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Abstract
For any positive integer n, we state and prove formulas for the number of solutions
in integers of x2 +y2 +5z2 = n2, x2 +y2 +6z2 = n2 and x2 +2y2 +3z2 = n2, which
were first conjectured by S. Cooper and H. Y. Lam.

1. Introduction

More than one hundred years ago, Hurwitz [6] determined the number of represen-
tations of the square of a positive integer as a sum of three squares:

Theorem 1.1 (A. Hurwitz). Let n be a positive integer with prime factorization
n =

Y
p

p�p . Then the number of solutions in integers of x2 + y2 + z2 = n2 is given

by

6
Y
p�3

✓
p�p+1 � 1

p� 1
�
✓
�1
p

◆
p�p � 1
p� 1

◆
, (1.1)

where the values of the Legendre symbol for odd primes p are given by
✓
�1
p

◆
=

(
1 if p ⌘ 1 (mod 4),
�1 if p ⌘ 3 (mod 4).

For a complete proof of Theorem 1.1, we refer the reader to [8]. In recent work [4],
Cooper and Lam established and proved several analogues of Theorem 1.1, whose
quadratic forms were replaced by x2 + y2 + 2z2, x2 + y2 + 3z2, x2 + 2y2 + 2z2 and
x2 + 3y2 + 3z2. Moreover, at the end of their work, they raised a conjecture:

Conjecture 1.2 (S. Cooper and H. Y. Lam). Let b and c have any of the values
given in Table 1. Let n be a positive integer with prime factorization n =

Y
p

p�p .
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Then the number of solutions in integers of x2+by2+cz2 = n2 is given by a formula
of the type 0

@Y
p|2bc

g(b, c, p,�p)

1
A
0
@Y

p-2bc

h(b, c, p,�p)

1
A ,

where

h(b, c, p,�p) =
p�p+1 � 1

p� 1
�
✓
�bc

p

◆
p�p�1

p� 1

and g(b, c, p,�p) has to be determined on an individual and case-by-case basis.

Table 1: Data for Conjecture 1.2

b c
1 1, 2, 3, 4, 5, 6, 8, 9, 12, 21, 24
2 2, 3, 4, 5, 6, 8, 10, 13, 16, 22, 40, 70
3 3, 4, 5, 6, 9, 10, 12, 18, 21, 30, 45
4 4, 6, 8, 12, 24
5 5, 8, 10, 13, 25, 40
6 6, 9, 16, 18, 24
8 8, 10, 13, 16, 40
9 9, 12, 21, 24
10 30
12 12
16 24
21 21
24 24

The goal of this work is to state and prove formulas for the cases (b, c) = (1, 5),
(1, 6) and (2, 3) in Conjecture 1.2, which are summarized in Theorems 1.3–1.5,
respectively.

Theorem 1.3. Let n be a positive integer with prime factorization n =
Y
p

p�p .

Then the number of solutions in integers of x2 + y2 + 5z2 = n2 is given by

2
�
5�5+1 � 3

�Y
p-10

✓
p�p+1 � 1

p� 1
�
✓
�5
p

◆
p�p � 1
p� 1

◆
, (1.2)

where the values of the Legendre symbol for primes p that are relatively prime to 10
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are given by
✓
�5
p

◆
=

(
1 if p ⌘ 1, 3, 7 or 9 (mod 20),
�1 if p ⌘ 11, 13, 17 or 19 (mod 20).

Theorem 1.4. Let n be a positive integer with prime factorization n =
Y
p

p�p .

Then the number of solutions in integers of

x2 + y2 + 6z2 = n2

is given by

4
��2�2+1 � 3

�� Y
p�5

✓
p�p+1 � 1

p� 1
�
✓
�6
p

◆
p�p � 1
p� 1

◆
, (1.3)

where the values of the Legendre symbol for primes p that are relatively prime to 6
are given by

✓
�6
p

◆
=

(
1 if p ⌘ 1, 5, 7 or 11 (mod 24),
�1 if p ⌘ 13, 17, 19 or 23 (mod 24).

Theorem 1.5. Let n be a positive integer with prime factorization n =
Y
p

p�p .

Then the number of solutions in integers of x2 + 2y2 + 3z2 = n2 is given by

2 (2 + (�1)n)
�
3�3+1 � 2

�Y
p�5

✓
p�p+1 � 1

p� 1
�
✓
�6
p

◆
p�p � 1
p� 1

◆
. (1.4)

This work is organized as follows. In Section 2, some notation and some prelimi-
nary results for theta functions will be defined. Sections 3 and 4 will be devoted to
the proof of Theorem 1.3: the primes p = 2 and p = 5 are handled in Section 3 and
the remaining primes p that are relatively prime to 10 are treated in Section 4. The
proof of Theorem 1.4 is similar to that of Theorem 1.3 and will be given in Section 5.
The proof of Theorem 1.5 is the simplest one and will be given in Section 6.

2. Notation and Background Results

The theta functions '(q),  (q), X(q), P (q), D(q) and E(q) are defined by

'(q) =
1X

j=�1
qj2

,  (q) =
1X

j=0

qj(j+1)/2, X(q) =
1X

j=�1
q3j2+2j ,

P (q) =
1X

j=�1
q(3j2+j)/2, D(q) =

1X
j=�1

q5j2+2j and E(q) =
1X

j=�1
q5j2+4j ,
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and for any positive integer k, we define 'k,  k, Xk, Pk, Dk and Ek by

'k = '(qk),  k =  (qk), Xk = X(qk), (2.1)
Pk = P (qk), Dk = D(qk) and Ek = E(qk). (2.2)

For positive integers a, b and c, and for any nonnegative integer n, let r(a,b,c)(n)
denote the number of solutions in integers of ax2 + by2 + cz2 = n. Clearly,

1X
m=0

r(a,b,c)(m)qm = '(qa)'(qb)'(qc) = 'a'b'c.

Lemma 2.1. Let 'k,  k, Xk, Pk, Dk and Ek be defined by (2.1) and (2.2). Then
the following identities hold.

'1 = '4 + 2q 8, (2.3)
 2

1 = '4 2 + 2q 2 8, (2.4)
 1 3 = '6 4 + q'2 12, (2.5)
'2

1 = '2
2 + 4q 2

4 , (2.6)
'1 = '9 + 2qX3, (2.7)
P 2

1 = '3P2 + 2qX1 6, (2.8)
'1 = '25 + 2qD5 + 2q4E5, (2.9)
'2

1 = '2
5 + 4qD1E1. (2.10)

Proof. See (i), (xiii), (xxxiii), (ii), (v), (xxx), (x) and (xi), respectively, in [3].

The following result is due to Hurwitz and has been summarized by Sandham
[9].

Lemma 2.2. Suppose that a(n) is a function, defined for all nonnegative integers
n, that satisfies the property

a(pn) = a(p)a(n)� �(p)a(n/p) (2.11)

for all primes p, where � is a completely multiplicative function. Then the coe�cient
of qn2

in 0
@ 1X

j=�1
qj2

1
A
 1X

k=0

a(k)qk

!

is equal to
1X

r=1

A(2n/r)�(r)µ(r)
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where µ is the Möbius function, A(n) is defined by

1X
n=0

A(n)qn =

 1X
k=0

a(k)qk

!2

and A(x) is defined to be 0 if x is not a nonnegative integer.

3. Proof of Theorem 1.3: Part 1

This section is devoted to establishing the parts of the formula in Theorem 1.3 that
involve the primes 2 and 5.

Lemma 3.1. Fix an odd integer j. Then for any nonnegative integer k, we have

r(1,1,5)(22kj2) = r(1,1,5)(j2). (3.1)

Proof. By (2.3), we have '2
1'5 = ('4+2q 8)2('20+2q5 40). Expanding, extracting

the terms of the form q4n, and then replacing q4 with q we deduce
1X

n=0

r(1,1,5)(22n)qn = '2
1'5.

This leads to 1X
n=0

r(1,1,5)(22kn)qn = '2
1'5 =

1X
n=0

r(1,1,5)(n)qn

and this implies (3.1).

Lemma 3.2. Fix an integer j that is not divisible by 5. For any nonnegative integer
k, let f(k) = r(1,1,5)(52kj2). Then

f(k + 2) = 6f(k + 1)� 5f(k), (3.2)
f(1) = 11f(0). (3.3)

Hence,

f(k) =
5k+1 � 3

2
f(0). (3.4)

Proof. For (3.2), by (2.9), we have

'2
1'5 = ('25 + 2qD5 + 2q4E5)2'5. (3.5)

Expanding, extracting the terms of the form q5n, replacing q5 with q, and then
applying (2.10), we deduce

1X
n=0

r(1,1,5)(5n)qn = 2'3
1 � '1'

2
5. (3.6)
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Applying (2.9) to (3.6) gives

1X
n=0

r(1,1,5)(5n)qn = 2('25 + 2qD5 + 2q4E5)3 � ('25 + 2qD5 + 2q4E5)'2
5. (3.7)

Applying the process of obtaining (3.6) to the terms of the form q5n in (3.7), we
deduce 1X

n=0

r(1,1,5)(52n)qn = 11'2
1'5 � 10'3

5. (3.8)

A similar process applied to the terms of the form q25n in (3.8) leads to

1X
n=0

r(1,1,5)(54n)qn = 61'2
1'5 � 60'3

5. (3.9)

By (3.8) and (3.9), we deduce that

1X
n=0

r(1,1,5)(54n)qn = 6
1X

n=0

r(1,1,5)(52n)qn � 5'2
1'5

and this implies (3.2).
For (3.3), applying a similar process of obtaining (3.6) to the terms of the form

q5n+1 in (3.5) and (3.8), we deduce

1X
n=0

r(1,1,5)(5n + 1)qn = 4'1'5D1

and

1X
n=0

r(1,1,5)(52(5n + 1))qn = 44'1'5D1,

respectively, and this implies

1X
n=0

r(1,1,5)(52(5n + 1))qn = 11
1X

n=0

r(1,1,5)(5n + 1)qn. (3.10)

Similarly, we deduce that

1X
n=0

r(1,1,5)(5n + 4)qn = 4'1'5E1,

1X
n=0

r(1,1,5)(52(5n + 4))qn = 44'1'5E1,
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and this implies

1X
n=0

r(1,1,5)(52(5n + 4))qn = 11
1X

n=0

r(1,1,5)(5n + 4)qn. (3.11)

By (3.10) and (3.11), we deduce (3.3). Finally, (3.4) follows from (3.2) and (3.3).

By Lemmas 3.1 and 3.2, we immediately deduce:

Proposition 3.3. Let n be a positive integer with prime factorization

n =
Y
p

p�p = 2�25�5m where m =
Y
p-10

p�p .

Then the number of solutions in integers of x2 + y2 + 5z2 = n2 is given by

r(1,1,5)(n2) = 2
�
5�5+1 � 3

�
r(1,1,5)(m2).

4. Proof of Theorem 1.3: Part 2

In this section, we work with the character modulo 20 defined on the integers by

�(n) =

8><
>:

1 if n ⌘ 1, 3, 7 or 9 (mod 20),
�1 if n ⌘ 11, 13, 17 or 19 (mod 20),
0 otherwise.

(4.1)

We note that for primes p,

�(p) =

(⇣
�5
p

⌘
if p 6= 2,

0 otherwise.
(4.2)

The goal of this section is to prove

Proposition 4.1. Let m be a positive integer that is relatively prime to 10 and has
prime factorization

m =
Y
p-10

p�p .

Then

r(1,1,5)(m2) = 4
Y
p-10

✓
p�p+1 � 1

p� 1
� �(p)

p�p � 1
p� 1

◆
.
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In view of (4.2), Propositions 3.3 and 4.1 immediately imply Theorem 1.3.
In order to prove Proposition 4.1, we will need some background information and

several lemmas. Let f1 = f1(q), f2 = f2(q) be the infinite products defined by

f1(q) =
1Y

j=1

(1� q2j)(1� q4j)(1� q5j)(1� q10j)
(1� qj)(1� q20j)

,

f2(q) = q
1Y

j=1

(1� qj)(1� q2j)(1� q10j)(1� q20j)
(1� q4j)(1� q5j)

.

Let their series expansions be given by

f1(q) =
1X

n=0

a1(n)qn, and f2(q) =
1X

n=0

a2(n)qn, (4.3)

where
a1(0) = 1 and a2(0) = 0.

Then for j 2 {1, 2}, define Aj(n) by

1X
n=0

Aj(n)qn =

 1X
k=0

aj(k)qk

!2

.

Both aj(x) and Aj(x) are defined to be 0 if x is not a nonnegative integer.

Lemma 4.2. The following identity holds:

'(q)'(q5) = f1(q) + f2(q). (4.4)

Proof. See [2, Theorem 3.1].

Lemma 4.3. For any positive integer k, let

Lk = 1� 24
1X

j=1

jqjk

1� qjk
.

Then

f2
1 + f2

2 = � 1
18

L1 +
2
9
L4 �

5
18

L5 +
10
9

L20 +
2
3
q
1Y

j=1

(1� q2j)2(1� q10j)2. (4.5)

Proof. Squaring both sides of (4.4), we have

'2
1'

2
5 = f2

1 + f2
2 + 2f1f2

= f2
1 + f2

2 + 2q
1Y

j=1

(1� q2j)2(1� q10j)2. (4.6)
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By [10, Theorem 7.1], it is known that

'2
1'

2
5 = � 1

18
L1 +

2
9
L4 �

5
18

L5 +
10
9

L20 +
8
3
q
1Y

j=1

(1� q2j)2(1� q10j)2. (4.7)

Finally, (4.5) follows from (4.7) and (4.6).

Lemma 4.4. Let m be a positive integer relatively prime to 10 with prime factor-
ization

m =
Y
p-10

p�p .

Let c(m) be the coe�cient of q2m in f2
1 + f2

2 . Then

c(m) = 4
X
d|m

d = 4
Y
p-10

p�p+1 � 1
p� 1

.

Proof. This follows immediately from Lemma 4.3, for the only term on the right
hand side of (4.5) that contains terms of the form q20j+2, q20j+6, q20j+14 or q20j+18

is �L1/18.

Lemma 4.5. Let j 2 {1, 2} and let aj(n) be defined by (4.3). For any nonnegative
integer n and any prime p, we have aj(pn) = aj(p)aj(n)� �(p)aj(n/p) where � is
the completely multiplicative function defined by (4.1).

Proof. See [7, Theorem 1].

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1. Let [qk]f(q) denote the coe�cient of qk in the series ex-
pansion of f(q). In this notation, r(1,1,5)(m2) = [qm2

]('2
1'5). By Lemma 4.2 and

(4.3), we have

r(1,1,5)(m2) = [qm2
]('(q)(f1(q) + f2(q)))

= [qm2
]

0
@'(q)

1X
j=0

a1(j)qj

1
A+ [qm2

]

0
@'(q)

1X
j=0

a2(j)qj

1
A .

By Lemmas 4.5 and 2.2, this is equivalent to

r(1,1,5)(m2) =
1X

r=1

A1(2m/r)�(r)µ(r) +
1X

r=1

A2(2m/r)�(r)µ(r)

=
1X

r=1

[q2m/r](f2
1 + f2

2 )�(r)µ(r),
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where �(r) is the completely multiplicative function defined by (4.1). Since �(r) is
0 if r is even, the last sum is over odd r only. Moreover, since m is relatively prime
to 10, we apply Lemma 4.4 to deduce that

r(1,1,5)(m2) =
1X

r=1

c(m/r)�(r)µ(r)

= c(m)
X
r|m

c(m/r)
c(m)

�(r)µ(r)

= c(m)
Y
p-10

✓
1� �(p)

c(m/p)
c(m)

◆

=

0
@4

Y
p-10

p�p+1 � 1
p� 1

1
A
0
@Y

p-10

✓
1�

✓
�5
p

◆
p�p � 1

p�p+1 � 1

◆1A

= 4
Y
p-10

✓
p�p+1 � 1

p� 1
�
✓
�5
p

◆
p�p � 1
p� 1

◆
.

5. Proof of Theorem 1.4

In this section, we outline the proof of Theorem 1.4. The proof is similar to the
proof of Theorem 1.3.

Lemma 5.1. Fix an odd integer j. For any nonnegative integer k, let

f(k) = r(1,1,6)(22kj2).

Then

f(k + 3) = 3f(k + 2)� 2f(k + 1), (5.1)
f(1) = f(0). (5.2)

Hence,
f(k) =

��2k+1 � 3
�� f(0). (5.3)

Proof. By (2.3), we have

'2
1'6 = ('4 + 2q 8)2('24 + 2q6 48). (5.4)

Expanding, extracting the terms of the form q4n, and then replacing q4 with q, we
deduce 1X

n=0

r(1,1,6)(22n)qn = '2
1'6 + 8q2 2

2 12. (5.5)
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Applying (2.3) and (2.4) to (5.5) gives
1X

n=0

r(1,1,6)(22n)qn = ('4 + 2q 8)2('24 + 2q6 48) (5.6)

+ 8q2('8 4 + 2q2 4 16) 12.

Applying a similar process to the terms of the form q4n in (5.6), we get
1X

n=0

r(1,1,6)(24n)qn = '2
1'6 + 8q2 2

2 12 + 16q 1 3 4. (5.7)

Then by (2.3)–(2.5), we have
1X

n=0

r(1,1,6)(24n)qn = ('4 + 2q 8)2('24 + 2q6 48) (5.8)

+ 8q2('8 4 + 2q2 4 16) 12

+ 16q(('24 + 2q6 48) 4 + q('8 + 2q2 16) 12) 4.

Applying a similar process to the terms of the form q4n in (5.8), we get
1X

n=0

r(1,1,6)(26n)qn = '2
1'6 + 8q2 2

2 12 + 48q 1 3 4. (5.9)

Then (5.5), (5.7) and (5.9) imply (5.1).
Now, expanding (5.4), extracting the terms of the form q4n+1, dividing both sides

by q, and then replacing q4 with q, we deduce
1X

n=0

r(1,1,6)(4n + 1)qn = 4'1'6 2. (5.10)

Applying a similar process to the terms of the form q4n+1 in (5.6) gives
1X

n=0

r(1,1,6)(22(4n + 1))qn = 4'1'6 2. (5.11)

Then (5.10) and (5.11) imply (5.2). Finally, (5.3) follows from (5.1) and (5.2).

Lemma 5.2. Fix an integer j that is not divisible by 3. Then for any nonnegative
integer k, we have

r(1,1,6)(32kj2) = r(1,1,6)(j2). (5.12)

Proof. By (2.7), we deduce
1X

n=0

r(1,1,6)(n)qn = ('9 + 2qX3)2'6.
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Expanding, extracting the terms of the form q3n, and then replacing q3 with q, we
get

1X
n=0

r(1,1,6)(3n)qn = '2
3'2. (5.13)

Applying (2.7) to (5.13) gives

1X
n=0

r(1,1,6)(3n)qn = '2
3('18 + 2q2X6). (5.14)

Applying a similar process to the terms of the form q3n in (5.14), we deduce

1X
n=0

r(1,1,6)(32n)qn = '2
1'6. (5.15)

This implies (5.12).

Lemmas 5.1 and 5.2 immediately imply:

Proposition 5.3. Let n be a positive integer with prime factorization

n =
Y
p

p�p = 2�23�3m where m =
Y
p�5

p�p .

Then the number of solutions in integers of x2 + y2 + 6z2 = n2 is given by

r(1,1,6)(n2) = 4
��2�2 � 3

�� r(1,1,6)(m2).

It remains to determine r(1,1,6)(m2) in the case that (m, 6) = 1. For any integer
n let �(n) denote the character modulo 24 by

�(n) =

8><
>:

1 if n ⌘ 1, 5, 7 or 11 (mod 24),
�1 if n ⌘ 13, 17, 19 or 23 (mod 24),
0 otherwise.

(5.16)

We note that for primes p

�(p) =
✓
�6
p

◆
. (5.17)

Proposition 5.4. Let m be a positive integer that is relatively prime to 6 and has
prime factorization

m =
Y
p�5

p�p .

Then

r(1,1,6)(m2) = 4
Y
p�5

✓
p�p+1 � 1

p� 1
� �(p)

p�p � 1
p� 1

◆
.
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In view of (5.17), Propositions (5.3) and (5.4) immediately imply Theorem 1.4.
To prove Proposition 5.4, we need some relevant lemmas. Let

g1(q) =
1Y

j=1

(1� q2j)(1� q3j)(1� q8j)(1� q12j)
(1� qj)(1� q24j)

,

g2(q) = q
1Y

j=1

(1� qj)(1� q4j)(1� q6j)(1� q24j)
(1� q3j)(1� q8j)

.

Let their series expansions be given by

g1(q) =
1X

n=0

b1(n)qn, and g2(q) =
1X

n=0

b2(n)qn, (5.18)

where b1(0) = 1 and b2(0) = 0. Then for j 2 {1, 2}, define Bj(n) by

1X
n=0

Bj(n)qn =

 1X
k=0

bj(k)qk

!2

.

Both bj(x) and Bj(x) are defined to be 0 if x is not an integer.

Lemma 5.5. We have
'(q)'(q6) = g1(q) + g2(q). (5.19)

Proof. See [2, Theorem 4.1].

Lemma 5.6. For any positive integer k, let

Lk = 1� 24
1X

j=1

jqjk

1� qjk
.

Then

g2
1 + g2

2 =� 1
12

L1 +
1
12

L2 +
1
4
L3 +

1
6
L4 �

1
4
L6 �

2
3
L8 �

1
2
L12 + 2L24. (5.20)

Proof. Squaring both sides of (5.19) gives

'2
1'

2
6 = g2

1 + g2
2 + 2g1g2 (5.21)

= g2
1 + g2

2 + 2q
1Y

j=1

(1� q2j)(1� q4j)(1� q6j)(1� q12j).

By [1, Theorem 1.12], it is known that

'2
1'

2
6 =� 1

12
L1 +

1
12

L2 +
1
4
L3 +

1
6
L4 �

1
4
L6 �

2
3
L8 �

1
2
L12 + 2L24 (5.22)
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+ 2q
1Y

j=1

(1� q2j)(1� q4j)(1� q6j)(1� q12j).

Finally, (5.20) follows from (5.21) and (5.22).

Lemma 5.7. Let m be a positive integer relatively prime to 6 with prime factor-
ization

m =
Y
p�5

p�p .

Let c(m) be the coe�cient of q2m in g2
1 + g2

2 . Then

c(m) = 4
X
d|m

d = 4
Y
p�5

p�p+1 � 1
p� 1

.

Proof. This follows immediately from Lemma 5.6, for the only term on the right
hand side of (5.20) that contains terms of the form q12j+2 and q12j+10 is �(L1 �
L2)/12.

Lemma 5.8. Let j 2 {1, 2} and let bj(n) be defined by (5.18). For any nonnegative
integer n and any prime p, we have bj(pn) = bj(p)bj(n) � �(p)bj(n/p) where � is
the completely multiplicative function defined by (5.16).

Proof. See [7, Theorem 1].

Now we are ready for

Proof of Proposition 5.4. Let [qk]f(q) denote the coe�cient of qk in the series ex-
pansion of f(q). In this notation,

r(1,1,6)(m2) = [qm2
]('2

1'6).

By Lemma 5.5 and (5.18), we have

r(1,1,6)(m2) = [qm2
]('(q)(g1(q) + g2(q)))

= [qm2
]

0
@'(q)

1X
j=0

b1(j)qj

1
A+ [qm2

]

0
@'(q)

1X
j=0

b2(j)qj

1
A .

By Lemmas 5.8 and 2.2, this is equivalent to

r(1,1,6)(m2) =
1X

r=1

B1(2m/r)�(r)µ(r) +
1X

r=1

B2(2m/r)�(r)µ(r)

=
1X

r=1

[q2m/r](g2
1 + g2

2)�(r)µ(r),
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where �(r) is the completely multiplicative function defined by (5.16). Since �(r)
is 0 if r is divisible by 2 or 3, the last sum is over the r that is relatively prime to
6 only. Moreover, since m is relatively prime to 6, we apply Lemma 5.7 to deduce
that

r(1,1,6)(m2) =
1X

r=1

c(m/r)�(r)µ(r)

= c(m)
X
r|m

c(m/r)
c(m)

�(r)µ(r)

= c(m)
Y
p�5

✓
1� �(p)

c(m/p)
c(m)

◆

=

0
@4

Y
p�5

p�p+1 � 1
p� 1

1
A
0
@Y

p�5

✓
1�

✓
�6
p

◆
p�p � 1

p�p+1 � 1

◆1A

= 4
Y
p�5

✓
p�p+1 � 1

p� 1
�
✓
�6
p

◆
p�p � 1
p� 1

◆
.

6. Proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5. It is much simpler than the
other two because Theorem 1.5 can be deduced fairly easily from Theorem 1.4.

Proof of Theorem 1.5. By (2.3), we have

1X
n=0

r(1,2,3)(n)qn = ('4 + 2q 8)('8 + 2q2 16)('12 + 2q3 24). (6.1)

Expanding, extracting the terms of the form q4n+1, dividing both sides by q, and
then replacing q4 with q, we get

1X
n=0

r(1,2,3)(4n + 1)qn = 2'2'3 2 + 4q'1 4 6. (6.2)

Applying a similar process to the terms of the form q4n gives

1X
n=0

r(1,2,3)(22n)qn = 2'1'2'3 + 4q'2 2 6.
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By (2.3) and (2.5), we have

1X
n=0

r(1,2,3)(4n)qn = 2('4 + 2q 8)('8 + 2q2 16)('12 + 2q3 24)

+ 4q('8 + 2q2 16)('12 8 + q2'4 24).

Expanding, extracting the terms of the form q4n+1, dividing both sides by q, and
then replacing q4 with q, we get

1X
n=0

r(1,2,3)(22(4n + 1))qn = 6'2'3 2 + 12q'1 4 6. (6.3)

Then (6.2) and (6.3) imply that for a fixed odd j, r(1,2,3)(22kj2) = 3r(1,2,3)(j2) holds
for all positive integer k.

Next, for a fixed integer m that is relatively prime to 6, let f(k) = r(1,2,3)(32km2).
By the same methods of deriving (5.12), we may deduce that

f(k + 2) = 4f(k + 1)� 3f(k),
f(1) = 7f(0)

and it follows that
f(k) = (3k+1 � 2)f(0). (6.4)

It remains to determine f(0), that is, r(1,2,3)(m2). By the same methods, we may
verify that

1X
n=0

r(1,2,3)(12n + 1)qn =
1
2

1X
n=0

r(1,1,6)(12n + 1)qn,

and it follows that
r(1,2,3)(m2) =

1
2
r(1,1,6)(m2).

Therefore, by Proposition 5.4, we deduce

r(1,2,3)(m2) = 2
Y
p�5

✓
p�p+1 � 1

p� 1
�
✓
�6
p

◆
p�p � 1
p� 1

◆
. (6.5)

Acknowledgment. After submitting this paper for publication, the author learned
that all of the cases of Conjecture 1.2 have been proved, by a di↵erent method, by
Guo, Peng and Qin [5].
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