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Abstract
One of the most basic results on the number-theoretic properties of the partition
function p(n) is that p(n) takes each value of parity infinitely often. First proved
by Kolberg in 1959, this statement was strengthened by Kolberg and Subbarao
in 1966 to say that both p(2n) and p(2n + 1) take each value of parity infinitely
often. These results have received several other proofs, each relying to a certain
extent on manipulating generating functions. We give a new, self-contained proof
of Subbarao’s result by constructing a series of bijections and involutions, along the
way getting a more general theorem concerning the enumeration of a special subset
of integer partitions.

1. Introduction

A partition � of a positive integer n is a nonincreasing list of positive integer parts
�1, . . . ,�k that sum to n. The partition function p(n) counts the partitions of n.

The number-theoretic properties of p(n) have been studied quite extensively. For
example, Kolberg [3] proved in 1959 and Newman [4] proved independently in 1962
that p(n) takes each value of parity infinitely often, with Fabrykowski and Subbarao
[1] and Robbins [6] giving new proofs of this result in 1990 and 2004, respectively.
Subbarao [7] strengthened the result in 1966 by proving that p(2n + 1) takes each
value of parity infinitely often, though he was unable to prove the analogous result
for p(2n); this was later proved by Kolberg in private correspondence to Subbarao.
Subbarao conjectured that p(tn + r) takes each value of parity infinitely often for
every pair r and t of integers satisfying 0  r < t. Over the years several authors
confirmed this conjecture for various values of t, including the case t = 16 by
Hirschhorn and Subbarao [2] in 1988. In 1995, Ono [5] proved that p(tn + r) is
either always even or takes each value of parity infinitely often. All of these proofs
rely to some extent on manipulating generating functions.

We give a new self-contained proof that both p(2n) and p(2n+1) take each value
of parity infinitely often. We show these results follow from a more general theorem
on the enumeration of certain partitions of integers along arithmetic progressions,
whose proof relies on a series of bijections rather than generating functions. We
wonder if similar techniques could be applied to plane partitions.
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2. Results

We let �1, . . . ,�k denote the nonincreasing list of parts of a partition �. For positive
integers a and b, define Da,b(n) as the set of partitions of n into distinct parts each
congruent to b modulo a.

Theorem 2.1. Let integers a, b, c, and d satisfy a � b � 1, c � 0, and d � 2,
and set A = {n : n ⌘ bc mod a}. Then there exist integers r and s satisfying
0  r < s < d such that |Da,b(n)| ⌘ r mod d for infinitely many n 2 A and
|Da,b(n0)| ⌘ s mod d for infinitely many n0 2 A.

Proof. To show at least two congruence classes modulo d are hit by |Da,b(n)| for
infinitely many n 2 A, it su�ces to show that for every m there exists n 2 A
satisfying n � m and |Da,b(n � a)| 6⌘ |Da,b(n)| mod d. To this end, for j � 1 we
define a set Dj

a,b(n) containing certain partitions in Da,b(n) having j parts or more.

Dj
a,b(n) =

(
Da,b(n) j = 1
{� 2 Da,b(n) : �1 � �2 = · · · = �j�1 � �j = a} j > 1

Note that Dj+1
a,b (n) ✓ Dj

a,b(n) for j � 1. Since all parts of partitions in Dj
a,b(n) lie

in the same congruence class modulo a, a partition � 2 Dj
a,b fails to be in Dj+1

a,b (n)
when either �j+1 does not exist or �j � �j+1 = ta with t > 1. If Dj+1

a,b (n) 6= ;,
then n �

Pj
i=0(ai + b), so every partition � 2 Dj

a,b(n) satisfies �j � a + b (since
n =

Pj�1
i=0 (ai + b) otherwise).

If j � 1 and |Dj+1
a,b (n)| 6⌘ 0 mod d, then |Dj

a,b(n � aj)| 6⌘ |Dj
a,b(n)| mod d: we

show this by constructing a bijection �j
n : (Dj

a,b(n) � Dj+1
a,b (n)) ! Dj

a,b(n � aj),
which trims parts of partitions � 2 Dj

a,b(n)�Dj+1
a,b (n) using the following rule.

(�j
n(�))i =

(
�i � a 1  i  j

�i i > j

Let k = am+c and n1 =
Pk�1

i=0 (ai+b), so n1 ⌘ bc mod a. Consider the partition
� of n1 with k parts given by �i = a(k � i) + b; clearly � is the only partition in
Dk

a,b(n1), so |Dk
a,b(n1)| = 1 6⌘ 0 mod d. This yields

|Dk�1
a,b (n1 � a(k � 1))| 6⌘ |Dk�1

a,b (n1)| mod d

so we can pick n2 2 {n1�a(k�1), n1} to satisfy |Dk�1
a,b (n2)| 6⌘ 0 mod d. Similarly,

|Dk�2
a,b (n2 � a(k � 2))| 6⌘ |Dk�2

a,b (n2)| mod d

so we can pick n3 2 {n2 � a(k � 2), n2} to satisfy |Dk�2
a,b (n3)| 6⌘ 0 mod d. Iterate

this process to compute the sequence n1, n2, . . . , nk�1.
Putting everything together, we have the following.
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• ni ⌘ n1 ⌘ bc mod a for any i < k

• |Dk�i
a,b (ni � a(k � i))| 6⌘ |Dk�i

a,b (ni)| mod d for any i < k

• nk�1 � n1 �
Pk�1

i=2 ai >
Pk�1

i=0 (ai + b� ai) = kb � m

Since Da,b(n) = D1
a,b(n), setting n = nk�1 completes the proof.

The Ferrers diagram of a partition � is a pattern of upper left-justified dots, with
�i dots in the ith row from the top. The conjugate partition of � is the partition
whose Ferrers diagram has �i dots in the ith column from the left.

Corollary 2.2. Both p(2n) and p(2n+1) take each value of parity infinitely often.

Proof. Partition conjugation is an involution on the set of partitions of n that
fixes only the partitions whose Ferrers diagrams are symmetric about the diagonal
from the upper left to lower right. Thus p(n) has the same parity as the number
of self-conjugate partitions of n, and the set of such partitions is in one-to-one
correspondence with the set of partitions of n into distinct odd parts through the
bijection that unfolds the Ferrers diagram of any self-conjugate partition about its
axis of symmetry. Thus p(n) ⌘ |D2,1(n)| mod 2. Applying Theorem 2.1 once with
(a, b, c, d) = (2, 1, 0, 2) and once with (a, b, c, d) = (2, 1, 1, 2) yields both claims.
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