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Abstract
We show that the Mann-Shanks primality criterion holds for weighted extended
binomial coe�cients (which count the number of weighted integer compositions),
not only for the ordinary binomial coe�cients.

1. Introduction

In 1972, Mann and Shanks [4] gave the following criterion for primality of an integer:

An integer n > 1 is prime if and only if m divides
� m
n�2m

�
for all integers

m with 0  2m  n.

Equivalently, this can be expressed as follows. Consider the left-justified form of the
Pascal triangle T2 and displace the entries in each row two places to the right from
the previous row (so that the m + 1 entries in row m occupy columns 2m to 3m,
inclusive); also, underline the entries in row m which are divisible by m. Then, the
column number n is prime if and only if all the entries in column n are underlined.
Table 1 illustrates.

Bollinger [1] showed that the same criterion holds in the extended Pascal triangles
T3, where entries in row m are sums of the overlying 3 entries, and conjectured that
it holds for T4, T5, etc., but could not give a proof. We show that, indeed, the
Mann-Shanks primality criterion holds in all extended Pascal triangles, and even in
weighted ones, as we define below.
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m\n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6
7 1 7 21 35
8 1 8

Table 1: The displaced Pascal triangle T2.

2. The Mann-Shanks criterion for extended binomial coe�cients

The extended (and weighted) binomial coe�cients [2, 3]
�k
n

�
(f(s))s2N

, where N =
{0, 1, 2, . . .}, are defined as follows,

✓
k

n

◆
(f(s))s2N

= [xn]
⇣X

s2N
f(s)xs

⌘k
, (1)

where f : N ! N is a weighting function and [xn]p(x) denotes the coe�cient of xn

in the polynomial or power series p(x). Ordinary binomial coe�cients (entries in
T2) are retrieved by setting f(0) = f(1) = 1 and f(s) = 0 for all s > 1; moreover,
trinomial coe�cients (entries in T3) are retrieved by setting f(0) = f(1) = f(2) = 1
and f(s) = 0 for all s > 2, etc. We now state our main theorem.

Theorem 1. Consider the coe�cients
�k
n

�
(f(s))s2N

defined in (1). Let f(0) = f(1) =
1. Then, an integer n > 1 is prime if and only if m divides

� m
n�2m

�
(f(s))s2N

for all
integers m with 0  2m  n.

We prove Theorem 1 with the help of four lemmas. First, we show that the co-
e�cients

�k
n

�
(f(s))s2N

have the combinatorial interpretation of denoting the number
of f-weighted integer compositions of the integer n with k parts where part values
s 2 N may occur in f(s) di↵erent colors, i.e.,

�k
n

�
(f(s))s2N

gives the number of solu-
tions (⇡1, . . . ,⇡k) 2 Nk of where each part size ⇡i may be colored in f(⇡i) di↵erent
colors. For instance, for f(0) = f(2) = 1, f(1) = 2 and f(s) = 0 for all s > 2, we
have

�2
3

�
(f(s))s2N

= 4 and, indeed, 3 = 1 + 2 = 2 + 1 = 1⇤ + 2 = 2 + 1⇤, where we
use a star superscript (⇤) to di↵erentiate between the two colors of 1. Also note
that integer compositions are distinguished from the more well-studied objects of
integer partitions in that, for compositions, order of parts matters. In other words,
for our above example, there are four f -weighted integer compositions of 3 with 2
parts, but only two f -weighted integer partitions, namely, 3 = 2 + 1 = 2 + 1⇤.
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Lemma 1 (Eger [2]). The coe�cients
�k
n

�
(f(s))s2N

have the combinatorial inter-
pretation of denoting the number of f-weighted integer compositions of n with k
parts, and allow the representation

✓
k

n

◆
(f(s))s2N

=
X

P
s2[n] ks=k,P
s2[n] sks=n

✓
k

(ks)s2[n]

◆ Y
s2[n]

f(s)ks , (2)

where
� k
a,b,...

�
= k!

a!b!··· denote the ordinary multinomial coe�cients, [n] = {0, 1, . . . , n},
and the sum on the right-hand side of (2) is over all nonnegative integers k0, . . . , kn

subject to the indicated constraints.

Proof. Collecting terms, we find that [xn]p(x), for p(x) = (
P

s2N f(s)xs)k, is given
as

X
⇡1+···+⇡k=n

f(⇡1) · · · f(⇡k), (3)

where the sum is over all di↵erent solutions in nonnegative integers ⇡1, . . . ,⇡k of
⇡1 + · · · + ⇡k = n. This proves the combinatorial interpretation of

�k
n

�
(f(s))s2N

. To
prove representation (2), note that the right-hand side of (2) sums over all integer
partitions of n with k parts — ks gives the multiplicity of part size s 2 [n] — and
the multinomial coe�cients distribute the part size ‘types’ 0, . . . , n, occurring with
multiplicities k0, . . . , kn, among the total of k parts (making compositions out of
partitions), while

Q
s f(s)ks is, in this context, simply f(⇡1) · · · f(⇡k) written in

‘partition form’. Hence, the right-hand side of (2) and (3), which is
�k
n

�
(f(s))s2N

,
represent the same count.

Next, we show that weighted extended binomial coe�cients share an important
property with binomial coe�cients, their particulars, namely, that if k and n are
relatively prime, then

�k
n

�
(f(s))s2N

⌘ 0 (mod k). We prove this via an easily verified
result about multinomial coe�cients, which Bollinger [1] attributes to Ricci [5] and
which we will also make use of in the proof of Lemma 4 below.

Lemma 2 (Ricci [5]). Let k1, . . . , k` be nonnegative integers, not all zero, with
k1 + · · · + k` = k. Then

✓
k

k1, . . . , k`

◆
⌘ 0 (mod

k

gcd (k1, . . . , k`)
),

where gcd(k1, . . . , k`) denotes the greatest common divisor of k1, . . . , k`.

Lemma 3. Let k, n � 0, not both zero, with gcd(k, n) = 1. Then k divides�k
n

�
(f(s))s2N

.
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Proof. Consider an arbitrary term
� k
k0,...,kn

� Q
s2[n]

f(s)ks in the sum representation

(2) of
�k
n

�
(f(s))s2N

. Assume that d = gcd(k0, . . . , kn) > 1. Then, d divides both k —
since k = k0 + · · ·+ kn — and n — since n = 0 · k0 + · · ·+ n · kn — a contradiction.
Hence d = 1, and, by Lemma 2,

� k
k0,...,kn

�
⌘ 0 (mod k). Hence, since k divides each

term, it divides the sum, and, consequently, also
�k
n

�
(f(s))s2N

.

Lemma 4. Let p be a prime number and let r � 1 be an integer. Then,✓
pr

p

◆
(f(s))s2N

⌘ f(0)p(r�1)f(1)p

✓
pr

p

◆
(mod pr),

whereby
�pr

p

�
denotes the ordinary binomial coe�cient.

Proof. By representation (2),
�pr

p

�
(f(s))s2N

can be written as

✓
pr

p

◆
(f(s))s2N

=
X

k0+···+kp=pr,
0·k0+···+p·kp=p

✓
pr

k0, . . . , kp

◆ Y
s2[p]

f(s)ks . (4)

For a term in the sum, either d = gcd(k0, . . . , kp) = 1 or d = p, since otherwise, if
1 < d < p, then, d·(0·k0/d+· · · p·kp/d) = p, whence p is composite, a contradiction.
Those terms on the right-hand side of (4) for which d = 1 contribute nothing to
the sum modulo pr, by Lemma 2, so they can be ignored. But, from the equation
0 · k0 + 1 · k1 + · · · p · kp = p, the case d = p precisely happens when k1 = p,
k2 = · · · = kp = 0 and when k0 = p(r � 1) (from the equation k0 + · · · + kp = pr),
whence, as required,

�pr
p

�
(f(s))s2N

⌘ f(0)p(r�1)f(1)p
�pr

p

�
(mod pr).

Now, we are ready to prove our main theorem.

Proof of Theorem 1. Let n > 1 be prime. Let m be an integer such that 0  2m 
n. Then, gcd(m,n� 2m) = 1. Hence, by Lemma 3, m divides

� m
n�2m

�
(f(s))s2N

.
Conversely, let n > 1 not be prime. If n is even, choose m = n/2. Then� m

n�2m

�
(f(s))s2N

=
�n/2

0

�
(f(s))s2N

= f(0)n/2 = 1. Clearly, m does not divide 1 since
m > 1. If n is odd and composite, let p be a prime divisor of n and choose
m = (n � p)/2. Then m = pr for a positive integer r (note that p divides m =
(pq � p)/2, whereby n = pq) and

� m
n�2m

�
(f(s))s2N

=
�pr

p

�
(f(s))s2N

. By Lemma 4 and

our assumption on f ,
�pr

p

�
(f(s))s2N

⌘
�pr

p

�
(mod pr). Finally, it is easy to show that

(see Mann and Shanks [4]), for all r � 1,
✓

pr

p

◆
6⌘ 0 (mod pr),

which completes the proof.
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Remark 1. Of interest remain the cases when
�
f(0), f(1)

�
6= (1, 1). By the proof

of Theorem 1, it is clear that primality of n implies that m divides
� m
n�2m

�
(f(s))s2N

even in this case, because this merely relies on the fact that m and n � 2m are
relatively prime, and not also on f . However, the converse need no longer be true.
For example, for f(0) = a, f(1) = b and f(s) = 0 for all s > 1, it is easy to see that�k
n

�
(f(s))s2N

= ak�nbn
�k
n

�
. Thus, for a = 2, b = 1, and n = 4, for instance, we have�0

4

�
(f(s))s2N

=
�1
2

�
(f(s))s2N

= 0 and
�2
0

�
(f(s))s2N

= 4, whence m divides
� m
4�2m

�
(f(s))s2N

for all 0  2m  n.
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