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Abstract
We show that the Mann-Shanks primality criterion holds for weighted extended
binomial coefficients (which count the number of weighted integer compositions),
not only for the ordinary binomial coefficients.

1. Introduction

In 1972, Mann and Shanks [4] gave the following criterion for primality of an integer:

m

n72m) for all integers

An integer n > 1 is prime if and only if m divides (
m with 0 < 2m < n.

Equivalently, this can be expressed as follows. Consider the left-justified form of the
Pascal triangle T5 and displace the entries in each row two places to the right from
the previous row (so that the m + 1 entries in row m occupy columns 2m to 3m,
inclusive); also, underline the entries in row m which are divisible by m. Then, the
column number n is prime if and only if all the entries in column n are underlined.
Table 1 illustrates.

Bollinger [1] showed that the same criterion holds in the extended Pascal triangles
T3, where entries in row m are sums of the overlying 3 entries, and conjectured that
it holds for Ty, T, etc., but could not give a proof. We show that, indeed, the
Mann-Shanks primality criterion holds in all extended Pascal triangles, and even in
weighted ones, as we define below.
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m\n|0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 |1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 15 10 10 5 1

6 1 6 15 20 15 6
7 T 7 21 35
8 1 8

Table 1: The displaced Pascal triangle T5.

2. The Mann-Shanks criterion for extended binomial coefficients

The extended (and weighted) binomial coefficients [2, 3] (Z)( (s))uens Where N =
{0,1,2,...}, are defined as follows,

(:> (f(8))sen = (Zf(s)xs)k7 (1)

seN

where f: N — N is a weighting function and [2"]|p(z) denotes the coefficient of 2™
in the polynomial or power series p(x). Ordinary binomial coefficients (entries in
T5) are retrieved by setting f(0) = f(1) = 1 and f(s) = 0 for all s > 1; moreover,
trinomial coeflicients (entries in T3) are retrieved by setting f(0) = f(1) = f(2) =1
and f(s) =0 for all s > 2, etc. We now state our main theorem.

Theorem 1. Consider the coefficients (k)(f(s)).eN defined in (1). Let f(0) = f(1) =

1. Then, an integer n > 1 is prime if and only if m divides (n_m for all
N

2m)(f(S))se
integers m with 0 < 2m < n.

We prove Theorem 1 with the help of four lemmas. First, we show that the co-

: k
efﬁment.s (n)(f(s))seN C : '
of f-weighted integer compositions of the integer n with k parts where part values
s € N may occur in f(s) different colors, i.e., (Z)(

have the combinatorial interpretation of denoting the number

F(5))aen gives the number of solu-

tions (71, ...,7) € N¥ of where each part size 7; may be colored in f(m;) different
colors. For instance, for f(0) = f(2) =1, f(1) = 2 and f(s) = 0 for all s > 2, we
have (g)(f(s))seN =4 and, indeed, 3 =1+2=241=1*4+2 =24 1*, where we
use a star superscript (%) to differentiate between the two colors of 1. Also note
that integer compositions are distinguished from the more well-studied objects of
integer partitions in that, for compositions, order of parts matters. In other words,
for our above example, there are four f-weighted integer compositions of 3 with 2
parts, but only two f-weighted integer partitions, namely, 3=2+1 =2+ 1*.
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Lemma 1 (Eger [2]). The coefficients (fl)(f(s)) _, have the combinatorial inter-
pretation of denoting the number of f-weighted integer compositions of n with k

parts, and allow the representation

<f”><f<s>>seN: 2 ((ks)]ze[n]) H]f(s)ks’ (2)

Ese[n] ks=k, s€n

Zse[n] sks=n
where (, f) = ﬁ denote the ordinary multinomial coefficients, [n] = {0,1,...,n},
and the sum on the right-hand side of (2) is over all nonnegative integers ko, . .., kn

subject to the indicated constraints.

Proof. Collecting terms, we find that [z"]p(z), for p(z) = (3, cy f(s)x®)F, is given
as

S fm) - fm), (3)

T4 tTe=n

where the sum is over all different solutions in nonnegative integers my,...,m; of
m + -+ + 7 = n. This proves the combinatorial interpretation of ("Ij)(f(s))seN. To
prove representation (2), note that the right-hand side of (2) sums over all integer
partitions of n with k parts — ks gives the multiplicity of part size s € [n] — and
the multinomial coefficients distribute the part size ‘types’ 0,...,n, occurring with
multiplicities ko, ..., ky,, among the total of k& parts (making compositions out of
partitions), while [, f(s)*: is, in this context, simply f(m1)--- f(m) written in
‘partition form’. Hence, the right-hand side of (2) and (3), which is (ﬁ)

(f(8))sen’
represent the same count. ]

Next, we show that weighted extended binomial coefficients share an important
property with binomial coefficients, their particulars, namely, that if £ and n are
(F())oen = 0 (mod k). We prove this via an easily verified
result about multinomial coefficients, which Bollinger [1] attributes to Ricci [5] and
which we will also make use of in the proof of Lemma 4 below.

relatively prime, then (Z)

Lemma 2 (Ricci [5]). Let k1,..., ke be nonnegative integers, not all zero, with
ki+---+ke=k. Then

k k
=0 mod—,
(kﬁl,...,k‘g> ( ng(kl,...,kg))

where ged(ky, ..., k¢) denotes the greatest common divisor of k1, ..., ke.

Lemma 3. Let k,n > 0, not both zero, with ged(k,n) = 1. Then k divides
k
(n)(f(S))seN'
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Proof. Consider an arbitrary term (ko ") TI f(s)* in the sum representation
T seln)

(2) of (ﬁ)(f(s)) e Assume that d = ged(ko, ..., k,) > 1. Then, d divides both k —
sincek=kg+---+k, —andn—sincen=0-ky+---+n-k, — a contradiction.
Hence d = 1, and, by Lemma 2, (ko k kn) =0 (mod k). Hence, since k divides each

.....

term, it divides the sum, and, consequently, also (Z) (F()) e’ O

Lemma 4. Let p be a prime number and let r > 1 be an integer. Then,

pr — pr
= f(0) ”f(l)”( ) (mod pr),
(p>(f(8))seN p oy

whereby (I;T) denotes the ordinary binomial coefficient.

Proof. By representation (2), (];T)(f( Jeen C31 be written as
5))seN
pr pr
(p) -2 (ko k) 1] 7" @
(f(s))sen ko+---+kp=pr, ’ »P s€|p]
0-ko++++p-kp=p
For a term in the sum, either d = ged(ko,...,kp) = 1 or d = p, since otherwise, if

1 <d < p,then,d-(0-ko/d+---p-k,/d) = p, whence p is composite, a contradiction.
Those terms on the right-hand side of (4) for which d = 1 contribute nothing to
the sum modulo pr, by Lemma 2, so they can be ignored. But, from the equation
O0-ko+1-k +---p-k, = p, the case d = p precisely happens when ki = p,
ko =--- =k, =0 and when ky = p(r — 1) (from the equation ko + --- + k, = pr),

W = 0PV F(1)P(*7) (mod pr). O

whence, as required, (p)(f( ))
S))seN

Now, we are ready to prove our main theorem.

Proof of Theorem 1. Let n > 1 be prime. Let m be an integer such that 0 < 2m <

n. Then, gcd(m,n — 2m) = 1. Hence, by Lemma 3, m divides (n_";m)(f( Docn’
S))se

Conversely, let n > 1 not be prime. If n is even, choose m = n/2. Then
m _ n/2 _ n/2 _ .. .
(n_Qm)(f(S))seN = (" )(f(s))sEN = £(0)"/2 = 1. Clearly, m does not divide 1 since
m > 1. If n is odd and composite, let p be a prime divisor of n and choose

m = (n — p)/2. Then m = pr for a positive integer r (note that p divides m =
_ — m _ (pr

(pq — p)/2, whereby n = pq) and (,, "™ ) (F())ocn (P)(f(s))sew' By Lemma 4 and

our assumption on f, (W = (I”) (mod pr). Finally, it is easy to show that

p)(f(S))seN S\p
(see Mann and Shanks [4]), for all » > 1,

(7; ) 40 (mod pr),

which completes the proof. O



INTEGERS: 14 (2014) )

Remark 1. Of interest remain the cases when (f(0), f(1)) # (1,1). By the proof

of Theorem 1, it is clear that primality of n implies that m divides (n_”;m) (F(®))
5))seN

even in this case, because this merely relies on the fact that m and n — 2m are

relatively prime, and not also on f. However, the converse need no longer be true.
For example, for f(0) =a, f(1) =b and f(s) =0 for all s > 1, it is easy to see that

(g)(f(s))seN = alk_”b" (fl) Thus, fora=2,b=1, and n =4, for instance, we have
D sen.en = @ (p)en
for all 0 < 2m < n.

) ., m
=0 and (0)(f(5))seN =4, whence m divides (4*27’”)(]0(8))561\!
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