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Abstract
Let q 2 (1, 2) and x 2 [0, 1

q�1 ]. We say that a sequence ("i)1i=1 2 {0, 1}N is an
expansion of x in base q (or a q-expansion) if

x =
1X

i=1

"iq
�i.

For any k 2 N, let Bk denote the set of q such that there exists x with exactly k
expansions in base q. In 2009, the second-named author showed minB2 = q2 ⇡
1.71064, the appropriate root of x4 = 2x2 + x + 1. In this paper we show that for
any k � 3, minBk = qf ⇡ 1.75488, the appropriate root of x3 = 2x2 � x + 1.

1. Introduction

Let q 2 (1, 2) and Iq = [0, 1
q�1 ]. Given x 2 R, we say that a sequence ("i)1i=1 2

{0, 1}N is a q-expansion for x if

x =
1X

i=1

"i

qi
. (1)

Expansions in non-integer bases were pioneered in the papers of Rényi [10] and
Parry [9].

It is a simple exercise to show that x has a q-expansion if and only if x 2 Iq.
When (1) holds, we will adopt the notation x = ("1, "2, . . .)q. Given x 2 Iq, we
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denote the set of q-expansions for x by ⌃q(x), i.e.,

⌃q(x) =
n
("i)1i=1 2 {0, 1}N :

1X
i=1

"i

qi
= x

o
.

In [5] it is shown that for q 2 (1, 1+
p

5
2 ) the set ⌃q(x) is uncountable for all x 2

(0, 1
q�1 ). The endpoints of Iq trivially have a unique q-expansion for all q 2 (1, 2).

In [14] it is shown that for q = 1+
p

5
2 every x 2 (0, 1

q�1 ) has uncountably many

q-expansions unless x = (1+
p

5)n
2 mod 1, for some n 2 Z, in which case ⌃q(x) is

infinite countable. Moreover, in [3] it is shown that for all q 2 (1+
p

5
2 , 2) there exists

x 2 (0, 1
q�1 ) with a unique q-expansion. In this paper we will be interested in the

set of q 2 (1, 2) for which there exists x 2 Iq with precisely k q-expansions. More
specifically, we will be interested in the set

Bk :=
n
q 2 (1, 2)| there exists x 2

⇣
0,

1
q � 1

⌘
satisfying #⌃q(x) = k

o
.

It was shown in [4] that Bk 6= ? for any k � 2. Similarly we can define B@0 and B2@0 .
The reader should bear in mind the possibility that the number of expansions could
lie strictly between countable infinite and the continuum. By the above remarks it
is clear that B1 = (1+

p
5

2 , 2). In [12] the following theorem was shown to hold.

Theorem 1.1. • The smallest element of B2 is

q2 ⇡ 1.71064,

the appropriate root of x4 = 2x2 + x + 1.

• The next smallest element of B2 is

qf ⇡ 1.75488,

the appropriate root of x3 = 2x2 � x + 1.

• For each k 2 N there exists �k > 0 such that (2��k, 2) ⇢ Bj for all 1  j  k.

The following theorem is the central result of the present paper. It answers a
question posed by V. Komornik [7] (see also [12, Section 5]).

Theorem 1.2. For k � 3 the smallest element of Bk is qf .

The range of q > 1+
p

5
2 which are “su�ciently close” to the golden ratio is referred

to in [12] as the lower order, which explains the title of the present paper.
In the course of our proof of Theorem 1.2 we will also show that qf 2 B@0 .

Combined with our earlier remarks, Theorem 1.1, Theorem 1.2, and a result in
[11] which states that for q 2 [1+

p
5

2 , 2) almost every x 2 Iq has a continuum of
q-expansions, we can conclude the following.
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Theorem 1.3. In base qf all situations occur: there exist x 2 Iq having exactly k
q-expansions for each k = 1, 2, . . ., k = @0 or k = 2@0 . Moreover, qf is the smallest
q 2 (1, 2) satisfying this property.

Before proving Theorem 1.2 it is necessary to recall some theory. In what follows
we fix Tq,0(x) = qx and Tq,1(x) = qx � 1. We will typically denote an element ofS1

n=0{Tq,0, Tq,1}n by a; here {Tq,0, Tq,1}0 denotes the set consisting of the identity
map. Moreover, if a = (a1, . . . , an) we shall use a(x) to denote (an � · · ·�a1)(x) and
|a| to denote the length of a.

We let

⌦q(x) =
n
(ai)1i=1 2 {Tq,0, Tq,1}N : (an � . . . � a1)(x) 2 Iq for all n 2 N

o
.

The significance of ⌦q(x) is made clear by the following lemma.

Lemma 1.4. #⌃q(x) = #⌦q(x) where our bijection identifies ("i)1i=1 with (Tq,"i)1i=1.

The proof of Lemma 1.4 is contained within [2]. It is an immediate consequence
of Lemma 1.4 that we can interpret Theorem 1.2 in terms of ⌦q(x) rather than
⌃q(x).

An element x 2 Iq satisfies Tq,0(x) 2 Iq and Tq,1(x) 2 Iq if and only if x 2
[1q , 1

q(q�1) ]. Moreover, if #⌃q(x) > 1 or equivalently #⌦q(x) > 1, then there exists
a unique minimal sequence of transformations a such that a(x) 2 [1q , 1

q(q�1) ]. In
what follows we let Sq := [1q , 1

q(q�1) ]. The set Sq is usually referred to as the switch
region. We will also make regular use of the fact that if x 2 Iq and a is a sequence
of transformations such that a(x) 2 Iq, then

#⌦q(x) � #⌦q(a(x)) or equivalently #⌃q(x) � #⌃q(a(x)). (2)

This is immediate from the definition of ⌦q(x) and Lemma 1.4.
In the course of our proof of Theorem 1.2 we will frequently switch between

⌃q(x) and the dynamical interpretation of ⌃q(x) provided by Lemma 1.4. Often
considering ⌦q(x) will help our exposition.

The following lemma is a consequence of [6, Theorem 2].

Lemma 1.5. Let q 2 (1+
p

5
2 , qf ], if x 2 Iq has a unique q-expansion ("i)1i=1, then

("i)1i=1 2
n
0k(10)1, 1k(10)1, 01, 11

o
,

where k � 0. Similarly, if ("i)1i=1 2 {0k(10)1, 1k(10)1, 01, 11}, then for q 2
(1+

p
5

2 , 2) x = (("i)1i=1)q has a unique q-expansion given by ("i)1i=1.

In Lemma 1.5 we have adopted the notation ("1 . . . "n)k to denote the concatena-
tion of ("1 . . . "n) 2 {0, 1}n by itself k times and ("1 . . . "n)1 to denote the infinite
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sequence obtained by concatenating "1 . . . "n by itself infinitely many times. We
will use this notation throughout.

The following lemma follows from the branching argument first introduced in
[13].

Lemma 1.6. Let k � 2, x 2 Iq, and suppose #⌃q(x) = k or equivalently #⌦q(x) =
k. If a is the unique minimal sequence of transformations such that a(x) 2 Sq, then

#⌦q(Tq,1(a(x))) + #⌦q(Tq,0(a(x))) = k.

Moreover, 1  #⌦q(Tq,1(a(x))) < k and 1  #⌦q(Tq,0(a(x))) < k.

The following result is an immediate consequence of Lemma 1.4 and Lemma 1.6.

Corollary 1.7. Bk ⇢ B2 for all k � 3.

An outline of our proof of Theorem 1.2 is as follows: first of all we will show
that qf 2 Bk for all k � 1. Then by Theorem 1.1 and Corollary 1.7, to prove
Theorem 1.2, it su�ces to show that q2 /2 Bk for all k � 3. But by an application
of Lemma 1.6, to show that q2 /2 Bk for all k � 3 it su�ces to show that q2 /2 B3

and q2 /2 B4. This will yield the claim of Theorem 1.2.

2. Proof that qf 2 Bk for all k � 1

To show that qf 2 Bk for all k � 1, we construct an x 2 Iqf satisfying #⌃qf (x) = k
explicitly.

Proposition 2.1. For each k � 1 the number xk = (1(0000)k�10(10)1)qf satisfies
#⌃qf (xk) = k. Moreover, x@0 = (101)qf satisfies card⌃qf (x) = @0.

Proof. We proceed by induction. For k = 1 we have x1 = ((10)1)qf , and there-
fore #⌃qf (x1) = 1 by Lemma 1.5. Let us assume xk = (1(0000)k�10(10)1)qf

satisfies #⌃qf (xk) = k. To prove our result, it su�ces to show that xk+1 =
(1(0000)k0(10)1)qf satisfies #⌃qf (xk+1) = k + 1.

We begin by remarking that by Lemma 1.5 ((0000)k0(10)1))qf has a unique
qf -expansion. Therefore there is a unique qf -expansion of xk+1 beginning with 1.
Furthermore, it is a simple exercise to show that qf satisfies the equation x4 =
x3 +x2 +1, which implies that (0(1101)(0000)k�10(10)1) is also a qf -expansion for
xk+1.

To prove the claim, we will show that if ("i)1i=1 is a q-expansion for xk+1 and
"1 = 0, then "2 = 1, "3 = 1 and "4 = 0. Which combined with our inductive
hypothesis implies that the set of q-expansions for xk+1 satisfying "1 = 0 consists
of k distinct elements. Combining these q-expansions with the unique q-expansion
of xk+1 satisfying "1 = 1 we may conclude #⌃qf (xk+1) = k + 1.
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Let us suppose "1 = 0; if "2 = 0, then we would require

xk+1 = (1(0000)k0(10)1)qf  (00(1)1)qf ;

however, xk+1 > 1
qf

and
P1

i=3
1
qi < 1

q for all q > 1+
p

5
2 , and therefore "2 = 1. If

"3 = 0, then we would require

xk+1 = (1(0000)k0(10)1)qf  (010(1)1)qf , (3)

which is equivalent to

xk+1 =
1
qf

+
1

q4k+3
f

1X
i=0

1
q2i
f

 1
q2
f

+
1
q4
f

1X
i=0

1
qi
f

;

however,
1
qf

=
1
q2
f

+
1
q4
f

1X
i=0

1
qi
f

,

whence (3) cannot occur and "3 = 1. Now let us suppose "4 = 1. Then we must
have

xk+1 = (1(0000)k0(10)1)qf � (011101)qf , (4)

which is equivalent to

xk+1 =
1
qf

+
1

q4k+3
f

1X
i=0

1
q2i
f

� 1
q2
f

+
1
q3
f

+
1
q4
f

. (5)

The left-hand side of (5) is maximized when k = 1, and therefore to show that
"4 = 0 it su�ces to show that

1
qf

+
1
q7
f

1X
i=0

1
q2i
f

� 1
q2
f

+
1
q3
f

+
1
q4
f

(6)

does not hold. By a simple manipulation (6) is equivalent to

q6
f � q5

f � 2q4
f + q2

f + qf + 1 � 0, (7)

but by an explicit calculation we can show that the left-hand side of (7) is strictly
negative; therefore (4) does not hold and "4 = 0.

Now we consider x@0 . Replicating our analysis for xk, we can show that if ("i)1i=1

is a q-expansion for x@0 and "1 = 0, then "2 = 1. Unlike our previous case it is
possible for "3 be equal to 0; however, in this case "i = 1 for all i � 4. If "3 = 1,
then as in our previous case we must have "4 = 0. We observe that

x@0 = (101)qf = (010(1)1)qf = (0110101)qf .
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Clearly, there exists a unique q-expansion for x@0 satisfying "1 = 1 and a unique
q-expansion for x@0 satisfying "1 = 0, "2 = 1 and "3 = 0. Therefore all other q-
expansions of x@0 have (0110) as a prefix. Repeating the above argument arbitrarily
many times we can determine that all the qf -expansions of x@0 are of the form:

x@0 = (101)qf

= (010(1)1)qf

= (0110101)qf

= (0110010(1)1)qf

= (01100110101)qf

= (01100110010(1)1)qf

= (011001100110101)qf ,

...

which is clearly infinite countable.

Thus, to prove Theorem 1.2, it su�ces to show that q2 /2 B3[B4. This may look
like a fairly innocuous exercise, but in reality it requires a substantial e↵ort.

3. Proof that q2 /2 B3

By Lemma 1.6, to show that q2 62 Bk for all k � 3, it su�ces to show q2 /2 B3

and q2 /2 B4. To prove this, we begin by characterizing those x 2 Sq2 that satisfy
#⌃q2(x) = 2. To simplify our notation, we denote for the rest of the paper � := q2

and Ti := Tq2,i for i = 0, 1.

Proposition 3.1. The only x 2 S� which satisfy #⌃�(x) = 2 are

x = (01(10)1)� = (10000(10)1)� and x = (0111(10)1)� = (100(10)1)� .

Proof. It was shown in the proof of [12, Proposition 2.4] that if 1+
p

5
2 < q < qf

and y, y + 1 have unique q-expansions, then necessarily q = � and either y =
(0000(10)1)� and y + 1 = (1(10)1)� or y = (00(10)1)� and y + 1 = (111(10)1)�

respectively. Since for either case there exists a unique x 2 S� such that �x�1 = y,
Lemma 1.6 yields the claim.

In what follows we will let ("1
i )1i=1 = 01(10)1, ("2

i )1i=1 = 10000(10)1, ("3
i )1i=1 =

0111(10)1 and ("4
i )1i=1 = 100(10)1.

Remark 3.2. Let ("̄i)1i=1 = (1 � "i)1i=1, we refer to ("̄i)1i=1 as the reflection of
("i)1i=1. Clearly ("̄1

i )1i=1 = ("4
i )1i=1 and ("̄2

i )1i=1 = ("3
i )1i=1. This is to be expected
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as every x 2 Iq satisfies #⌃q(x) = #⌃q( 1
q�1 � x) and mapping ("i)1i=1 to ("̄i)1i=1

is a bijection between ⌃q(x) and ⌃q( 1
q�1 � x). If ("1

i )1i=1 and ("2
i )1i=1 were not the

reflections of ("4
i )1i=1 and ("3

i )1i=1 respectively, then there would exist other x 2 S�

satisfying #⌃�(x) = 2, contradicting Proposition 3.1.

In this section we show that no x 2 I� can satisfy #⌃�(x) = 3. To show that
� /2 B3 and � /2 B4 we will make use of the following proposition.

Proposition 3.3. Suppose x 2 I� satisfies #⌃�(x) = 2 or equivalently #⌦�(x) =
2. Then there exists a unique sequence of transformations a such that a(x) 2 S�.
Moreover, a(x) = (("1

i )1i=1)� or a(x) = (("3
i )1i=1)�.

Proof. Since #⌦�(x) = 2, there must exist a satisfying a(x) 2 S� ; otherwise
#⌦�(x) = 1. We begin by showing uniqueness; suppose a0 satisfies a0(x) 2 S�

and a0 6= a. If |a0| < |a|, then we have two cases. If a0 is a prefix of a, then by (2)
and Lemma 1.6,

#⌦�(x) � #⌦�(a0(x)) = #⌦�(T0(a0(x))) + #⌦�(T1(a0(x))) � 3,

which contradicts #⌦�(x) = 2. If a0 is not a prefix of a, then there exists b 2S1
n=0{T0, T1}n such that b(x) 2 S� and either b0 is a prefix for a0 and b1 is a prefix

for a, or b0 is a prefix for a and b1 is a prefix for a0. In either case it follows from
(2) and Lemma 1.6 that

#⌦�(x) � #⌦�(b(x)) = #⌦�(T0(b(x))) + #⌦�(T1(b(x))) � 4,

a contradiction. By analogous arguments we can show that if |a0| = |a| or |a0| > |a|,
then this implies #⌦�(x) > 2. Therefore, a must be unique.

Now let a be the unique sequence of transformations such that a(x) 2 S� . By
Lemma 1.6,

#⌦�(T0(a(x))) = #⌦�(T1(a(x))) = 1.

However, it follows from Proposition 3.1 that this can only happen when a(x) =
(("1

i )1i=1)� or a(x) = (("3
i )1i=1)� .

Remark 3.4. By Proposition 3.3, to show that x 2 I� satisfies card⌃�(x) > 2 (or
equivalently, card⌦�(x) > 2), it su�ces to construct a sequence of transformations
a such that a(x) 2 S� with a(x) 6= (("1

i )1i=1)� and a(x) 6= (("3
i )1i=1)� . We will make

regular use of this strategy in our later proofs.

Before proving � /2 B3 it is appropriate to state numerical estimates1 for S� ,
(("1

i )1i=1)� and (("3
i )1i=1)� . Our calculations yield

S� = [0.584575 . . . , 0.822599 . . .],
1The explicit calculations performed in this paper were done using MATLAB. In our calcu-

lations we approximated � by 1.710644095045033, which is correct to the first fifteen decimal
places.
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(0k(01)1)� + 1 Iterates of (0k(01)1)� + 1 (To 6 decimal places)
(0(01)1)� + 1 Unique q-expansion by Proposition 3.1
(00(01)1)� + 1 1.177400, 1.014114, 0.734788
(000(01)1)� + 1 Unique q-expansion by Proposition 3.1
(0000(01)1)� + 1 1.060622, 0.8143482
(00000(01)1)� + 1 1.035438, 0.771266
(000000(01)1)� + 1 1.020716, 0.746082

1 1, 0.710644

Table 1: Successive iterates of (0k(01)1)� + 1 falling into S� \ {("1)� , ("3)�}

(("1
i )
1
i=1)� = 0.645198 . . . and (("3

i )
1
i=1)� = 0.761976 . . . .

These estimates will make clear when a(x) 2 S� and whether a(x) = (("1
i )1i=1)� or

a(x) = (("3
i )1i=1)� .

Theorem 3.5. We have � /2 B3.

Proof. Suppose x0 2 I� satisfies #⌃�(x0) = 3 or equivalently #⌦�(x0) = 3. Let a
denote the unique minimal sequence of transformations such that a(x0) 2 S� . By
considering reflections, we may assume without loss of generality that

#⌦�(T1(a(x0))) = 1 and #⌦�(T0(a(x0))) = 2.

Put x = T1(a(x0)); by a simple argument it can be shown that x 6= 0, so we may
assume that x = (0k(01)1)� for some k � 1. To show that � /2 B3 we consider
T0(a(x0)) = x + 1 = (0k(01)1)� + 1. We will show that for each k � 1 there
exists a finite sequence of transformations a such that a(x + 1) 2 S� , a(x + 1) 6=
(("1

i )1i=1)� and a(x + 1) 6= (("3
i )1i=1)� . By Proposition 3.3 and Remark 3.4, this

implies #⌦�(x + 1) > 2, which is a contradiction. Hence � /2 B3.
Table 1 states the orbits of (0k(01)1)� + 1 under T0 and T1 until eventually

(0k(01)1)� +1 is mapped into S� . Table 1 also includes the orbit of 1 under T0 and
T1 until 1 is mapped into S� . The reason we have included the orbit of 1 is because
(0k(01)1)� + 1 ! 1 as k !1. Therefore understanding the orbit of 1 allows us to
understand the orbit of (0k(01)1)� + 1 for large values of k.

By inspection of Table 1, we conclude that for 1  k  6 either (0k(01)1)� + 1
has a unique q-expansion which contradicts #⌦�(T0(a(x0))) = 2, or there exists
a such that a((0k(01)1)� + 1) 2 S� with a((0k(01)1)� + 1) 6= (("1

i )1i=1)� and
a((0k(01)1)�+1) 6= (("3

i )1i=1)� . By Proposition 3.3, this contradicts #⌦�(x+1) = 2.
To conclude our proof, it su�ces to show that for each k � 7 there exists a such

that a((0k(01)1)� + 1) 2 S� , a((0k(01)1)� + 1) 6= (("1
i )1i=1)� and a((0k(01)1)� +

1) 6= (("3
i )1i=1)� . For all k � 7, we have (0k(01)1)� + 1 2 (1, (000000(01)1)� + 1);

however, by inspection of Table 1, it is clear that T1(x) 2 (0.710644 . . . , 0.746082 . . .)
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for all x 2 (1, (000000(01)1)� + 1). Therefore, we can infer that such an a exists
for all k � 7, which concludes our proof.

4. Proof that q2 /2 B4

To prove � /2 B4, we will use a similar method to that used in the previous section,
the primary di↵erence being there are more cases to consider. Before giving our
proof we give details of these cases.

Suppose x0 2 I� satisfies #⌃�(x0) = 4 or equivalently #⌦�(x0) = 4. Let a0

denote the unique minimal sequence of transformations such that a0(x) 2 S� . By
Lemma 1.6,

#⌦�(T0(a0(x0))) + #⌦�(T1(a0(x0))) = 4.

By Theorem 3.5, #⌦�(T0(a0(x0))) 6= 3 and #⌦�(T1(a0(x0))) 6= 3, whence

#⌦�(T0(a0(x0))) = #⌦�(T1(a0(x0))) = 2. (8)

Letting x = T1(a0(x0)), we observe that (8) is equivalent to

#⌦�(x) = #⌦�(x + 1) = 2. (9)

By Proposition 3.3, there exists a unique sequence of transformations a such
that a(x) 2 S� and a(x) = (("1

i )1i=1)� or a(x) = (("3
i )1i=1)� . We now determine the

possible unique sequences of transformations a that satisfy a(x) 2 S� .
To determine the unique a such that a(x) 2 S� , it is useful to consider the

interval [ 1
�2�1 , �

�2�1 ]. The significance of this interval is that T0( 1
�2�1 ) = �

�2�1

and T1( �
�2�1 ) = 1

�2�1 . The monotonicity of the maps T0 and T1 implies that if
x 2 (0, 1

��1 ) and x /2 [ 1
�2�1 , �

�2�1 ], then there exists i 2 {0, 1} and a minimal
k � 1 such that T k

i (x) 2 [ 1
�2�1 , �

�2�1 ]. Furthermore, S� ⇢ [ 1
�2�1 , �

�2�1 ], in view of

� > 1+
p

5
2 .

In particular, if x 2 (0, 1
�2�1 ), then there exists a minimal k � 1 such that

T k
0 (x) 2 ( 1

�2�1 , �
�2�1 ); T k

0 (x) cannot equal 1
�2�1 or �

�2�1 as this would imply
#⌦�(x) = 1. There are three cases to consider: either T k

0 (x) 2 S� , in which
case T k

0 (x) = (("1
i )1i=1)� or T k

0 (x) = (("3
i )1i=1)� by Proposition 3.3, or alternatively

T k
0 (x) 2 ( 1

�2�1 , 1
� ) or T k

0 (x) 2 ( 1
�(��1) ,

�
�2�1 ). It is a simple exercise to show that

if T k
0 (x) = (("3

i )1i=1)� or T k
0 (x) 2 ( 1

�(��1) ,
�

�2�1 ), then k � 2. By Lemma 1.4 and
Proposition 3.3, if T k

0 (x) 2 S� , then

x = (0k("1
i )
1
i=1)� for some k � 1 or x = (0k("3

i )
1
i=1)� for some k � 2.

For any q 2 (1+
p

5
2 , qf ) and y 2 ( 1

q2�1 , 1
q ) there exists a unique minimal sequence

a00 such that a00(y) 2 Sq. Moreover, a00(y) = (Tq,1 � Tq,0)j(y) for some j � 1
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and (Tq,1 � Tq,0)i(y) 2 ( 1
q2�1 , 1

q ) for all i < k. For all y 2 ( 1
q2�1 , 1

q ) we have that
(Tq,1 � Tq,0)(y) = q2y � 1 < q � 1. Furthermore, it can be checked directly that
� � 1 < (("3

i )1i=1)� . Hence if T k
0 (x) 2 ( 1

�2�1 , 1
� ), then

x = (0k(01)j("1
i )
1
i=1)� ,

for some k � 1 and j � 1. By a similar argument it can be shown that if T k
0 (x) 2

( 1
�(��1) ,

�
�2�1 ), then

x = (0k(10)j("3
i )
1
i=1)� ,

for some k � 2 and j � 1. The above arguments are summarized in the following
proposition.

Proposition 4.1. Let x be as in (9); then one of the following four cases holds:

x = (0k("1
i )
1
i=1)� for some k � 1, (10)

x = (0k("3
i )
1
i=1)� for some k � 2, (11)

x = (0k(01)j("1
i )
1
i=1)� for some k � 1 and j � 1 (12)

or
x = (0k(10)j("3

i )
1
i=1)� for some k � 2 and j � 1. (13)

To prove that � /2 B4 we will show that for each of the four cases described in
Proposition 4.1 there exists a such that

a(x + 1) 2 S� \ {(("1
i )
1
i=1)� , (("3

i )
1
i=1)�}, (14)

which contradicts #⌦�(x + 1) = 2 by Proposition 3.3 and Remark 3.4.
For the majority of our cases an argument analogous to that used in Section 3

will su�ce. However, in the case where k = 1, 3 in (12) and k = 2, 4 in (13) a
di↵erent argument is required. We refer to these cases as the exceptional cases. For
the exceptional cases we will also show (14); however, the approach used in slightly
more technical and as such we will treat these cases separately.

Proposition 4.2. For each of the cases described by Proposition 4.1 there exists a
such that (14) holds.

Proof of Proposition 4.2 for the non-exceptional cases. In the cases where we have
x = (0k("1

i )1i=1)� for some k � 1 or x = (0k("3
i )1i=1)� for some k � 1 it is clear

that x ! 0 as k ! 1. Therefore, to understand the orbit of (0k("1
i )1i=1)� +

1 or (0k("3
i )1i=1)� + 1 for large values of k, it su�ces to consider the orbit of 1.

Similarly, in the cases described by (12) and (13), if we fix k � 1, then, as j !
1, both (0k(01)j("1

i )1i=1)� and (0k(10)j("3
i )1i=1)� converge to (0l(10)1) for some

l � 1. Consequently, in order to understand the orbits of (0k(01)j("1
i )1i=1)� + 1
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(0k("1
i )1i=1)� + 1 Iterates of (0k("1

i )1i=1)� + 1 (to 6 decimal places)
(0("1

i )1i=1)� + 1 1.377166, 1.355842, 1.319363, 1.256961,
1.150213, 0.967605, 0.655228

(00("1
i )1i=1)� + 1 1.220482, 1.087810, 0.860857, 0.472620, 0.808484

(000("1
i )1i=1)� + 1 1.128888, 0.931126, 0.592825

(0000("1
i )1i=1)� + 1 1.075344, 0.839532, 0.436141, 0.746082

(00000("1
i )1i=1)� + 1 1.044044, 0.785989

(000000("1
i )1i=1)� + 1 1.025747, 0.754688
1 1, 0.710644

Table 2: Successive iterates of (0k("1
i )1i=1)� + 1

and (0k(10)j("3
i )1i=1)� + 1 for large values of j, it su�ces to consider the orbit of

(0l(10)1)� + 1, for some l � 1. By considering these limits it will be clear when a
sequence of transformations a exists that satisfies (14) for large values of k and j.

We begin by considering the case x = (0k("1
i )1i=1)� . Table 2 plots successive

(unique) iterates of (0k("1
i )1i=1)� + 1 until (0k("1

i )1i=1)� + 1 is mapped into S� for
1  k  6. It is clear from inspection of Table 2 that for 1  k  6 there exists a
such that a(x + 1) 2 S� , a(x + 1) 6= (("1

i )1i=1)� and a(x + 1) 6= (("3
i )1i=1)� . The case

k � 7 follows from the fact that (0k("1
i )1i=1)� + 1 2 (1, (000000("1

i )1i=1)� + 1) for all
k � 7 and T1(y) 2 (0.710644 . . . , 0.754688 . . .) for all y 2 (1, (000000("1

i )1i=1)� + 1).
The case described by (11) follows by an analogous argument, so we omit the details
and just include the relevant orbits in Table 3.

For the non-exceptional cases described by (12) and (13) an analogous argument
works for the first few values of k by considering the limit of x + 1 as j ! 1,
so, as above, we just include the relevant orbits in Table 3. It is clear by in-
spection of Table 3 that (0k(01)j("1

i )1i=1)� + 1 2 (1, (00000001("1
i )1i=1)� + 1) for

all k � 7 and j � 1. However, T1(y) 2 (0.710644 . . . , 0.749023 . . .) for all y 2
(1, (00000001("1

i )1i=1)� + 1); by inspection of Table 3, we can conclude the case de-
scribed by (12) in the non-exceptional cases. Similarly, it is clear from inspection of
Table 3 that (0k(10)j("3

i )1i=1)�+1 2 (1, (0000000(10)1)�+1) for all k � 8 and j � 1.
However, T1(y) 2 (0.710644 . . . , 0.7460826 . . .) for all y 2 (1, (0000000(10)1)� + 1),
therefore by inspection of Table 3 we can conclude the case described by (13) in the
non-exceptional cases.

Proof of Proposition 4.2 for the exceptional cases. The reason we cannot use the
same method as used for the non-exceptional cases is because as j ! 1 the
limits of (0(01)j("1

i )1i=1)� + 1, (000(01)j("1
i )1i=1)� + 1, (00(10)j("3

i )1i=1)� + 1 and
(0000(10)j("3

i )1i=1)� + 1 all have unique �-expansions, which follows from Propo-
sition 3.1. As a consequence of the uniqueness of the �-expansion of the relevant
limit, the number of transformations required to map x + 1 into S� becomes arbi-
trarily large as j !1. However, the following proposition shows that we can still
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(0k("3
i )1i=1)� + 1 Iterates of (0k("3

i )1i=1)� + 1 (to 6 decimal places)
(00("3

i )1i=1)� + 1 1.260388, 1.156076, 0.977635, 0.672385
(000("3

i )1i=1)� + 1 1.152216, 0.971032, 0.661091
(0000("3

i )1i=1)� + 1 1.088982, 0.862860, 0.476047, 0.814348
(00000("3

i )1i=1)� + 1 1.052016, 0.799626
(000000("3

i )1i=1)� + 1 1.030407, 0.762660
(0000000("3

i )1i=1)� + 1 1.017775, 0.741051
1 1, 0.710644

(00(01)j("1
i )1i=1)� + 1 Iterates of (00(01)j("1

i )1i=1)� + 1
(0001("1

i )1i=1)� + 1 1.192123, 1.039298, 0.777869
(000101("1

i )1i=1)� + 1 1.182431, 1.022720, 0.749510
(00(01)1)� + 1 1.177400, 1.014114, 0.734788

(0000(01)j("1
i )1i=1)� + 1 Iterates of (0000(01)j("1

i )1i=1)� + 1
(000001("1

i )1i=1)� + 1 1.065653, 0.822954, 0.407782, 0.697570
(00000101("1

i )1i=1)� + 1 1.062342, 0.817289
(0000(01)1)� + 1 1.060622, 0.814348

(00000(01)j("1
i )1i=1)� + 1 Iterates of (00000(01)j("1

i )1i=1)� + 1
(0000001("1

i )1i=1)� + 1 1.038379, 0.776297
(00000(01)1)� + 1 1.035438, 0.771266

(000000(01)j("1
i )1i=1)� + 1 Iterates of (000000(01)j("1

i )1i=1)� + 1
(00000001("1

i )1i=1)� + 1 1.022435, 0.749023
(000000(01)1)� + 1 1.020716, 0.746082

(000(10)j("3
i )1i=1)� + 1 Iterates of (000(10)j("3

i )1i=1)� + 1
(00010("3

i )1i=1)� + 1 1.168794, 0.999391, 0.709603
(000(10)1)� + 1 1.177400, 1.014114, 0.734788

(00000(10)j("3
i )1i=1)� + 1 Iterates of (00000(10)j("3

i )1i=1)� + 1
(0000010("3

i )1i=1)� + 1 1.057681, 0.809317
(00000(10)1)� + 1 1.060622, 0.814348

(000000(10)j("3
i )1i=1)� + 1 Iterates of (000000(10)j("3

i )1i=1)� + 1
(00000010("3

i )1i=1)� + 1 1.033719, 0.768326
(000000(10)1)� + 1 1.035438, 0.771266

(0000000(10)j("3
i )1i=1)� + 1 Iterates of (0000000(10)j("3

i )1i=1)� + 1
(000000010("3

i )1i=1)� + 1 1.019711, 0.744363
(0000000(10)1)� + 1 1.020716, 0.746082

Table 3: Successive iterates of (0k("3
i )1i=1)� + 1
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construct an a satisfying (14) for all but three of the exceptional cases.

Proposition 4.3. The following identities hold:

((T1 � T0)j�2 � (T1)4)((0(01)j("1
i )
1
i=1)� + 1) =

� � 1
�3(�2 � 1)

+
1

�2 � 1
⇡ 0.59282 for j � 3,

(15)

((T1 � T0)j � (T1)2)((000(01)j("1
i )
1
i=1)� + 1) =

� � 1
�3(�2 � 1)

+
1

�2 � 1
⇡ 0.59282 for j � 1,

(16)

((T0 � T1)j�1 � (T1)3)((00(10)j("3
i )
1
i=1)� + 1) =

�

�2 � 1
+

1� �

�3(�2 � 1)
⇡ 0.81434 for j � 2

(17)

and

((T0 � T1)j+1 � (T1))((0000(10)j("3
i )
1
i=1)� + 1) =

�

�2 � 1
+

1� �

�3(�2 � 1)
⇡ 0.81434 for j � 1.

(18)

Proof. Each of the identities (15), (16), (17) and (18) is proved by similar arguments,
so we will just show that (15) holds. Note that

(0(01)j("1
i )
1
i=1)� + 1 =

�2j+2 + � � 1
�2j+3(�2 � 1)

+ 1,

for all j � 1. We observe the following:

((T1 � T0)j�2 � (T1)4)
⇣�2j+2 + � � 1

�2j+3(�2 � 1)
+ 1

⌘

=(T1 � T0)j�2
⇣�2j+2 + � � 1

�2j�1(�2 � 1)
+ �4 � �3 � �2 � � � 1

⌘

=�2j�4
⇣�2j+2 + � � 1

�2j�1(�2 � 1)
+ �4 � �3 � �2 � � � 1

⌘
�

j�3X
i=0

�2i

=
�2j+2 + � � 1

�3(�2 � 1)
+ �2j � �2j�1 � �2j�2 � �2j�3 � �2j�4 � �2j�4 � 1

�2 � 1

=
�2j+2

�3(�2 � 1)
+�2j��2j�1��2j�2��2j�3��2j�4� �2j�4

�2 � 1
+

� � 1
�3(�2 � 1)

+
1

�2 � 1
.

Therefore, to conclude our proof, it su�ces to show that

�2j+2

�3(�2 � 1)
+ �2j � �2j�1 � �2j�2 � �2j�3 � �2j�4 � �2j�4

�2 � 1
= 0. (19)
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Exceptional cases Iterates (to 6 decimal places)
(001("1

i )1i=1)� + 1 1.328654, 1.272854, 1.177400, 1.014114, 0.734788
(00101("1

i )1i=1)� + 1 1.312076, 1.244495, 1.128888, 0.931126, 0.592825
(0010("3

i )1i=1)� + 1 1.288747, 1.204588, 1.060622, 0.814348

Table 4: Remaining exceptional cases: k = 1, j 2 {1, 2} in (12) and k = 2, j = 1 in
(13)

By manipulating the left-hand side of (19), we conclude that satisfying (19) is
equivalent to

�2j�1 � �2j�4 + (�2j � �2j�1 � �2j�2 � �2j�3 � �2j�4)(�2 � 1)
�2 � 1

= 0

or
�2j�3(� � 1)(�4 � 2�2 � � � 1)

�2 � 1
= 0.

This is true in view of �4 � 2�2 � � � 1 = 0.

Proposition 4.3 and Table 4 (which displays the orbits of the exceptional cases
that are not covered by Proposition 4.3) conclude our proof of Proposition 4.2 for
all the exceptional cases. Therefore, � /2 B4, and Theorem 1.2 holds.

5. Open Questions

To conclude the paper, we pose a few open questions:

• What is the topology of Bk for k � 2? In particular, what is the smallest limit
point of Bk? Is it below or above the Komornik-Loreti constant introduced in
[8]?

• What is the smallest q such that x = 1 has k q-expansions? (For k = 1 this is
precisely the Komornik-Loreti constant.)

• What is the structure of B@0\
�

1+
p

5
2 , qf

�
? In view of the results of the present

paper, knowing this would lead to a complete understanding of card⌃q(x) for
all q  qf and all x 2 Iq.

• Let, as above,

B1 =
1\

k=1

Bk \ B@0 \ B2@0 .
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By Theorem 1.3, qf is the smallest element of B1. What is the second smallest
element of B1? What is the topology of B1?

• In [1] the authors study the order in which periodic orbits appear in the set
of points with unique q-expansion; they show that as q " 2, the order in which
periodic orbits appear in the set of uniqueness is intimately related to the
classical Sharkovskĭı ordering. Does a similar result hold in our case? That
is, if k > k0 with respect to the usual Sharkovskĭı ordering, does this imply
Bk ⇢ Bk0?

Acknowledgment. The authors are grateful to Vilmos Komornik for useful sug-
gestions.

References

[1] J,-P. Allouche, M. Clarke and N. Sidorov, Periodic unique beta-expansions: the Sharkovskĭı
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