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Abstract
We prove two results on sums of generalized harmonic series.

1. Introduction

For nonnegative integers a1, as,...,a with a; + - 4+ ag > 2, define
H(al,ag...,ak):i 1 . (1)
—nt(n+1)%2- (ntk—1)%

It is easy to show that this series converges, and in fact (by considering the partial-
fractions decomposition of n=% (n41)"2 ... (n+ k — 1)~ %) that it can be written
as a rational number plus a sum of values ((m) of the Riemann zeta function for
2 <m < max{ay,...,ar}. For example,

= 1 =73 1 3 2 1
H2,3) =Y —— = 2 ,
(2.3) ;nQ(nJrl)L‘ ;[ n+n2+n+1+(n+1)2+(n+1)3

oo

= T1 1 o I 2 1
- _3; [E Cn+ 1]+7; ﬁ—i_; (n+1)2 +; (n+1)3 = —6+3¢(2)+¢(3).

=1

We call the quantity (1) an H-series of length k and weight aq + -+ + ag. In §2
below we establish various formulas for H-series, in which Stirling numbers of the
first kind are prominently involved. These are used in §3 to prove the following
result.
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Theorem 1. For any positive integers k, m with m > 2,
Z H(alv"'7ak):k<(m)7
aytaz+--+ar=m

where the sum is over k-tuples of nonnegative integers.

The H-series can be put into the framework of Shintani zeta functions [5]. For an
m X k matrix A = (a;;) and a k-vector & = (x1,...,xx), the Shintani zeta function
of (s1,...,5k) is

(st 4T = Y ! (2)

N1yeres T >0 (21 + 2211 agng)st - (Tg + 2211 aipm; )k

Then an H-series is just the special case of (2) with m =1, A =11 --- 1],
and & = (1,2,...,k). Several other special cases of Shintani zeta functions have
been extensively studied. These include the Barnes zeta functions [1], which is the
case k = 1; and the multiple zeta values [4, 7], which is the case where m =k, A
is the k£ x k matrix with 1’s on and below the main diagonal and 0’s above, and
Z=(k,k—1,...,1). In the latter case the series (2) becomes

1
C(81y...,8k) =
m,%z:kzo (k+ 38 na)a (k= 1+ 38, ng) - (1+ng)

Z s S S
m]1m22 . 'mkk '
mi>mo>-->mp>1

In fact, Theorem 1 is superficially similar to the famous “sum conjecture” for mul-
tiple zeta values, i.e.,

Z C(ay,as,...,ar) = ¢(m) (3)

ar+-+ap=m, a;>1, a1>1

for m > 2. The multiple zeta values sum conjecture (3) was made by the second
author (see [4]), and was proved in full generality by A. Granville [2]. Note, however,
that ((ai,...,ax) is a k-fold sum while H(ay,...,ax) is a single sum. Also, the
sum on the left-hand side of (3) is over k-tuples of positive integers rather than
nonnegative integers.

It is also natural to ask about the sum of all H-series H(aq,...,ay) of weight m
over all k-tuples (ai,...,ax) of positive integers of fixed weight. As indicated by
the example

= 1
H(1,1) = ; nn+1) L
the answer is a rational number. More precisely, we have the following result, which
follows easily from the machinery developed in §2.



INTEGERS: 14 (2014) 3

Theorem 2. Form >k > 2,

1 S (k-2 -1)!
Z H(al,...,ak):m _0< ; >(l+(1)7m)k+l

ay+--+ar=m, a;>1 %

2. H-Series and Stirling Numbers of the First Kind

Henceforth we assume m to be a positive integer greater than 1. We have the
following result.

Lemma 1. Let 1 <71 < j <p, and let a1,...,0i—1,0i41,---,0j—1,0j41,---,0p e
fized nonnegative integers. Then

m—1
E H(al,...,ai_l,k;,ai_,_l,...,aj_l,m— k,aj+1,...,ap) =
k=1
1
j_Z_[H(al,...,ai_l,mf 1,ai+1,...,aj_l,(),ajﬂ,...,ap)f
H(al, .. .,ai_l,(),al-H, ceey @1, M — 1,aj+1,. AN ,ap)}.

Proof. Evidently

1 1 11
n+i-1)(n+j—1) j—iln+i—-1 n+j—1]
so that
H(ay,...,aq;—1,k,aqiy1,...,0-1,m —k,aj41,...,ap) =
jiZ_[H(al,...,ai_l,k,aZvH,...,aj_l,mfkf1,aj+1,...,ap)f
H(a1,...,0;—1,k—1,ai41,...,aj-1,m —k,ajt1,...,ap)].
Now sum on k to obtain the conclusion. O

Using the preceding result, we can obtain a formula for the sum of all H-series
of fixed weight and length having nonzero entries at specified locations.

Lemma 2. Fork>1and1 <iy<i; <---<i <n,

Z H(ala"'van):

aigtaiy +tai, =m, a; #0 iff j =iq for some g

k j—1 gr(m—Fk)
(-1 Y "

— (i —io)(ij —in) -+ (i —dj1) (i1 — i5) -+~ (in — 75)

J
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where for p < q
" 1
H =Y 4
Jj=p

Proof. For convenience, denote by S(ig,41,...,ix; m) the left-hand side of equation
(4). We proceed by induction on k, using Lemma 1. First, note that the case k = 1
of the result, i.e.,

gm-b
S(ig,iy;m) = —21=1
11 — 10
follows immediately from Lemma 1. Now suppose the result holds for k£, and con-
sider S(ig,...,0k, ik+1;m), 1., the sum of all H(aq,...,a,) with nonzero entries
Qigy Qiys-- -, adding up to m. Fix ay,...,a; _,, and sum the H(ay,...,an,)
from a;, = 1toa;;, = m—az,—---—a;,_, —1, keeping the sum of a;, and a;,_, equal
to m—a;, —- - —a;,. By Lemma 1 this gives us, after summation on a;,,...,a; _,,
1 ) . . . . .
———— [S(i0y- -y ik—1,0;m — 1) = S(ig, -« yik—1,0k11;m — 1)]. (5)
tk+1 — Uk

By the induction hypothesis, S(ig,...,ix;m — 1) is

- 1 pr(m—k—1 _1 pp(m—k—1
S (-1t (-FH Y
= (G5 — o)+ (45 = dj-1)(Gpn = 45) -+~ (i = 45) (i —d0) -+~ (i — dx—1)

and S(ig,. .., 05—1,0k+1;m — 1) is

e
|
—

(_1)]‘_1H'(m7k71)

’Lo,ij—l

< (15 — o) -+ (45 — i5-1) (G — i5) -+ (Th—1 — i) (ingr — 1)

J
(_Dk—lH(m*k*l)

90,0k+1—1

(ikg1 —i0) - (ihg1 —ip—1)

Hence the quantity (5) is

= (—1)j71H¢($;f1_1) . zkizj - z‘kﬂlﬂ‘j
= G —do) - (i = dj-1) (g =) - (1 = 45)  dnn —
COMHGSY COMEL
(te —t0) -+ (I — Gp—1) (Bhg1 — @) (fhg1 —40) - (bhg1 — t—1) (dhgp1 — k)
k+1 (_1)j—1Hi($]ff;1)
- ; (i — o) -+ (45 — dj—1)(ij+1 = 45) - (g1 —45)

O
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For 0 < k <n—1, let C(k,n;m) be the sum of all H(ay,...,ay,) of weight m
with exactly k + 1 of the a; nonzero. Since each of the Hl(::f)l in the preceding
result is a sum of quantities ﬁ with1 <ip <p<i;—-1<n—-1,fork>1we

can write
n—1 c(’ﬂ)

C(k,n;m) = —7:_] (6)

where c;nj) is rational. Then the numbers c;nj) have a symmetry/antisymmetry

property.

Lemma 3. For1 <k, j<n-1, c,(f"%_j = (fl)k’lc,(cnj?.

Proof. Borrowing the notation used in the proof of Lemma 2, we have

C(k,n;m) = Z S(ig, 81 .-, iK;m).

1<ip<inT < <ip<n

Now note that Lemma 2 implies that if

S(igy i1, ..., ik;m) = p1 +P2W+...+pn_1ma

then
Sn+1—dg,n+1—dp_1,...,n+1—dp;m) =

1 1
. DL g —— - . —
(1) <p 1+p 25m—F +-+0 n— 1)mk>

O

The first (and last) columns of the numbers c,(cnj) can be written in terms of

(unsigned) Stirling numbers of the first kind: we write m for the number of per-
mutations of {1,2...,n} with exactly k disjoint cycles. This notation follows [3],
which is also a useful reference on these numbers.

Lemma 4. For 1 <k<n-1,

n — n 1 n
C](c’l) = (—1)k 161(6,73,71 = m |:k-|— 1:| .

)

")_1, as that for c,(:'l then follows from

Proof. 1t suffices to prove the formula for c}c "
Lemma 3. Now Lemma 2 says that

n (—l)k_l
Cl(c,r)zq = Z

. . . b
iyt St em (n—ig)(n —iy) - (n—ip_1)
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so to prove the result we need to show

2. (n —io)(n (ni1_)~1~)!~(nik_1) B {kil}

1<ip<in < <ip—1<n

The left-hand side is evidently the sum of all products of n — k — 1 distinct factors
from the set {1,2,...,n—1}, and that this is the Stirling number [
consideration of the generating function

kj_l] follows from

x(x—i—l)...(x—l-n—l):Z{Z]xk, n>1. (7)
k=1

The preceding result generalizes as follows.

Lemma 5. For 1 <k,j<n-1,

J_ a4 (—1)p-1[¢e n+l—gq
C;qn) _ Z Z ( ) [p] [k+2fp] . (8)

(g —Din—q)!

Proof. We need to show that

J (_1)p—1[J] [n+1=j
c(n) . c(n) _ Z ( 1);0 [p] [k+27p] - (9)
N N R i
Suppose first that j < k. Using Lemma 2, all terms that contribute to c,(;%_j“

,(cnr)L_ i and the terms that contribute to c,(cnr)L_ j and not to cfcnz_ 1

are of the forms

also

contribute to ¢

(-0

0,n—)
(n+1—j—iog) - (n+1—j—i1)
(_1)k—2H(m—k)

ig,n—J

g <ty < - <tg_1<n+1-—y,

(n+1—j—ig)--(n+1—j—iro)(ir—n—1+3)
<ty < - <tgo<n+1l—7<ig,...
(-nr7En
(m+1—j—ig)-(n+1=j—irj)(ik—jyz—n—1+7) - (ix—n—1+j)
10 <ip < <lp;<n+l—7<idp_jo< <y

(where we assume throughout that 4o, ..., 4 are integers between 1 and n), which
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we refer to as classes 1,2, ...j. The contribution from class 1 is

Z (—1)k1
(n+l—j—io)(n+l—j—i1) (n+1—j—ix1)

o< <tg—1<n+l—j

n+l—j j n+l—j
_ (_l)kfl [ k-‘rlj] _ (_1)]671 B] [ k+lj] ]
(n—j)! (=Dl n =)
The contribution from class 2 is
) — 3 (=D*2
ntigeiy TR (n+1—j—do) - (n+1—j—ir2)
j—1

S S
s=1 & i0< - <ip_o<n+1—j (n + 1- ] - ZO) U (n + 1 _.] - ik}—?)
R
vt GO M
j—Dn—5H"

and so forth. Note that for class j we must have iy _ ;12 = n+2—73, ix_j413 = n+3—7,
..., = n and the contribution from this class is

~(-1)

—~
—~

)3 e
o< <in <ntl—j (’I’L+ 1 —j — 20)(71 +1 —j — il) R (n +1 —j — ik,j)(j — 1)'
i—17[7 n+1l—j
k—1 (1) B] [k—j-&-%]

VT ey

Adding together the contributions, we see that c,(cnr)b_ i c,(gbr)b_ ji1 18

GI] = B+ + GO ]
(G =D n —5)! ’
and equation (9) follows from Lemma 3.

Now if j > k, then classes k + 1,k 4+ 2,...,j are evidently empty. All the
corresponding terms in (10) are zero, except for

k-1 (_1)k[kil] [n+11_j] _ [kil]
(7 = Dn = j)! (G-

(-t (10)

(=1

This quantity is accounted for by terms that contribute to ci"i_j 41 and not to
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(n)

Chn—yj> provided

(-1
Z Z _n“‘j_l)(ip_il)"'(ip_'* . _ip)"'(ik_ip)

n—j+1<e <<t p= 1

VS
By equating the expressions given for c,(cj )1

(~1! _ L
Z Z (ip —i1) -+ (ip — dp—1)(Gpt1 — ip) - -+ (i — ip) B -1V

1<iy < <ip<j p= 1

by Lemmas 2 and 4 respectively, we have

from which equation (11) follows. O

3. Proofs of the Theorems

First we need one more lemma.

Lemma 6. For positive integers n and j,

3

Proof. We use the “snake oil method” of H. Wilf [6]. Let

S (e

Then F(z) can be rewritten

q=1 n= =1 -~
= Z (j B 1) (L Ji (j - 1)(@?
= \g—1 (T2l ¥L - (L= H e\ p
= ﬁ(lfﬂjfl :*ﬁ =—z—222 32—,
and equation (12) follows. .

Now we prove Theorems 1 and 2.
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Proof of Theorem 1. We have

n—1
Z H(al,...,an)=ZC(l€,n;m).
aitaz+--+an=m k=0

Now

C(0,n;m) = H(m,0,0...,0)+ H(0,m,0,...,0)+---+ H(0,...,0,m)

1 1
— _ . T -
Clm) +C(m) =1+ +C(m) — 1= T
n—2 1
= —(n—-1)— —= ... — -
n¢m) — (n—1) - " T
and
n—1 c](cn)
C(k,n;m) = Z j’mfk7 k>1,
j=1
so to prove the result we need
n—1 )
> gy =n=i
i=1

forall 1 < j <n—1. By Lemma 5 this means we must show

n—1 j q l(_l)p—l[q} [(Hrlfq]

22 G gt " 3

i=1 g=1p=1

We rewrite the left-hand side of equation (13) as

Sy S (14

g=1p=1 q N 1 (n o q)' i=1

If p = 1, the inner sum in (14) is

] T 3 R e |

i=1 =2

where we have used equation (7). Hence
n—1 n4+1— n4j—
S = ()
(n—2q) ' i+1 j

since ["*] 7 = (n — q)!. If p > 2, then the inner sum in (14) is

n—1 . .
n+1_q G n+1—q +p—2 ~p—2(n+]_Q)!_ -p—l(n+]_Q)!
S| =y Y =] G T

i>1
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again using equation (7), from which follows

1 < [nt+l-ql, . n+i-q
> Jt=3" : :
1+2—p 7

(n—q)! =

Thus, the sum (14) can be written

S ) SR

S (T () o e ]

g=1 q=2
j . J J .
. n+j—4q n+j—q n+j—q\(j—1 -
ECT SR e
qg=1 J q=2 -7 q= ] q—
. n+j1) ’ <n+jq)<j1> .
=—-J+ ( : + , —1)1
J Z; J q—l( )
J . .
, n+j—q\(j—1
S [
g J q—1
Then equation (13) follows from Lemma 6. O

Proof of Theorem 2. Tt suffices to show that

=G0

From Lemma 5 we have

) e 0L v s ] AN o D L e

=15 = ;;;; (¢—1)!(n—q)! _Z; (¢ —1)!(n—q)!
1 & ifn-1\ (-1 -2
P (o) = em o)
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