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Abstract
We prove that the generalized binomial coefficients associated with the Jordan to-
tient functions are all integers. In the process, we also demonstrate the integrality
of generalized binomials coming from other number-theoretic sequences including
the Dedekind psi function. We finish by initiating the search for combinatorial
interpretations of these coefficients.

1. Introduction

The binomial coefficients are sometimes defined as the ratio of factorials

() =

instead of as the number of n-subsets of an m-set. A problem with this is that a
novice may not believe these numbers are integral; however, the formula intrigues
upon the realization that the ratio, though undefined for n > m, is in fact an
integer when n < m. Using this definition of binomial coefficients, it makes sense to
construct “generalized binomial coefficients” for any sequence of nonzero integers in
the following way (see [7]). If C' = (¢1,¢a,c¢3,...) is a sequence of nonzero integers
then we define the C-factorial by

CmCm—1---c1  when m #0
(m')c =
1 when m = 0.

Next, we use the C-factorial to define the generalized binomial coefficients associated
with C, called the C-nomial coefficients:

(m) B % when 0 < n <m
e 0 otherwise.
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Using the sequence of nonzero natural numbers leads to the traditional binomial
coefficients. As a warm-up exercise, we define, for each & > 1, the sequence of
k-th powers N* = (1% 2% 3% 4k . ). The following computation shows that the
associated generalized binomial coeflicients are integers:

(ZD NF T nk e (n—1)F mklk(w(ln: i)Z)kQ(]:n 1_kn L T <1::>k (1)

The construction of generalized binomial coefficients can be performed for any
nonzero integer sequence; however, it is unlikely the process will result in integers.
Nonetheless, the following lemma, proven in [7], provides a sufficient condition for
integrality.

Lemma 1 (Knuth and WIlf [7]). For any sequence, C, of nonzero integers the
C-nomial coefficients are all integers if ged(Cy, C;) = Cgea(i,z) for all i, j > 0.

Many families of sequences have been shown to have integral generalized binomial
coefficients. For instance, using the Fibonacci sequence leads to the Fibotorials
and Fibonomial coefficients (see [4], [3], or [5]). Using g-analogs of the natural
numbers leads to the g-factorial and the Gaussian binomial coefficients (see [6] or
[7]). Additionally, in [2], we describe a simple family of sequences for which the
binomial coefficients are integral and are related to arithmetic in different bases.

The purpose of this note is to investigate the generalized factorial and binomial
coefficients for the family of Jordan totient functions, Jy, where Jx(n) counts the
number of k-tuples of positive integers less than or equal to n that form a coprime
(k 4+ 1)-tuple with n. These functions generalize J; = ¢, Euler’s totient function,
which counts the number of positive integers less than or equal to and coprime to n.
For example, the sequences for ¢ = J; and Jy through Jig are A000010, A007434,
A059376, A059377, A059378, and A069091-A06905 in [1]. Unfortunately, the totient
functions do not satisfy the conditions of Lemma 1; for example, ¢(ged(7,13)) =1
while ged(p(7), ¢(13)) = 6.

Given a totient function, Jj, and a natural number m we write m!;, for the Ji-
factorial; we call this the k-totientorial (see A001088 for the 1-totientorial in [1]).
Likewise, we let (’;’Z) T represent the associated binomial coefficients and call these
the k-totienomial coefficients. Even though the totient sequences do not satisfy
Lemma 1, we will demonstrate that the totienomial coefficients are all integers (see
Figure 1). On our path to the proof, we will encounter a few other sequences that
have integral generalized binomial coefficients as well.

2. Radinomials

Given any natural number n, we define the radical of n, denoted rad(n), as the

product of primes dividing n, i.e. rad(n) = Hp‘ » p- The radical sequence is A007947
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Figure 1: The first 8 rows of the 1-totienomial coefficients.

and the “raditorial” is A048803 in [1]. In a similar fashion, we define the related
sequence R by R(n) = len(p 1) where again the product is only over primes (see
A173557 in [1]). For each of these sequences, we construct the associated binomial
coefficients, and call them the radinomial and R-nomial coefficients, denoted (’7’;)
and (ZL)R respectively.

rad

Proposition 2. For any two natural numbers n and m with n < m, the radinomzial
coefficient (ZL) raq 1S am integer.

Proof. Notice that a prime p divides both n and m if and only if p divides ged(n, m).
Thus, ged(rad(n), rad(m)) = rad(ged(n, m)); the result follows by Lemma 1. O

This seems to be previously known since the sequence of radinomial coefficients
can be found at A048804 in [1].

Corollary 3. For any two natural numbers n and m with n < m, the R-nomial
coefficient (:’;)R 18 an integer.
Proof. For natural numbers n and m with n < m, Proposition 2 implies that ( )ra q
is an integer. Suppose that {pi, ..., ps} is the set of primes less than or equal to m.
Then, let (m!)yaa = [[;_, p;* where each r; > 0, and (n!)yaa-((m—n)")raa = [[;—, pz
where each ¢; > 0. It follows that

(m> _ Hz lpz Hpn*t
"/ rad Hz 1pz

The integrality of (’:)ra 4 implies that 7; > ¢; for all 4. Furthermore,
s ; — 1)7 5
(m) _ HzS:l(p )t. — H(pz o 1)Ti*ti'
n)r Il =1%o

Since r; > t; for all i, we see that (7:;) is an integer. O

R
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These sequences will allow us to prove that each totienomial coefficient (7;:) n is an
integer. To be more general, we need extended versions of the radical and R. For any
natural number k£ > 1, we define the sequence rady, by rady(n) = rad(n)* = Hp‘npk
and the sequence Ry by Ri(n) = Hp‘n(pk — 1) (once again the products are both
over all primes dividing n). For instance, see A078615 in [1] for rads. We call these

the k-radinomials and Rj-nomials respectively.
Proposition 4. For all k > 1, the k-radinomials and Ry-nomials are all integers.

Proof. The fact that (ZL) rad, is integral follows from an argument analogous to the

warm-up exercise given in Equation (1). In particular,

(...~ ().

and the latter is an integer by Proposition 2. In turn, a proof similar to that of
Corollary 3 demonstrates that the integrality of (') R, follows directly from the

integrality of (™) O

radk :

We finish this section with one final family of sequences. For k € N, we let
k
d-radg(n) = ) (see for instance A003557 in [1]). Once again, the associated
binomial coefficients are integers.

Proposition 5. Let k > 1. Then

1. For allm,n € N with n < m, (m

n)d_radk 18 an nteger.

k
2. For all m,n € N with n <m, (Tg)d—radk = ((m)d_mdl) .

n

3. For allm,n € N withn <m

and so () evenly divides (')

rady NFk-*

Proof. In a similar fashion to the radical, we see that d-rad; satisfies the condi-
tions of Lemma 1, giving one case for part (1). Next, a computation analogous to
Equation (1) shows that (), . = (7)) i_ra 4, Which gives part (2) and completes
part (1). Finally, part (3) follows directly from the definitions of the generalized

binomial coefficients and factorials. O
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3. Totienomials

Armed with the technical results from the previous section, the fact that the to-
tienomials are integral now follows from a basic fact found in [8, pg. 219].

Theorem 6. Let k € N and let Ji be the k-th Jordan totient function. Then for
n €N,

1 nk'Hpn(pk_l) NE(n) - Ri(n
Jk(n):nk'HO_E) - Hgl,mp"? B ia;k(nl;( -

This theorem leads us to the following.

Theorem 7. Let k € N and let Ji be the k-th Jordan totient function. The following
all hold.

1. For all m,n € N withn < m,

(m) _ G Gg,
n Jk (’r’::)radk
2. For allm,n € N withn <m, (’:)Jk = (:)d_radk . (Z)Rk

3. Fach k-totienomial coefficient is an integer.

Proof. The first result is a consequence of the definitions of generalized factorials
and generalized binomial coefficients coupled with Theorem 6. Part (2) follows
from part (1) along with Proposition 5. Finally, the third result follows from part
(2) along with Propositions 4 and 5, which show that (r)d_mdk and (Z’;)Rk are
integral.

This appears to be a new result as we could not find it in the literature or the
triangular array of any of the totienomials in the OEIS. Consequently, we have added
a few examples to the database: see A238453 for 1-totienomials, A238688 for 2-
totienomials, A238743 for 3-totienomials, A238754 for 4-totienomials and A239633
for 5-totienomials.

Remark. Unlike the usual binomial coefficients, the rows in the triangular array of
the totienomial coefficients may not be unimodal, and the middle term(s) may not
be the largest number in the row. For instance, if we consider ¢ = Ji, then the
following table shows (ly?)cp for different values of n (i.e. row 10 in the triangular
array).

lo1 2 3 4 5 6 7 8 9 10
1 4 20 48 144 72 14 a8 24 4 1

(),
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In the final section, we will briefly discuss the 1-totienomial coefficients. Before
we do, we use the previous results to demonstrate the integrality of generalized
binomial coefficients for one more sequence: the Dedekind psi function (see A001615

in [1]). For a nonzero natural number n, let ¢(n) =n-[],, (1 + %) where again

the product is over all primes dividing n.
Corollary 8. Let m and n be natural numbers with n < m. The following hold.
1. The -nomial coefficient (’::)w 18 an integer.

2. The v-nomial coefficient is given by

Proof. To see this, we note that len (1 + 1—17) = len (%}), and the sequence
given by len (p+ 1) has integral binomial coefficients by a modification of the
argument from Corollary 3. Part (1) is then analogous to Theorem 7, and part (2)

follows from the well known fact that ¥(n) = fgzg O

We have added the y-nomial coefficients to [1] as A238498.

4. Combinatorial Interpretation

In this final section, we limit our focus to the 1-totientorial and the 1-totienomial
coefficients, i.e. the coeflicients associated with Euler’s totient function J; = .
Nonetheless, the questions described here are interesting for all sequences with
integral binomial coefficients (see [5] or [3]).

Since (:’:)(p is a positive integer, we would like to find a class of objects counted
by (’:)(p. For m € N, the 1-totientorial m!,, is the determinant of the m x m matrix,
M, given by M; ; = ged(4, 5) (see [9]). There is possibly some interpretation of (?3)90
in terms of this matrix.

Moreover, m!, gives the order of the abelian group G' = Uy xUs X - - XUy~ 1 X Uy,
where U; is multiplicative group of units in Z;. It would be interesting to find a
set that G acts on in order to interpret (:Ln)w as the size of an orbit (using the
orbit-stabilizer theorem). In relation to this, the integrality of (7;:)“J guarantees the

existence of a (') _-to-one function
©
fiUpp1 xUpyoax - xXUp —=Up xUz X -+ X Upy—py.

It would be interesting to describe and understand functions of this type (to deter-
mine, for example, if such an f could be a homomorphism).
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For our last point, we define the ¢-Catalan numbers as the sequence given by

1 2n
Cﬂp:7 .
" so(n+1)<n>¢

Upon inspection of the first 5000 terms of this sequence, this sequence appears
to be an integer sequence. A proof of integrality, especially via a combinatorial
interpretation, is desirable.
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