
Mostowa). Let q = (qi)∞i=0, where q ∈ K is neither zero nor a root of unity. Then

[
X

m

]

q

[
X

n

]

q

=
m+n∑

l=max(m,n)

q(l−m)(l−n)

(
l

l −m, l − n,m+ n− l

)

q

[
X

l

]

q

for all m,n ∈ Z≥0. Equivalently, one has [m,n, l]q = q(l−m)(l−n)
( l
l−m,l−n,m+n−l

)
q

for all m,n, l ∈ Z≥0.

Two undergraduate students, Margaret Freaney and Andrew Mostowa, conjec-
tured the theorem in 2009 after using a computer (and Maple) to compute the
coefficients [m,n, l]q for various m,n, l and compare their values with values of
various hypothetical q-multinomial versions of Proposition 1.4. In 2012, two more
undergraduate students, Angela Adams and Ryan DeMoss, helped prove the con-
jecture by induction. (This proof, along with a proof from the q-Vandermonde
identity, is provided in Section 4.) That same year two computer science students,
Michael Kaiser and Gregory Ball, wrote programs in C and Maple to compute the
coefficients [m,n, l]a for any sequence a, which led to the discovery of Propositions
2.2 and 2.7, as well as Theorem 1.10 below. Finally, in 2013, two math students,
Lucas Mattick and Blaine Kutin, attempted to find formulas for [m,n, l]a for further
sequences a and proved Propositions 3.4 and 5.1.

Proposition 1.4 and Theorem 1.5 generalize as follows. We say that a is a linear
iterative sequence if a is obtained by iterating a linear polynomial qX + r in K[X ].
Assuming a1 $= a0, the polynomial is unique and one has q = a2−a1

a1−a0
.
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Theorem 1.6. Let a be an infinite sequence of distinct elements of K, and let
q = a2−a1

a1−a0
. The following conditions are equivalent.

1. a is a linear iterative sequence.

2. a = α+ βb for unique α,β ∈ K, where b = n if q = 1 and b = q if q $= 1.

3. a = α+ βb for unique α,β ∈ K, where b =
(∑i−1

j=0 q
j
)∞

i=0
.

4.
[an

1

]
a
=

(n
1

)
q
for all n.

5.
[
an

k

]
a
=

(
n
k

)
q
for all n, k with k ≤ n.

6. [m,n, l]a = q(l−m)(l−n)
(

l
l−m,l−n,m+n−l

)
q
for all m,n, l.

7.
[
n
k,l

]
a
= qkl

[
an

k

]
a
for all n, k, l with n = k + l.

8.
[
an

k

]
a
=

[
an

n−k

]
a
for all n, k with k ≤ n.

9.
[an

k

]
a
=

[ an

n−k

]
a
for n odd and k = 2, &n/2' and for n = 4, 5, 6 and k = 1, 2.

Corollary 1.7. Let a be an infinite sequence of distinct elements of K. Then[an

k

]
a
=

[ an

n−k

]
a
for all n, k with k ≤ n if and only if a is a linear iterative sequence,

and
[
an

k

]
a
=

[
n

k,n−k

]
a
for all n, k with k ≤ n if and only if a is an arithmetic

sequence.

Another motivation for studying the coefficients [m,n, l]a is their application
to generalized integer-valued polynomials. Using the Newton basis relations (1.1),
one can express the product fg =

∑
m,n cmdn

[
X
m

]
a

[
X
n

]
a
(and sum f + g) explicitly

in terms of the Newton basis provided that f =
∑

n cn
[X
n

]
a
and g =

∑
n dn

[X
n

]
a

in K[X ] are so expressed. Moreover, the relations (1.1) account for all of the
polynomial relations among these generators of K[X ]. (Together with the relation
X − a0 = (a1 − a0)

[
X
1

]
a
one can recover the expressions for the Newton basis

polynomials and hence the sequence a itself.) This yields a K-algebra presentation
of K[X ] that is particularly suited to studying subrings of K[X ] of generalized
integer-valued polynomials, defined as follows.

Let D be an integral domain with quotient field K and S a subset of D. The set

Int(S,D) = {f ∈ K[X ] : f(S) ⊆ D}

is a subring of K[X ] called the ring of D-integer-valued polynomials on S. One
writes Int(D) = Int(D,D). Following [1] we say that an infinite sequence a of
distinct elements ai of S is a simultaneous ordering of S (in D) if

[X
n

]
a
∈ Int(S,D)

for all n, or equivalently, if
∏n−1

i=0 (an − ai) divides
∏n−1

i=0 (x− ai) in D for all x ∈ S
and all n. (In [7] simultaneous orderings are called Newtonian orderings.) This
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generalizes the definition of a simultaneous ordering in terms of p-orderings given
for Dedekind domains in [3] [4]. We say that S admits a simultaneous ordering (in
D) if there is a sequence a such that a is a simultaneous ordering of S in D. We also
say that a is simultaneously ordered (in D) if a is a simultaneous ordering of some
subset of D, or equivalently if a is a simultaneous ordering of the set {a0, a1, a2, . . .}.

By the Newton basis theorem, if a is a simultaneous ordering of S in D, then
the polynomials

[
X
n

]
a

form a free D-module basis for Int(S,D), and therefore
[m,n, l]a ∈ D for all m,n, l. Conversely, if [m,n, l]a ∈ D for all m,n, l, then a is si-
multaneously ordered, since [m,n,m]a =

[am

n

]
a
. Thus the coefficients [m,n, l]a can

detect simultaneous orderings. The following result, proved in Section 3, provides
a D-algebra presentation for Int(S,D) when S admits a simultaneous ordering.

Proposition 1.8. Let D be an integral domain and S a subset of D that admits a
simultaneous ordering a. Let

ϕ : D[T1, T2, . . .] −→ Int(S,D)

denote the unique D-algebra homomorphism sending Tn to
[X
n

]
a
for all n. Then the

D-algebra homomorphism ϕ is surjective with kernel generated by

TmTn −
m+n∑

l=n

[m,n, l]aTl

for all m,n with 1 ≤ m ≤ n.

Below is a list of some important known examples of simultaneous orderings.

Example 1.9 ([1] [3] [4] [8]). Let a be sequence of distinct elements of a subset S
of a domain D.

1. If charD = 0, then the sequences n = (i)∞i=0 and (0, 1,−1, 2,−2, . . .) are
simultaneous orderings of Z in D.

2. The sequence q = (qi)∞i=0 of powers of any q ∈ D that is neither zero nor a
root of unity is simultaneously ordered in D.

3. If charD = 0, then the sequence (i2)∞i=0 of squares and the sequence ((i2 +
i)/2)∞i=0 of triangular numbers are simultaneously ordered in D. However, the
sequence (ik)∞i=0 does not admit a simultaneous ordering in Z if k > 2.

4. If ai+1 = f(ai) for all i for some polynomial f ∈ Z[X ], then a is simultaneously
ordered in Z. For example, this holds for the sequence (qr

i
)∞i=0 for any integer

q $= 0,±1 and any integer r > 1.

5. If n!a divides an+1 − a0 for all n, then a is simultaneously ordered in D.
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6. If a is a simultaneous ordering of S in D, then α + βa = (α + βai)∞i=0 is a
simultaneous ordering of α+ βS in D for all α,β ∈ D with β $= 0.

7. a is a simultaneous ordering of S in D if and only if a is a simultaneous
ordering of S in Dp for every maximal ideal p of D.

8. Suppose that D is a Dedekind domain, and let p be a maximal ideal of D.
Then a is a simultaneous ordering of S in Dp if and only if a is a p-ordering
of S in D, in the sense of [3] [4].

9. Suppose D is a local domain with principal maximal ideal m and residue field
of finite order q. Let t be a generator of m, and let a0 = 0, a1, . . . , aq−1 ∈ D be
a complete set of representatives of D/m. For n = n0 +n1q+ · · ·+ nkqk with
0 ≤ ni < q, let an = an0 + an1t+ · · ·+ ank t

k. Then (an)∞n=0 is a simultaneous
ordering of D, and in fact so is (an+k)∞n=0 for any k.

10. The simultaneous ordering of Fq[X ](X) of Example (9) with t = X and
{a0, a1, . . . , aq−1} = Fq is also a simultaneous ordering of Fq[X ].

It is an open problem to determine all Dedekind domains D such that D admits
a simultaneous ordering [3, Question 3].

As noted above, the sequence s = (i2)∞i=0 of squares and the sequence t =
((i2+ i)/2)∞i=0 of triangular numbers are simultaneously ordered in D if charD = 0.
In Section 5 we reveal further significance of these sequences and prove the following.

Theorem 1.10. Suppose charD = 0, and let m,n, l ∈ Z≥0. Then in D one has

[m,n, l]t =

(m+n
m,n

)
(
2m
m

)(
2n
n

)
(

2l

l, l−m, l − n,m+ n− l

)
,

and if m,n > 0 then [m,n, l]s =
2l

m+n [m,n, l]t.

Example 1.9 and the results in this paper motivate the following problems.

Problem 1.11.

1. Find a simultaneous generalization of Theorems 1.5 and 1.10.

2. Find a formula uniquely characterizing the [m,n, l]a for (linear transforma-
tions of) the following simultaneous orderings a.

(a) a = (0, 1,−1, 2,−2, . . .).

(b) a = (a0, f(a0), f(f(a0)), . . .), where f ∈ Z[X ] is of degree at least 2.

(c) Examples (9) and (10) of Example 1.9.
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3. Find a formula uniquely characterizing the [m,n, l]a for any sequence a satis-
fying a second order linear recurrence relation, or more generally a kth order
linear recurrence relations with constant coefficients for k ≥ 2. Which of these
sequences are simultaneous orderings?

4. Characterize the simultaneous orderings a of Example 1.9(5) in terms of the
[m,n, l]a and vice versa.

2. Basic Properties of the Newton Basis Relation Coefficients

In this section we prove some basic properties of the Newton basis relation coeffi-
cients [m,n, l]a. We often write

[
X
n

]
instead of

[
X
n

]
a
.

Lemma 2.1. Let f ∈ K[X ], and let n be any nonnegative integer. Then f(ak) = 0
for all k < n if and only if δka(f) = 0 for all k < n.

Proof. This is clear from the recursion provided by the Newton basis theorem
(Proposition 1.2) for computing the coefficients δka(f).

Proposition 2.2. Let m,n be nonnegative integers. One has [m,n, l]a = 0 for any
nonnegative integer l with l < max(m,n) or l > m+ n, and therefore

[
X

m

]

a

[
X

n

]

a

=
m+n∑

l=max(m,n)

[m,n, l]a

[
X

l

]

a

. (2.1)

Moreover, one has

[m,n, n]a =

[
an
m

]

a

(2.2)

and

[m,n,m+ n]a =

[
m+ n

m, n

]

a

. (2.3)

Proof. The polynomial
[X
m

]
a

[X
n

]
a
assumes the value 0 at ai for all i < max(m,n).

Equation (2.1) therefore follows from Lemma 2.1. Substituting an for X in (2.1) we
obtain (2.2). Finally, equating the leading coefficients in (2.1) we see that 1

m!a
1

n!a
=

[m,n,m+ n]a
1

(m+n)!a
, from which (2.3) follows.

The following corollary provides a formula for the coefficients [1, n, l]a for any
sequence a and any nonnegative integers n, l.
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Corollary 2.3. For all nonnegative integers n one has

[
X

1

][
X

n

]
=

[
an
1

][
X

n

]
+

[
n+ 1

1, n

][
X

n+ 1

]
,

or equivalently

[
X

n+ 1

]
=

(X − an)

(n+ 1)!a/n!a

[
X

n

]
=

(X − an)
[
X
n

]

(an+1 − an)
[
an+1

n

] .

Next we find a simple recurrence relation for the coefficients [m,n, l]a. Let m,n
be nonnegative integers. Let

Xn
a = (X − a0)(X − a1) · · · (X − an−1)

for all n. Let 〈m,n, l〉a denote the unique constants in K such that

Xm
a Xn

a =
m+n∑

l=0

〈m,n, l〉aX l
a,

and set 〈m,n, l〉a = 0 if l > m + n. (The 〈m,n, l〉a are defined even if the ai are
not all distinct.) Also, let δm,n = 1 if m = n and δm,n = 0 otherwise. One has[X
n

]
a
= Xn

a
n!a

and [m,n, l]a = l!a
m!an!a

〈m,n, l〉a for all m,n, l.

Proposition 2.4. One has 〈0, n, l〉a = δn,l and 〈m,n, 0〉a = δm+n,0, and

〈m+ 1, n, l〉a = 〈m,n, l − 1〉a + (al − am)〈m,n, l〉a,

for all m,n, l with l > 0. Moreover, the given recurrence relation and base cases
completely determine the coefficients 〈m,n, l〉a for all nonnegative integers m,n, l.

Proof. Equate the coefficients of X l
a in X

m+1
a Xn

a and (X − am)Xm
a Xn

a .

Corollary 2.5. One has [0, n, l]a = δn,l and [m,n, 0]a = δm+n,0, and

[m+ 1, n, l]a =
m!a

(m+ 1)!a

(
l!a

(l − 1)!a
[m,n, l− 1]a + (al − am)[m,n, l]a

)
(2.4)

for all m,n, l. Moreover, the given recurrence relation and base cases completely
determine the coefficients [m,n, l]a for all nonnegative integers m,n, l.

The base cases in Proposition 2.4 and Corollary 2.5 can be replaced, respectively,
with the boundary conditions

〈m,n, n〉a = (an)
m
a , 〈m,n,m+ n〉a = 1
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and

[m,n, n]a =

[
an
m

]

a

, [m,n,m+ n]a =

[
m+ n

m, n

]

a

.

One defines the a-multinomial coefficient
[

n

n1, n2, . . . , nr

]

a

=
n!a

n1!an2!a · · ·nr!a

when n = n1 + n2 + · · ·+ nr.

Lemma 2.6. Let α,β ∈ K with β $= 0. Then

n!α+βa = βnn!a,

[
n

n1, n2, . . . nr

]

α+βa

=

[
n

n1, n2, . . . nr

]

a

,

[
α+ βX

n

]

α+βa

=

[
X

n

]

a

,

for all nonnegative integers n, n1, n2, . . . , nr with n = n1 + n2 + · · ·nr.

Proof. This is easy to verify from the definitions.

Next we show that the coefficients [m,n, l]a determine a uniquely up to a linear
transformation.

Proposition 2.7. Let a = (ai)∞i=0 and b = (bi)∞i=0 be infinite sequences of distinct
elements of K. The following conditions are equivalent.

1. [m,n, l]b = [m,n, l]a for all nonnegative integers m,n, l.

2. [1, n, n]b = [1, n, n]a for all nonnegative integers n.

3.
[bn
1

]
b
=

[an

1

]
a
for all nonnegative integers n.

4.
[
bn
k

]
b
=

[
an

k

]
a
for all nonnegative integers n, k.

5. There exist α,β ∈ K such that b = α+ βa.

Proof. One has (1) ⇒ (4) ⇒ (3) ⇔ (2) by Proposition 2.2. One has (3) ⇒ (5)
because the equation bn−b0

b1−b0
=

[bn
1

]
b
=

[an

1

]
a
= an−a0

a1−a0
expresses a linear relationship

between the terms bn and an. Finally, one has (5) ⇒ (1) by Lemma 2.6 and the
fact that the map K[X ] −→ K[X ] sending f(X) to f(α+ βX) for all f ∈ K[X ] is
an automorphism of the K-algebra K[X ].
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3. Applications to Integer-Valued Polynomials

In this section we discuss the connections between the Newton basis and integer-
valued polynomial rings and prove Proposition 1.8 of the introduction. Recall that,
for any subset S of an integral domain D with quotient field K, the set

Int(S,D) = {f ∈ K[X ] : f(S) ⊆ D}

is a subring of K[X ] containing D[X ] called the ring of D-integer-valued polyno-
mials on S [6]. The Newton basis theorem (Proposition 1.2) yields the following
generalization of [3, Theorem 19].

Proposition 3.1. Let D be an integral domain with quotient field K. Let S be
a subset of D and a an infinite sequence of distinct elements of S. The following
conditions are equivalent.

1. a is a simultaneous ordering of S in D.

2. The polynomials
[
X
n

]
a
for n ∈ Z≥0 form a D-module basis for Int(S,D).

3. For all f ∈ K[X ], one has f ∈ Int(S,D) if and only if δka(f) ∈ D for all
nonnegative integers k ≤ deg f .

4. For all f ∈ K[X ], one has f ∈ Int(S,D) if and only if f(ak) ∈ D for all
nonnegative integers k ≤ deg f .

From the above result and Proposition 2.2 we obtain the following.

Proposition 3.2. Let D be an integral domain and a an infinite sequence of distinct
elements of D. The following conditions are equivalent.

1. a is simultaneously ordered in D; that is,
[
an

m

]
a
∈ D for all m,n.

2. [m,n, n]a ∈ D for all m,n.

3. [m,n, l]a ∈ D for all m,n, l.

Now we prove Proposition 1.8 of the introduction.

Proof of Proposition 1.8. Let R = D[T1, T2, . . .], and let I denote the ideal gener-
ated by the given relations. By Proposition 3.1 the homomorphism ϕ is surjec-
tive. Since I ⊆ kerϕ, there is an induced surjective D-algebra homomorphism
ψ : R/I −→ Int(S,D). Let f = f(T1, T2, . . .) ∈ R. By induction on deg f
one can use the given relations to reduce f modulo I to a linear polynomial
g = c0 + c1T1 + c2T2 + · · ·+ cnTn ∈ R in the Ti; indeed, if g is any such linear poly-
nomial, then gTm can be reduced modulo I to a linear polynomial for any m, since
TiTm can be so reduced for any i. Thus, there is a linear polynomial g ∈ R such that
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f ≡ g (mod I). If g′ ∈ R is any linear polynomial with f ≡ g′ (mod I), then ϕ(g) =
ϕ(g′), whence g = g′ since the coefficients of any linear polynomial in the

[
X
n

]
a
are

unique by Proposition 3.1. Thus, for any f ∈ R there is a unique linear polynomial
g ∈ R in the Ti such that f ≡ g (mod I). It follows that ψ : R/I −→ Int(S,D) is a
bijection with inverse acting by c0+c1

[
X
1

]
a
+ · · ·+cn

[
X
n

]
a
/−→ c0+c1T1+ · · ·+cnTn.

Therefore I = kerϕ.

Remark 3.3. Let R be a commutative ring and S a commutative R-algebra having
a free R-module basis B = {s0, s1, s2, . . .}. Then there exist unique [m,n, l]B ∈ R
such that smsn =

∑<∞
l=0 [m,n, l]Bsl for all m,n. The proof of Proposition 1.8 easily

generalizes to show that the unique R-algebra homomorphism R[T1, T2, . . .] −→ S
sending Ti to si for all i is surjective with kernel generated by TmTn−

∑<∞
l=0 [m,n, l]BTl

for all m,n with 1 ≤ m ≤ n.

The next result, whose proof is straightforward, shows the effect interchanging
the first two terms of a simultaneous ordering.

Proposition 3.4 (with Lucas Mattick and Blaine Kutin). Let D be an inte-
gral domain and a an infinite sequence of distinct elements of D, and let a∗ =
(a1, a0, a2, a3, a4, . . .). Then one has the following.

1.
[X
n

]
a∗ =

[X
n

]
a
if n $= 1, and

[X
1

]
a
+
[X
1

]
a∗ = 1.

2. One has

[m,n, l]a∗ =






−[m,n, l]a if m = 1 or n = 1, and 1 < max(m,n) < l

1− [m,n, l]a if m = 1 or n = 1, and 1 < max(m,n) = l

[m,n, l]a otherwise.

3. a∗ is simultaneously ordered if and only if a is simultaneously ordered.

In the following situation, a∗ is the only reordering of a that is also simultaneously
ordered.

Proposition 3.5 (cf. proof of [1, Proposition 3.1]). Let D be a subring of an ordered
field K with D∗ = {1,−1} and a an increasing sequence of elements of D such that
ai− aj = a1 − a0 implies i = 1 and j = 0. If a is simultaneously ordered in D, then
a and a∗ are the only simultaneous orderings of {a0, a1, a2, . . .} in D. In particular,
a∗ is the only reordering of a that is also simultaneously ordered in D.

Proof. Let b be any simultaneous ordering of {a0, a1, a2, . . .}. One has (b1 − b0) |
(ai − b0) for all i, hence (b1 − b0) | (a1 − a0). Likewise one has (a1 − a0) | (b1 − b0),
so (b1− b0) = ±(a1− a0). By hypothesis, then, one has b0 = a0 and b1 = a1, or else
b0 = a1 and b1 = a0. In either case one has

(b2 − a0)(b2 − a1) = (a2 − a0)(a2 − a1),
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since each divides the other and both are positive since a2 and b2 are both greater
than a0 and a1. If b2 > a2, then one would have (b2−a0)(b2−a1) > (a2−a0)(a2−a1),
which is a contradiction. Therefore one must have b2 = a2. The argument then
proceeds by induction, and one concludes that bn = an for all n ≥ 2.

Examples of ordered domains D to which the above result applies are Z, the
ring of hyperintegers in any ring of hyperreals, and Z[S] for any set S of real
numbers that are algebraically independent over Q (and more specifically Z[α] for
any transcendental real number α).

4. Linear Iterative Sequences

In this section we prove Theorems 1.5 and 1.6 of the introduction.

In Lemma 4.1 below, the q-factorials and q-multinomials are expressed, respec-
tively, in terms of the q-factorials and q-multinomials, defined as follows. Let q be
an indeterminant, and let n, k, l, n1, n2, . . . , nr be nonnegative integers. The nth
q-factorial is defined by n!q =

∏n
i=1(1 + q + · · · + qi−1) ∈ Z[q]; the q-multinomial

coefficient (which also lies in Z[q]) is defined by
( n
n1,n2,...,nr

)
q
= n!q

n1!qn2!q···nr!q
∈ Q(q)

when n = n1 + n2 + · · · + nr; and the q-binomial coefficient
(
n
k

)
q
is defined by

(n
k

)
q
=

( n
k,n−k

)
q
. We define the q-multinomial coefficient to be 0 if ni is a negative

integer for some i.

Lemma 4.1. Suppose that q ∈ K is neither zero nor a root of unity. One has the
following for all nonnegative integers n, k, l, n1, n2, . . . , nr.

1. n!q = (q − 1)nqn(n−1)/2n!q.

2.
[qn
k

]
q
=

(n
k

)
q
.

3.
[ n
k,l

]
q
= qkl

[qn
k

]
q
= qkl

(n
k

)
q
if n = k + l.

4.
[

n
n1,n2,...,nr

]
q
= q

∑
i<j ninj

(
n

n1,n2,...,nr

)
q
if n = n1 + n2 + · · ·+ nr.

Using the recurrence relation in Corollary 2.5 for the coefficients [m,n, l]a, we
now prove Theorem 1.5 of the introduction.

Proof of Theorem 1.5. Since k!q
(k−1)!q

= qk−1(qk−1) for all k, it suffices by Corollary

2.5 to show that the expression for [m,n, l]q in the theorem satisfies the recurrence
relation

[m+ 1, n, l]q =
ql−1(ql − 1)[m,n, l − 1]q + (ql − qm)[m,n, l]q

qm(qm+1 − 1)
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with base cases [0, n, l]q = δn,l and [m,n, 0]q = δm+n,0. The base cases are clear.
Substituting the inductively assumed expressions for [m,n, l]q and [m,n, l − 1]q in
the right hand side of the above recurrence relation and dividing by the desired
expression for [m+ 1, n, l]q, one is left with

ql−1(ql − 1)qm−l+1 (l−1)!q(l−n)!q
l!q(l−n−1)!q

+ (ql − qm)ql−n (l−m−1)q(m+n−l+1)!q
(l−m)!q(m+n−l)!q

qm(qm+1 − 1)
,

which, since k!q
(k−1)!q

= qk−1
q−1 , is equal to

ql−1(ql − 1)qm−l+1 ql−n−1
ql−1 + (ql − qm)ql−n qm+n−l+1−1

ql−m−1

qm(qm+1 − 1)
= 1.

This completes the proof.

We also provide an alternative proof of Theorem 1.5 based on the following.

Lemma 4.2 (q-Vandermonde identity). For all t,m, n ∈ Z≥0 one has

(
t

m

)

q

=
m+n∑

l=n

q(l−m)(l−n)

(
n

m+ n− l

)

q

(
t− n

l − n

)

q

.

Proof. An equivalent identity is proved in [12, p. 237–238] and [2, Eq. (3.2)].

Proposition 4.3. For all t ∈ Z≥0 one has

(
t

m

)

q

(
t

n

)

q

=
m+n∑

l=max(m,n)

q(l−m)(l−n)

(
l

l −m, l − n,m+ n− l

)

q

(
t

l

)

q

.

Proof. We have

(
n

m+ n− l

)

q

(
t− n

l − n

)

q

(
t

n

)

q

=
t!q

(l −m)!q(l − n)!q(m+ n− l)!q(t− l)!q

=

(
l

l −m, l − n,m+ n− l

)

q

(
t

l

)

q

.

The proposition therefore follows from Lemma 4.2.

Note that Proposition 1.4 follows from Proposition 4.3 by setting q = 1.

Alternative proof of Theorem 1.5. Let t ∈ Z≥0. Since
(t
k

)
q
=

[qt
k

]
q
for all k, Propo-

sition 4.3 implies that
[
X
m

]
q

[
X
n

]
q
and

∑m+n
l=max(m,n) q

(l−m)(l−n)
(

l
l−m,l−n,m+n−l

)
q

[
X
l

]
q

agree at qt for all nonnegative integers t and are therefore equal.
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The following corollary, whose proof is straigtforward, expresses [m,n, l]a for any
linear iterative sequence a in terms of the sequence a itself, without reference to q.

Corollary 4.4. Let a be a linear iterative sequence of distinct elements of K. Then
one has

[m,n, l]a =

[
2l −m− n

l −m, l − n

][
al

m+ n− l

]

and

[m,n, l]a =
l!a(m+ n− l)!a

m!an!a

[
am

m+ n− l

][
an

m+ n− l

]

for all m,n, l ∈ Z≥0 with max(m,n) ≤ l ≤ m+n. In particular, setting r = m+n−l,
one has [

am
r

][
an
r

]
=

m!an!a
r!a(m+ n− r)!a

[
m+ n− 2r

m− r, n− r

][
am+n−r

r

]
,

or equivalently,
[
m+ n

m, n

][
am
r

][
an
r

]
=

[
m+ n

r,m+ n− r

][
m+ n− 2r

m− r, n− r

][
am+n−r

r

]
,

for all 0 ≤ r ≤ min(m,n).

The above corollary motivates the following problem.

Problem 4.5. The four equations in Corollary 4.4 are invariant under arbitrary
linear transformations of a. For each of these four equations find necessary and
sufficient conditions on a so that the given equation holds. In particular, which if
any of them uniquely characterize the linear iterative sequences?

Finally we prove Theorem 1.6.

Proof of Theorem 1.6. The implications (1) ⇒ (2) ⇒ (3) ⇒ (1) are straightfor-
ward, and one has (3) ⇔ (4) ⇔ (5) ⇔ (6) by Proposition 2.7 and Theorem 1.5. By
Lemma 4.1(3), statement (7) holds for the sequences a = n and a = q. Therefore
(2) ⇒ (7) by Lemma 2.6, and clearly (7) ⇒ (8) ⇒ (9).

Thus it remains only to show that (9) ⇒ (3). By applying a linear transformation
to a we may assume without loss of generality that a0 = 0 and a1 = 1, so q = a2−1.
Set cn =

∑n−1
i=0 qi for all n, so an = cn for n = 0, 1, 2. We show that an = cn for all

n. First, the equation
[X
1

]
=

[X
2

]
is linear in X (after cancellation of like factors)

and has both a3 and c3 as solutions, and therefore a3 = c3. Similarly, the equation[
X
2

]
=

[
X
3

]
is linear in X and has both a5 and c5 as solutions, and therefore a5 = c5.

Assuming for the moment that a4 = c4, we show that an = cn successively for

n = 7, 9; 6; 11, 13; 8; 15, 17; . . . ; 2k; 4k − 1, 4k + 1; . . . .
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First, for any k ≥ 2, the cases n = 4k − 1 and n = 4k + 1 follow from the
cases n = 0, 1, . . . , 2k because the linear equation

[
X

2k−1

]
=

[
X
2k

]
has both a4k−1

and c4k−1 as solutions and the linear equation
[X
2k

]
=

[ X
2k+1

]
has both a4k+1 and

c4k+1 as solutions. Moreover, for any k ≥ 3, the case n = 2k follows from the cases
n = 0, 1, 2, . . . , 2k− 1 and n = 2k+1, 2k+3 because the equation

[a2k+3

2

]
=

[a2k+3

2k+1

]

is linear in a2k and involves only a0, a1, . . . , a2k+1 and a2k+3. This proves, then,
that an = cn for all n provided that a4 = c4.

Now, the equation
[X
1

]
=

[X
3

]
is quadratic in X and has c4 as a solution. Consid-

eration of the linear term shows that the other solution is c1+ c2− c4 = 1− q2− q3.
Therefore either a4 = c4 or a4 = 1 − q2 − q3. Suppose to obtain a contradiction
that a4 $= c4. Then one has

c5 =

[
c5
1

]
=

[
c5
4

]
=

c5(q4 + q3 + q2 + q)(q4 + q3 + q2)(q4 + q3)

(q3 + q2 − 1)(q3 + q2)(q3 + q2 + q)(q3 + 2q2 + q)
,

which simplifies to the equation (q−1)(2q2+2q+1) = 0. Thus either q = 1 or 2q3+
2q2+q = 0; equivalently, either q = 1 or c4 = 1+q+q2+q3 = 1−q2−q3 = a4. Thus
one has q = 1 and a4 = 1−q2−q3 = −1. Then, since a = (0, 1, 2, 3,−1, 5, a6, a7, . . .),
one sees from the equation

[a6

2

]
=

[a6

4

]
that (a6 − 2)(a6 − 3) = 4!a/2!a = 24/2 = 12

and therefore a6 = 6,−1. However, a6 = −1 = a4 is not possible, so a6 = 6.
Therefore 6 =

[a6

1

]
=

[a6

5

]
= 6·5·4·3·7

5·4·3·2·6 = 7
2 , which is our desired contradiction.

5. Quadratic Sequences

In this section we prove Theorem 1.10 of the introduction, thus computing the coef-
ficients [m,n, l]a for the sequences s = (i2)∞i=0 and t = ((i2+ i)/2)∞i=0 of squares and
triangular numbers, respectively. The following result, which is a reinterpretation
of [1, Theorem 14], reveals the significance of these two sequences.

Proposition 5.1 (with Lucas Mattick and Blaine Kutin). Let f ∈ Int(Z) be a
polynomial of degree 2, and let S = {n2 : n ∈ Z≥0} and T = {(n2+n)/2 : n ∈ Z≥0}.
Then the following are equivalent.

1. f(Z≥0) admits a simultaneous ordering.

2. f is of the form α+βX(X− 2λ) or α+βX(X− 2λ− 1)/2, where α,β,λ ∈ Z
and λ ≥ 0.

3. f(Z≥0) is equal to α+ βS or α+ βT for some α,β ∈ Z.

4. f(Z≥0) admits a simultaneous ordering of the form α + βs or α + βt, where
α,β ∈ Z.
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Moreover, if the above conditions hold, then any simultaneous ordering of f(Z≥0)
is of the form α+ βs, α+ βs∗, α+ βt, or α+ βt∗, where α,β ∈ Z.

Proof. The equivalence of (1) and (2) is [1, Theorem 14]. Statement (2) is easily
seen to imply (3). Clearly (3) implies (4) and (4) implies (1), so the four conditions
are equivalent. Finally, the last two statements follow from Proposition 3.5.

Corollary 5.2. The sequences α + βs and α + βt for α,β ∈ Z and β $= 0 are the
only quadratic integer sequences that are simultaneously ordered.

A similar proposition, based on [1, Theorem 17], holds for f(Z) instead of f(Z≥0).

Next, we pose the following conjecture.

Conjecture 5.3. Let f ∈ Int(Z) be a polynomial of degree greater than 2. Then
f(Z≥0) and f(Z) do not admit simultaneous orderings. In particular, the only
simultaneously ordered polynomial integer sequences are α+βn, α+βs, and α+βt
for α,β ∈ Z and β $= 0.

We now prove Theorem 1.10, computing [m,n, l]a for a = s, t. By Proposition
5.1, this will determine the coefficients for all simultaneously ordered linear and
quadratic (and perhaps even polynomial) sequences.

Lemma 5.4. Let n, k, l be nonnegative integers with n = k + l. One has

[
n

k, l

]

t

=

(
2n

2k

)
,

[
an
k

]

t

=

(
n+ k

n− k

)

Proof. Clear.

Next, consider the following identities:

[m,n, l]s =
2l

m+ n
[m,n, l]t if m,n > 0, (5.1)

[m,n, l− 1]t =
(l −m)(l − n)

2(2l− 1)(m+ n− l)
[m,n, l]t, (5.2)

[m,n, l]t =

(m+n
m,n

)
(2m
m

)(2n
n

)
(

2l

l, l−m, l − n,m+ n− l

)
. (5.3)

We discovered (5.1) experimentally by comparing data on the coefficients [m,n, l]s
and [m,n, l]t. Although (5.1) is simpler than the other two identites, we were un-
able to prove it directly; its simplicty begs for a direct proof and generalization.
Instead we prove (5.1) ⇒ (5.2) ⇒ (5.3) ⇒ (5.1) and then verify (5.3) by induction.
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Lemma 5.5. One has (5.1) ⇒ (5.2) ⇒ (5.3) ⇒ (5.1).

Proof. Note that [m,n, l]t = [m,n, l]u, where u = 2t. By Corollary 2.5 one has

[m+ 1, n, l]s =
2l(2l− 1)[m,n, l− 1]s + (l2 −m2)[m,n, l]s

(2m+ 2)(2m+ 1)
. (5.4)

Suppose that (5.1) holds. Then (5.4) implies that

m+ n

m+ n+ 1
[m+ 1, n, l]u =

(2l − 1)(2l − 2)[m,n, l− 1]u + (l2 −m2)[m,n, l]u
(2m+ 2)(2m+ 1)

.

By Corollary 2.5 one also has

[m+ 1, n, l]u =
2l(2l− 1)[m,n, l− 1]u + (l2 + l −m2 −m)[m,n, l]u

(2m+ 2)(2m+ 1)
.

Using the previous two equations we can eliminate [m+ 1, n, l]u, obtaining

[m,n, l− 1]u =
(l −m)(l − n)

2(2l− 1)(m+ n− l)
[m,n, l]u.

Thus (5.1) implies (5.2).

Now, (5.2) is a first order recurrence relation for the coefficients [m,n, l]u =
[m,n, l]t with base case [m,n,m + n]u =

[
m+n
m,n

]
u
=

(
2m+2n
2m,2n

)
. One easily shows

that (5.3) is the unique solution to that recurrence relation. Thus (5.2) implies
(5.3). Finally, if (5.3) holds, then, carrying out the above arguments in reverse, one
sees that [m,n, l]s and 2l

m+n [m,n, l]u satisfy the same recurrence relation (5.4) with
identical base cases thus and are equal. Therefore (5.3) implies (5.1).

As with Theorem 1.5, Theorem 1.10 of the introduction has a proof based on the
recurrence relation of Corollary 2.5.

Proof of Theorem 1.10. By Lemma 5.5, we need only prove (5.3), which is equiva-
lent to

[m,n, l]t =
m!n! (m+ n)! (2l)!

(2m)! (2n)! l! (l−m)! (l − n)! (m+ n− l)!
. (5.5)

Note that [m,n, l]t = [m,n, l]u, where u = 2t. Thus, by Corollary 2.5, to prove
(5.5) it suffices to show that the given expression for [m,n, l]t = [m,n, l]u in (5.5)
satisfies the recurrence relation

[m+ 1, n, l]u =
2l(2l− 1)[m,n, l− 1]u + (l −m)(l +m+ 1)[m,n, l]u

(2m+ 2)(2m+ 1)

and boundary conditions (2.2) and (2.3). The boundary conditions follow easily
from Lemma 5.4. Substituting the inductively assumed expressions for [m,n, l]u



INTEGERS: 14 (2014) 19

and [m,n, l−1]u in the right hand side of the above recurrence relation, dividing by
the desired formula for [m+1, n, l]u, and simplifying by using the identity k!

(k−1)! = k
several times, all of the factorials can be eliminated and one is left with

l(l− n) + (l +m+ 1)(m+ n− l + 1)

(m+ n+ 1)(m+ 1)
= 1.

This proves (5.3) and completes the proof.

The numbers

Cm,n =

(2m
m

)(2n
n

)
(m+n
m,n

) =
(2m)!(2n)!

m!(m+ n)!n!

have been known to be integers since at least Catalan [5]. One has Cm,1 = 2Cm,
where Cm is the mth Catalan number. By Theorem 1.10, we have the following.

Corollary 5.6. Let m,n, l ∈ Z≥0. Then the integer Cm,n = (2m)!(2n)!
m!(m+n)!n! divides

( 2l
l,l−m,l−n,m+n−l

)
, and (m+ n)Cm,n divides 2l

( 2l
l,l−m,l−n,m+n−l

)
.

6. Newton Basis Coefficients via Laurent Series

We exhibit in this section two generic formulas for the coefficients [m,n, l]a, to be
contrasted with the specific formulas uniquely characterizing the examples in this
paper and those sought in Problem 1.11.

Let k ∈ Z>0. Let

ek(X1, X2, . . . , Xn) =
∑

1≤i1<i2<···<ik≤n

Xi1Xi2 · · ·Xik ∈ Z[X1, X2, . . . , Xn]

denote the kth elementary symmetric polynomial, and let

hk(X1, X2, . . . , Xn) =
∑

1≤i1≤i2≤···≤ik≤n

Xi1Xi2 · · ·Xik ∈ Z[X1, X2, . . . , Xn]

denote the kth complete homogeneous symmetric polynomial. We also let Xn denote
Xn

a = (X − a0)(X − a1) · · · (X − an−1).

Now we may write f =
∑deg f

i=0 fiX i and

f =
deg f∑

n=0

dna(f)X
n, (6.1)

where the dna(f) ∈ K are unique (and defined even if the ai are not distinct), and
one has δna (f) = n!adna(f) for all n. From (6.1) we see that

fi =
deg f∑

n=i

(−1)n−ien−i(a0, a1, . . . , an−1)d
n
a(f)
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if 0 ≤ i ≤ deg f . In Theorem 6.2 below we use formal Laurent series to invert this
formula, solving for the dna(f) in terms of the coefficients fi of f .

Recall that the quotient field K((X)) = (K[[X ]])[X−1] of the formal power series
ring K[[X ]] is called the field of formal Laurent series with coefficients in K.

Lemma 6.1. The constant coefficient of (1/X)(1/X)k

(1/X)l+1 ∈ K((X)) is equal to δk,l for

all k, l ∈ Z≥0.

Proof. The proof can be divided into the three cases k = l, k < l, and k > l, and is
straightforward.

Theorem 6.2. Let f =
∑N

i=0 fiX
i ∈ K[X ], where N = deg f . Then dna(f) is equal

to the constant coefficient of (1/X)f(1/X)
(1/X)n+1 ∈ K((X)) for any n ∈ Z≥0. Equivalently,

dna(f) is equal to the coefficient of XN−n in XNf(1/X)∏n
i=0(1−aiX) ∈ K[[X ]]. In particular,

one has

dna(f) =
N∑

i=N−n

hi−N+n(a0, a1, . . . , an)fi.

Proof. By (6.1) one has (1/X)f(1/X)
(1/X)n+1 =

∑N
k=0 d

k
a(f)

(1/X)(1/X)k

(1/X)n+1 , and therefore by

Lemma 6.1 the constant coefficient of the above formal Laurent series is equal to∑N
k=0 d

k
a(f)δk,n = dna(f).

Corollary 6.3. Let f =
∑N

i=0 fiX
i ∈ K[X ], where N = deg f . Then δna (f) is

equal to the constant coefficient of f(1/X)
1−anX

[1/X
n

]−1

a
∈ K((X)) for any n ∈ Z≥0.

Equivalently, δna (f) is equal to the coefficient of XN−n in n!aX
Nf(1/X)∏n

i=0(1−aiX) ∈ K[[X ]]. In
particular, one has

δna (f) = n!a

N∑

i=N−n

hi−N+n(a0, a1, . . . , an)fi.

The corollary above yields the following.

Corollary 6.4. Let m,n, l ∈ Z≥0. Then [m,n, l]a is equal to the constant coefficient

of 1
1−alX

[1/X
m

]
a

[1/X
n

]
a

[1/X
l

]−1

a
∈ K((X)) Equivalently, [m,n, l]a is the coefficient of

Xm+n−l in l!a
m!an!a

∏m−1
i=0 (1−aiX)∏l
i=n(1−aiX)

∈ K[[X ]]. In particular, if m > 0 and n ≤ l ≤ m+n,

then one has

[m,n, l]a =
l!a

m!an!a

∑

i+j=m+n−l

(−1)iei(a0, a1, . . . , am−1)hj(an, an+1, . . . , al).
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Example 6.5. By Corollary 6.4, [m,n, n]a is equal to

1

m!a

∑

i+j=m

(−1)iei(a0, a1, . . . , am−1)a
j
n =

(an)m

m!a
=

[
an
m

]

a

.

Similarly, [m,n,m + n]a is the constant coefficient of (m+n)!a
m!an!a

∏m−1
i=0 (1−aiX)

∏m+n
i=n (1−aiX)

, which

is equal to
[m+n
m,n

]
a
. These computations are consistent with Proposition 2.2.

Finally, we note the following formula for the coefficients δna (f) in terms of the
values of f at a0, a1, . . . , an.

Theorem 6.6. Let f ∈ K[X ]. One has

δna (f) =
∑

0≤i0<...<is=n

(−1)sf(ai0)
s∏

r=1

[
air
ir−1

]

for all n ∈ Z≥0.

Corollary 6.7. One has

[m,n, l]a =
∑

n≤i0<...<is=l

(−1)s
[
ai0
m

][
ai0
n

] s∏

r=1

[
air
ir−1

]

for all m,n, l ∈ Z≥0 with m ≤ n ≤ l.

The theorem can be proved by expressing the first n terms of the Newton basis
in terms of the well-known Lagrange basis of the K-vectorspace of polynomials in
K[X ] of degree at most n and inverting the change of basis matrix.
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