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Abstract R

We consider two types of polynomials F,,(z) = >.I'_ v!Sy(n,v) 2" and F,(z) =
S v!Sa(n,v)H, 2¥, where Sa(n,v) are the Stirling numbers of the second kind
and H, are the harmonic numbers. We show some properties and relations be-
tween these polynomials. Especially, the identity F,,(—3) = —(n—1)/2-F,_1(-1)
is established for even n, where the values are connected with Genocchi numbers.
For odd n the value of F,,(—3) is given by a convolution of these numbers. Subse-
quently, we discuss some of these convolutions, which are connected with Miki type
convolutions of Bernoulli and Genocchi numbers, and derive some 2-adic valuations
of them.

1. Introduction

The purpose of this paper is to show some relations between the polynomials

F,(z) = z": <Z>:r”, F,(z)= z": <Z>Hym” (n>1).

v=1 v=1

These polynomials are composed of harmonic numbers

1
H,=> -

v=1

and Stirling numbers of the second kind Ss(n, k) where we use the related numbers

<Z> = k!Sa(n, k) (1.1)

(== G) w

obeying the recurrence
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Note that Sa(n,1) = Sa(n,n) =1 for n > 1 and S3(n,0) = (§) = b,,0 forn >0
using Kronecker’s delta. For properties of Stirling and harmonic numbers we refer
to [10]. The polynomials F,, are related to the Eulerian polynomials, see [6, pp. 243—
245] and [16], [19] for a survey. The numbers F,,(1) are called ordered Bell numbers
or Fubini numbers, cf. [6, p. 228]. For a discussion and further generalizations of
the polynomials F,, and F,, see [3] and [7], respectively. Note that the notation )
is frequently used also for the Eulerian numbers, which we denote by A(n, k) as in
[6]; the notation F,, is used as in [16], [19].

Lemma 1.1. We have forn > 1:

F.(-1)=(-1)",
F(-1) = (-1)"n,
Fop1(2) = (2% + 2)F) (2) + 2Fy (2),
Foii(z) = (2% + 2)F, (2) + 2F,(z) + 2F, (2).
Proof. The recurrences follow easily by (1.2) and the values at = —1 by induction.

O

The Bernoulli numbers B,, and the Genocchi numbers G, may be defined by

t t"
B(t)= 4 = ZBnm (|t| < 2m) (1.3)
n>0
and
2t t"
Gt)=——= G,— (|t 14
0= G71 =2 Gy (<, (1.4)

where Go = 0 and B,, = G, =0 for odd n > 1, cf. [6, pp. 48-49]. Note that
G,=2(1-2"B, (n>0). (1.5)

The numbers B,, are rational, whereas the numbers G,, are integers.

Define the semiring S C Z[z], which consists of polynomials having nonnegative
integer coefficients. Further define the set

Go={feS: flatx)=(-1)%Sf(a —z) for z € R}, (1.6)

where such polynomials have a reflection relation around z = «. For f(z) = 0 we
declare deg f = 0, such that 0 € &, is well defined.

Theorem 1.2. We have the following relations for n > 1:

(a)
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(b)
Gt

n+1
(c)
Fo(z)/z, (x + 1)F,(2) € 6_1 .

This theorem can be deduced from known results, which we will give later. By
F, € S and the symmetry property (c) above, we conclude that F,(z) > 0 and
(=1)"F,(—1 —=z) > 0 for x > 0; both expressions strictly increasing as x — oo.
Except for a simple zero at x = 0, all real zeros of F,, symmetrically lie around
T = —% in the interval (—1,0). For an illustration see Figure A.1. The value of
Fn(—%) can be seen as a central value. Note also that 24z € &_, /2 occurs in the
recurrences of F,, and ﬁn given in Lemma 1.1. Interestingly, the integral over the
interval [—1, 0] and the central value are mainly connected with Bernoulli numbers.
Similar properties also exist for the polynomials F,, as follows.

Theorem 1.3. We have the following relations:
(a) 0
/ F,(z)dx = —EB,L_l (n>1).

(b)

(c)

~ —1
Fn(*%):*HQ Fo_1(—%) (evenn >2)
(d)
ords n, if evenn > 2,
ordy Frp(=3) = -1-<2(r - 1), ifn=2"—1(r>1),

orda(n + 1) + [logy(n + 1)], otherwise,

where ordy is the 2-adic valuation and [-] gives the integer part.

(e)
F.(z) =F,(2) + (n — 1)aF,_1(z) +ZA,“, F,(z) (n>2),

where Ay, € 6_1/2 and deg A\, =n—v forv=1,...,n—2.

(f) R
Fo()/z —(n—1)F,_1(z) €6_1/2 (n=>2),

where the resulting polynomial has degree n — 1.
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The polynomials A, , will be recursively defined later in Proposition 3.4. The
symmetry of F,, (z)/xz — (n — 1)F,,_1(x) is shown in Figure A.2. The first relations
between the polynomials F,, and F,, are given as follows.

Table 1.4.
Fi(z) = Fi(z),
Fa(z) = Fo(z) + 2F4 (2),
Fs(z) = Fs(z) + 20F5(z) + (2 + 2)F1 (2),
F(z) = Fu(z) + 32F3(z) + 3(2% + 2)Fa(z) + (22° + 32° + 2)F1 ().

In the following theorem a different relation is given by derivatives of F,,.

Theorem 1.5. We have

n v
N F )(:ﬂ) v
_ v+l N
F,.(z) = 5_1(—1) 0 (n>1).
Remark. The identity (c) of Theorem 1.3 occurred in [13] as an important key step in
proofs. We shall use different approaches to prove the theorems in a comprehensive

way.

2. Bernoulli and Stirling Numbers

Define
m—1
Sulm) = S v (n>0)
v=0
It is well known that
1
Sp(z) = — 1 (Bnt1(z) = Bnya), (2.1)

where B,,(z) is the nth Bernoulli polynomial, cf. [10, p. 367], with the properties
B, 1(z) = (n+1)B,(z), By(0)=B,. (2.2)

The Gregory-Newton expansion of z” reads

506
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which follows by (1.1) and the usual definition of the numbers Sa(n, k) by

= So(n, k)(x)x
k=0

with falling factorials (z). The summation of (2.3) yields another familiar formula

Sp(z) = i <Z> (k i 1). (2.4)

Note that (7} =0 for n > 1 and () = (—1)*. The following formula is a classical
result which is due to Worpitzky. We give a short proof.

Proposition 2.1 (Worpitzky [20, (36), p. 215]). We have

S (Y p g,

k=1
Proof. Since S,,(0) = 0, we conclude by (2.1), (2.2), and (2.4) that

B =50 = o =i (e () = X () i

A similar result with harmonic numbers is the following.

Proposition 2.2. We have

k=1

Proof. The derivative of (2.4) provides that

i<:>(kil)ixij Sl — V()

k=0

where
n k
@=> () S

Since |V;,(0)| < oo and S, (z) — xS, (z) — 0 as ¢ — 0, we obtain by L’Hépital’s rule

that g o g
Vi (0) = nn%—”(x)_x n(@) _ i, ~25lE) _

Using (2.1) and (2.2) we then derive that
S"(z) =nBn_1(z) and V,(0)= _an_l.

This shows the claimed identity. O



INTEGERS: 14 (2014) 6

3. Symmetry Properties

We shall give some symmetry relations of the polynomials F',, and f‘n Note that the
Eulerian numbers, as used in [6], [19], are symmetric such that A(n, k) = A(n,n—k).
Recall the definition of &, in (1.6).

Lemma 3.1. The set &, has pseudo semiring properties. If f,g € &, then

f'gegon
f+g€6a, (*)
fleeav

where in case of addition and f-g # 0 a parity condition must hold such that
() degf=degg (mod2).
If f has odd degree, then f(a) = 0.

Proof. The cases, where f = 0 or g = 0, are trivial. Since &, C &, the pseudo
semiring properties follow by the parity of (—1)4°8/ resp., (—1)9%€9. If deg f is
odd, then f(a) = —f(«), which implies that f(a) = 0. O

Proposition 3.2 (Tanny [19, (16), p. 737]). We have
Fo(x) =Y A k" "+ 1) (n>1).
k=1
Corollary 3.3. We have
F.(2)/z, (x+1)F,(2) € G_1/5 (n>1).

Proof. Using the symmetry of A(n, k), we obtain that

n

fal@) = Fpla)/z =Y Al k)" @+ 1) = (=1)" " fu(—(z + 1)).

k=1

Hence, fo(—% +2) = (=1)""'f,(—% —2) and deg f, = n — 1 show that F,(z)/z €
S_1 2. Since 22 + x € &_y 3, it also follows that

(2® +2) - Fp(z)/z = (2 + 1)F,(z) € &_y . O

Proposition 3.4. We have forn > 1:
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where

_ L im=v=1,
)\n,l/('r) - {07 Zfl/ ¢ {17,,.,71}7

otherwise recursively defined by

Ant1v() = (2% + x))\'ny(x) + A p—1(x) + 6.
Furthermore A, , € S and deg ), =n—v forv=1,...,n. Especially
Ann—1(z) = (n —1)z.
Proof. We use induction on n. For n =1 we have
Fi(z) =Fi(z) and A, (z)=0,.

Now assume the result is true for n. By assumption we have
n
Fo(z) =) Au(@)Fo(2),
v=1

F () =Y X, ,(@)F,(2) + Ay (2)F, (2),

and by Lemma 1.1 that
Foii(z) = (2% + 2)F, (2) + 2F, (2) + 2F,(2),
(2% + 2)F, () = Fry1(z) — 2F, (2).

It follows that
1'/;n+1(33) = (2% + ) Z (A;,u(x)Fu(x) + An,u(x)F;(QE)) + xl‘/;n(x) + 2Fn(2)

= (a? + ) Z /\’n)y(x)F,,(ac) + Z Anw (@) (Fuy1(z) — 2Fy(2))
v=1 v=1

+ x]/F\‘n(a:) + a2F,(x)

n

= (z* + 1) Z A (@)F o (z) + Z A (T)F g1 (x) + 2F,(x)
v=1

v=1
n+1
=3 Ans1w(2)F,(2).
v=1
Thus

Mgrw(z) = (22 + )N, (@) + A1 (2) 4 0p .
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In particular, we have

)\n_t,_]_,n_;,_]_(l‘) = An)n(.’I}) =1 (31)

and
Antin(2) = Apn-1(@) +2=(n— 1)z + 2z = nz. (3.2)
The recurrence shows that A\, 1, € S for v =1,...,n + 1. Therefore we conclude

for 1 < v < n that

!
n,v’

deg Apt1,, = max(2+deg A, ,, A\p—1)=n—v+1
Along with (3.1) and (3.2) this shows the claimed properties for n + 1. O
Proposition 3.5. We have A\, , € 6_y/5 forn—2>v > 1.
Proof. We make use of Proposition 3.4 and Lemma 3.1. For n—1 > v > 1 we have
Aut1(2) = (22 + 2)AL (@) + Anp-1(@).
We use induction on n. For n = 3 we have
A31(x) = (2° + 2)Ay 1 () + Aoo(z) =2° + 2 € G_y)a.
Now assume the result holds for n > 3. For v =1,...,n — 2 we have

/\n,+1,u(17) = (IE2 + SC))\%VV(I) + )\nvl,_l(x) € 6_1/2,

since )\;W, Anw—1 € 6_1/2 by assumption and 2 + deg )\’,W =deg A1 if v #1,
otherwise A, ,—1 = 0. It remains the case v =n — 1:

An-l—l,n—l(£) = (1‘2 + JI)(TL - 1) + >\7L,n—2($) S 671/2a

/

since A, ,,_q

() =n—1and A\, 2 € &_y/ with deg A, ;.2 = 2. O
Corollary 3.6. We have
F.(z)/x—(n—1)F, 1(x) €6_1/5 (n>2),

where the resulting polynomial has degree n — 1.

Proof. Propositions 3.4 and 3.5 show that

Fo(z)/z — (n— 1)F,_1(z) = Fp(2)/z + i: Anp(2) - Fo(z)/z, (3.3)

where A\, , € &_1/2 and deg\,,, =n—vforv=1,...,n—2. By Corollary 3.3 and
Lemma 3.1 we conclude that A, ,(x) - F,(7)/z € &_;/5. Since the first term and
the products on the right-hand side of (3.3) lie in &_;/, having the same degree
n — 1, the left-hand side of (3.3) also lies in &_; /5 and has degree n — 1. O



INTEGERS: 14 (2014) 9

While F,(z)/z € &_y/p for n > 1, we have fn(x)/x ¢ &_y/p for n > 2
compare values at * = 0 and # = —1 using Lemma 1.1. The latter function needs
a correction term to lie in &_; /5. For an illustration of the symmetry of F.,(z)/x
and f‘n(x)/x — (n—1)F,—1(z) see Figures A.1 and A.2.

4. Generating Functions

Let [t"] be the linear operator, that gives the coefficient of ¢" of a formal power
series, such that

f(t) = Z ant", [tn} f(t) = Qn,

n>0

see [10, p. 197]. Define (t") = nl[t"]. Let (h,(z)),>0 be a sequence of functions.
Then we denote by

Gh(z,t) =Y hn(x)g

n>0

the two-variable exponential generating function, such that
™Y Gh(z,t) = hp(x).

Recall the definitions of B(t) and G(t) in (1.3) and (1.4), respectively. We further
set

and

By=Go=0, B,=B,/n, G,=G,/n (n>1).
Lemma 4.1. The function y(t) = é(t) satisfies the Bernoulli differential equation

[

1 1
Y 4y = §y2, which is equivalent to  (logy)' = J¥ = 1.

Proof. Both equations are identical due to (logy)’ = y'/y and are verified by y(t) =
2/(e" +1). O

Corollary 4.2. We have

G()=Y Gy (<), (11)
n>0 :
log Gi(¢) = % Z(—l)”éng (| < ). (4.2)
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Proof. Eq. (4.1) follows by its definition. Integrating the right-hand side differential
equation of Lemma 4.1, we derive that

log G(t) = / (%é(t) — 1) dt = % Zén% —t+C
n>1

with a constant C. Since log G( ) = 0, we obtain C' = 0. Note that (—1)"G,, = G,
forn >2and Gy = 1. With t G1/2 —t = —t G1/2 we finally get (4.2). O

We also have a connection with hyperbolic functions, where we casually obtain
the known coefficients of the following function by (4.2).

Lemma 4.3. We have
log G(t) = e log cosh !
=Ty T 08 2)"

Proof. This follows by

t/2 ty e+l &
e cosh<2>— 5 =G((t)" . O
Proposition 4.4. Define Fo(z) = Fo(z) = 1 and ¢(z,t) =1 — z(e! —1). Then we
have
(a)

GF(z,1) = / GF(z,t)dz = —B(t) log¥(z, 1),
(b)

gﬁu¢>=—9%%%ﬁy [ P tat)de = 5B(0) (og v )"

Proof. Set u = ¢! — 1. Note that 1/u = B(t) and 1 — 2u = ¢(z,t). We need the
following generating functions (cf. [10, p. 351]):

CENLESY <Z>g (4.3)

n>k

log(1 —1t)

Ogl = Y HL" (4.4)
n>1

(a) Using (4.3) we obtain that

R CCEVIED WD N WEED RABE ST ]
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We further deduce that
d log(1 — ~
v e =m) B g (e b).

F(z,t)dx = =

/ GF (z, t)dx / 1—zu U

(b) First substitute ¢ by (e —1) in (4.4). The result for GF(x, ) is similarly derived
as in (4.5) with an additional factor Hy. The integral follows by

_ _ 2
/log(l xu) dp — _log(1 —2u) . 0
1—2u 2u
Proposition 4.5. We have
Fo(—3)=Gu1 (n>1),
_%a " an = 1a
fn(_%)_ %Gn, if evenn > 2,
1S (MGLGotiow, if oddn > 3.
v=1
Proof. From Proposition 4.4 we conclude that
t
1 =~
C - =aw

Hence,

By (4.1) we derive that
Fn(_%) = <tn> gF(—%,t) = <tn> é(t) = c~j"nJrl'

Similarly, we obtain that
F,(~3) = (") GF(~5,1) = (t") G(1) log G(t) = e,
where ¢, arises from the convolution sum caused by the Cauchy product of G(t)

and log G(¢). By means of (4.1) and (4.2) we achieve that
_Is(MYyraa

Cp = D) Z v v Intl—v-

Case even n: The indices v and n + 1 — v have different parity. Since G, =0 for

odd v > 1 and Gy = 1, the sum simplifies to

o5 (-(}) @G+ (e -

—1~
"G,
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Case odd n: For n = 1 we compute ¢; = —%. Let n > 3. Because of the same
parity of the indices, we finally infer that

18 I\ ~ ~
Cp = 5 Z (1/) GVG7L+1—V

v=1
by omitting the factor (—1)”. O

Proposition 4.6. We have

0 0
/ F,(z)dz =B, and / F,(z)dz = ngn_l (n>1).
-1 -1

Proof. Using Proposition 4.4, we obtain that t(0,t) = 1 and 1(—1,t) = e*. There-
fore
‘O

0
/ GF(z,t)dz = —B(t) log(z, t)
-1
and

0 . 1~ 9 0
[ GF(z. )iz = 5B(1) (g (. )

r=—1 2

Since the integrals above are independent of ¢, the operator (¢") commutes with
integration. Applying (t™) to these equations easily yields the results. O

Remark. The generating function GF(x,t) can be found in [19, (9), p. 736] and [3,
(3.14), p. 3853]. The value of F,,(—1) was posed as an exercise in [10, 6.76, p. 559
and also given in [3, (3.29), p. 3855]; see [18, p. 288] for a short proof using the
theory of Riordan arrays.

5. Convolutions

We use the notations

(a4 Bs)" = Z (:) ArtvBsin—v,

v=0

{aT + ﬁS}n = Z aTJrVﬂeran
v=0

(n,r,s 2 O)

for symmetric binomial, resp. usual convolutions of two sequences (a,),>0 and
(51,),,20. Unless otherwise noted, we generally assume n > 1 for convolutions in
this section. We first need a simple lemma (cf. [9, p. 82]).
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Lemma 5.1. If n>1 and r,s > 0, then

(a7 +B5)" = (o + Berl)n_l + (g1 + 6s>n_17
~ =.n 1. | ~n
(o + Bo)" = 5(040 + Bo)" + E(Oéo + Bo)"s
where for the second part ag = g = By = BO =0 and a, = o, /v, El, = B, /v for

v>1.

Proof. The first part follows by () = (") +("~}), the second part by the identity

v

1/(v(n—v))=1/(nv) +1/(n(n —v)). O

The Euler polynomials E,,(z) are defined by

2" S gl 5.1

=Y B (<, 6.1
n>0

Compared to (1.4) and (4.1), formulas with E,(z) are naturally transferred to

Genocchi numbers by the relation E, (0) = G4+1. The well-known identity ([15,

(17), p. 135], [11, (51.6.2), p. 346])
(Eo(7) + Eo(y))" =2(1 — 2 — y)En(z + y) + 2Epq1(z +y)
leads to basic convolutions of the Genocchi numbers

(él + él)n = Qén+2 + Qén+1, (52)
(G1+G2)" = Gpyz + Gy, (5.3)

where the latter equation is derived by Lemma 5.1. Note that (5.2) also follows
immediately by Lemma 4.1 and (4.1). More general convolution identities can be
found in [5] for Bernoulli and Euler polynomials, that cover some known convolu-
tions as special cases.

As a result of Proposition 4.5 in the last section, the convolution

(Go+ )" = 5(Go + Goy™™? (5.4)
has appeared, which resists a simple evaluation for odd n > 1; the right-hand
side follows by Lemma 5.1. We shall give some arguments in the following that
this remains an open problem. Convolutions with different indices in the shape of
(Gj+ Gp)" for j+k >0 and (G + G)" for k > 1 are discussed in [2] and [1],
respectively. A connection with the last-mentioned convolutions is established by
the following lemma.
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Lemma 5.2. Ifn > 1, then
(Go+G1)" =) (G1+Gy)"
k=1

Proof. By Lemma 5.1 we obtain the recurrences
(éo + ék)nkarl _ (éo + ék+1)n7k + (él + ék)nfk
for k=1,...,n. Since (CN-}O + CN-‘rnH)O = 0, this gives the claimed sum. O

_ However, this will not simplify (5.4), see below. As before, we set ]~30(x) =0 and
B,.(z) = B, (z)/n (n > 1) for the Bernoulli polynomials. We can translate (5.4) as
follows.

Lemma 5.3. We have
1 ~ ~ - ~ . -

Proof. By (1.5) we have éyén,u/él =(1-2v-2""4 2")]§V1§n,u. It is well
known that Bn(%) = (2= — 1)B,,. Observing the symmetry, the result follows
from (2" — 2" 1B, = 27-1(21v — 1)B, = 2" !B, (1). D

Proposition 5.4 (Gessel [9, (12), p. 81]). Ifn > 1, then

5{Bo(@) + Bo(2)}" = (Bo + Bo(2))" = H, 1B, (x) + 5B,1(a).

For @ =0 this reduces to Miki’s identity [14, Theorem, p. 297]:
{Bo +Bo}" — (Bo +Bg)" = 2H,,B,, + B,,_1.
Forxz = % this gives the Faber-Pandharipande-Zagier identity [8, Lemma 4, p. 22]:
n =~ ~ NS n n
5{30(%) +Bo(3)}" — (Bo+Bo(3)" =H, 1B, (3) + §Bn—1(%).

Note that (Gg 4 Go)™ is mainly transferred to (Bg + Bg)", (Bg + Bo(3))", and
(Bo + ﬁo(%))" by Lemmas 5.3 and 5.1. The Miki type convolutions above show
that one can replace binomial convolutions by usual convolutions, but this does not
lead to a simplification compared to (5.2).

Agoh showed the formula below for k > 3 in a slightly different form. In view of
(5.2) and (5.3) this is also valid for k =1, 2.

Proposition 5.5 (Agoh [1, Theorem, p. 61]). If k,n > 1, then

@1+ G =2 (G~ Bt 4 (Bo+ G
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As an application we derive a different Miki type convolution as follows.

Proposition 5.6. Forn > 1 we have
~ ~ ~ 1~ ~ ~ ~ ~
(GQ + Gl)n =2 <Hn_1Gn+1 — iGn + G, — {Bo + Gz}nil + (Bo + Gg)n1> .
Proof. The case n = 1 is trivial, let n > 2. We combine Lemma 5.2 and Proposi-

tion 5.5, where we split the summations. Note that f’)o =0 and By = 1. We then
obtain that

n—1
(Go+G1)"=Gn+ Y (G1+Gpp) =G, +2(51 + 52+ 53),
k=1

where
_ n—lN . " "
S1=(m-1)Gn, Sa=-> BiGpi1r=—{Bo+Ga}"",
k=1
n—1 n—1 k EF—1\~ ~
Z Z < )B Gn+1 v — Hn 1Gn+1 + Z Z ( 1> Ban-i-l—z/
v= k=1v=1
n—1 ~ ~ ~ ~
=H, 1Gn 1 + Z ( )BVGM,, =H, 1Gny1+ (B + Go)" !
Summing up the terms establishes the result. O

As a result of Section 3, we have yet another formula.

Proposition 5.7. For odd n > 1 we have

n—2

(Go+G1)" =2 Gy + Y Aw(=3)Gusa |,
v=1
odd v

where the polynomials A, , € &_1 /5 are defined as in Proposition 3.4.

Proof. By Propositions 3.4 and 3.5 we have
f‘n(l‘) an(a:)—F(n—l zF, 1 +Z/\nu

where A\, , € &_1/5. Along with Proposition 4.5 we derive the result by setting

T = —% and omitting the terms where éuﬂ =0. U
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The last two propositions show that one can resolve the convolution in (5.4) by
(éo + él)n = Y 11Gni1 + Y 1Gn1 + -+ 72Go (odd n > 1)

with some coefficients ,,, but this is again unimproved compared to the convolution
itself. Either the coefficients ~, are connected with Bernoulli numbers or with
polynomials that have to be recursively computed.

6. p-Adic Analysis
Let Z,, be the ring of p-adic integers and Q, be the field of p-adic numbers. Define
ord, = as the p-adic valuation of z. Define [z] as the integer part of x € R.

Lemma 6.1 ([17, p. 37]). Ifn > 1, then

n
ord, E z, > min ord,z, (x, €Q,),
0 0<v<n
=

where equality holds, if there exists an index m such that ord, z,, < ord, x, for all
v #m.

Lemma 6.2 ([17, p. 241]). Ifn > 1, then

n— sp(n)

dp,n! =
ord, n o1

)

where sp(n) is the sum of the digits of the p-adic expansion of n.

For even n > 0 the numbers én are p-adically interesting for p = 2, whereas the
numbers G,, are odd integers.

Proposition 6.3. Forn € 2N the numbers én € Q2\Zs, while én € Zy forp > 2.
More precisely, ords G,, = —ords n and ords G,, = 0.

Proof. Let n € 2N. It is well known that the tangent numbers (cf. [10, p. 287])
2"(1 —2")B,, = 2" 'G,,

are integers, here defined with different sign. The right-hand side follows by (1.5).
Hence the numbers G,, are p-integers for p > 2. For p = 2 we derive that

ords (~}n = ord2(2]~3n) = —ords n,

where we have used the fact that ords(2B,,) = 0, which follows by the von Staudt-
Clausen theorem, see [12, Theorem 3, p. 233]. Since n is even, we infer that
—orden < 0 and consequently that én € @2\Zy. By the same arguments, it
follows from (1.5) that ords G,, = 0. O
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It remains of interest to evaluate the convolution (éo + éo)" for even n. We
will see that the 2-adic valuation of (G1 + G1)" has a simple form, while the 2-adic
valuation of (Gg + Gg)" is more complicated.

Proposition 6.4. Letn > 1 and m = [n/2]. Then
ordy (G1 4+ G1)" = —ordy(m +1).
Proof. By (5.2) it follows that
ords (él + C-}1)” =1+ OrdQ(énJ'_Q + én+1) =:1+yg,

where either én+2 or CN-}nH vanishes. Note that n + 2 = 2(m + 1) for even n
and n+1 = 2(m + 1) for odd n. We conclude that g = —ords(2(m + 1)) using
Proposition 6.3, which gives the result. O]

Proposition 6.5. We have

0, ifn=1,
ords (Go + Go)" = ¢ 1 —ordy(n — 1), if odd n > 3,
1 —ordan — [logyn| + 2wa(n), if evenn > 2,

where wa(n) = 1, if n is a power of 2, otherwise wo(n) = 0.

Proof. The cases n = 1,2,4 are handled separately with él =1 and (~}2 = —%.
For odd n > 3 we have (éo + éo)” =2nGp_1 by symmetry and different parity of
indices. The result follows by Proposition 6.3. Now, let n even and n > 6. We first
obtain by Lemma 5.1 that

(Go+ Go)" = %(éo + Go)™. (6.1)

Set T = {2,4,...,n—2} and L = [logy n]—w2(n). Further define ¢3(z) as the number
of digits of z € N in base 2. Note that ords () = —s2(n) + s2(v) + s2(n — v) by
Lemma 6.2. With the help of Proposition 6.3 and Lemma 6.1, we can evaluate
ordy (éo + Go)" and obtain that

ordy E (n) G,G,_y > —so(n) + 11161%1 (s2(v) + sa(n —v) —orda v). (6.2)
v v
vel

We will show that there is only one minimum on the right-hand side to get equality.
To be more precise, this takes place for v, = 2L, the greatest power of 2 in Z, where

we have
$2(Um) + S2(n — vp) —orda vy, = 1+ s9(n — 2ly — L. (6.3)

We have now to distinguish between two cases, whether n is a power of 2 or not.
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Case n = 2L*1: The right-hand side of (6.3) reduces to 2 — L. We derive for
v €T — {vy} that
2—L < s3(v)+ s2(n—v)—ordav,

since 2 < s3(v) 4 s2(n —v) and —L < —ordy v by construction.
Case n # 21 One observes that fo(n) = fo(vy,). Regarding (6.3) we then
conclude that 1+ so(n —2%) — L = s5(n) — L. As above, for v € T — {v,,} we have

ords v — L < 0 < ordy (n)’
v

which is equivalent to
s2(n) — L < s2(v) + sa(n —v) — orda v.

Both cases show that we have exactly one minimum. Thus (6.2) becomes
n ~
d G G, =— 'm — V) — ordg vy, =: M,
ords E (V) sa(n) + s2(Vm) + s2(n — vy,) — orda v

where we compute in case n = 28t that
M= —s3(n)+2—-L=1—-L=—[logyn| + 2wa(n),
otherwise ws(n) = 0 and
M = —s3(n) + s2(n) — L = —L = —[logy n] + 2ws(n).

Together with (6.1) this gives the result. O

7. Proofs of Theorems

Proof of Theorem 1.2. (a) We have two proofs either by Proposition 2.1 or by
Proposition 4.6. (b) This is shown by Proposition 4.5. (¢) This is given by Corol-
lary 3.3. ]

Proof of Theorem 1.3. (a) We have two proofs either by Proposition 2.2 or by
Proposition 4.6. (b) This is given by Proposition 4.5. (c) We have two differ-
ent methods. The first proof is derived by Proposition 4.5. Second proof: For even
n we then obtain by Corollary 3.6 and Lemma 3.1 that

Fo(z)/z — (n— 1)F,_1(z) =0

. (d) For even n we get by Propositions 4.5 and 6.3 that

—_1
for z = —3

ords fn(f%) =—-1+4+o0rdy G,, = —1 —orda n.
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For odd n we derive by Propositions 4.5, 6.5, and Eq. (5.4) that

ords f‘n(—%) = ords <%(C~;o + CN-‘q)") = ords (i(éo + éo)"+1>
=—1—orda(n+1) — [logy(n + 1)] + 2wa(n + 1).

If n+1 = 2" with » > 1, then the latter expression simplifies to —1 — 2(r — 1),
since ordg(n + 1) = [logy(n + 1)] = 7 and wa(n 4+ 1) = 1 in that case; otherwise
wa(n + 1) vanishes. (e) This is a consequence of Propositions 3.4 and 3.5. (f) This
is Corollary 3.6. O

To prove Theorem 1.5 we have to introduce some transformations. The Hadamard
product ([6, pp. 85-86]) of two formal series

= Z a,z’, gx)= Z b,a” (7.1)

v>0 v>0

is defined to be

(fog)(x) =) abz”

v>0

For a sequence (Sy,)n>0 its binomial transform (s} ),>¢ is defined by

Since the inverse transform is also given as above, we have (s*)n,>0 = (n)n>0, S€€
[10, p. 192]. The following transformation is due to Euler ([4, Ex. 3, p. 169]), where
we prove a finite case.

Proposition 7.1. If f,g are polynomials as defined in (7.1), then the Hadamard
product is given by

) (5
(f @ o)) = S (~1)ay L) o (7.2)

v>0

Proof. We may assume that f-g # 0. Let N = degg. Define g, (z) = > ._, b,a”
where gn(z) = g(z). We use induction on n up to N. For n = 0 we have

(f ©go)(2) = ag go(x) = aobo.

Now assume the result holds for n > 0. Since g,.1(z) = b, 12"t + g, (), we
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consider the difference of (7.2) for n + 1 and n. Thus

n+1 _
. b +1 L, n+l—v
(F © gni)(@) — (f © ga)(a) = 3 (~1)ay ot F D0
o v!
n+1
+1
— bn n+1 n _1 [
a3 (")) e
= an+1bn+1xn+1
showing the claim for n + 1. O

Proof of Theorem 1.5. The binomial transform

_% _ ]; (Z) (—1)*Hy, (7.3)

is well known, cf. [10, pp. 281-282]. Using Proposition 7.1 with f(z) =>""_ H,a"
and g = F,,, where f ® g = F,,, gives the result by means of (7.3). O

A. Figures

Figure A.1: Functions F,,

F,(z)/x with n = 8 (dashed blue line), F,(x)/z with n = 7 (red line).
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Figure A.2: Functions f‘n

fn(az)/x with n = 8 (dashed blue line),
F.(z)/z — (n —1)Fp_1(z) with n = 8 (red line).
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