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Abstract
For integers m and p, we study the tangent power sums

Pm
k=1 tan2p ⇡k

2m+1 . We
give recurrence, asymptotic and explicit formulas for these polynomials and indicate
their connections with Newman’s digit sums in base 2m. In particular, for increasing
m, we prove a monotonic strengthening of the Moser-Newman digit phenomenon
for certain intervals.

1. Introduction

Everywhere below we suppose that n � 1 is an odd number and p is a positive
integer. In the present paper we study tangent power sums of the form

�(n, p) =

n�1
2X

k=1

tan2p ⇡k

n
. (1)

Shevelev [14] and Hassan [5] independently proved the following statements:

Theorem 1. For every p, �(n, p) is an integer and a multiple of n.

Theorem 2. For fixed p, �(n, p) is a polynomial in n of degree 2p with the leading
term

22p�1(22p � 1)
(2p)!

|B2p|n2p, (2)

where B2p is a Bernoulli number.

Hassan [5] proved these results (see his Theorem 4.3 and formula 4.19) using a
sampling theorem associated with second-order discrete eigenvalue problems.
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Shevelev’s proof [14] (see his Remarks 1 and 2) used some elementary arguments
including the well-known Littlewood expression for the power sums of elementary
polynomials in a determinant form [6].

In this paper we give another proof of these two theorems. In addition, we find
several other representations, numerical results, and identities involving �(n, p). We
give digit theory applications of �(n, p) in Section 5; and in Section 7, using the digit
interpretation and a combinatorial idea, we find an explicit expression for �(n, p)
(Theorem 7).

2. Proof of Theorem 1

Proof. Let ! = e
2⇡i
n . Note that

tan
⇡k

n
= i

1� !k

1 + !k
= �i

1� !�k

1 + !�k
, tan2 ⇡k

n
=

1� !�k

1 + !k

1� !k

1 + !�k
(3)

For the factors of tan2 ⇡k
n we have

1� !�k

1 + !k
=

(�!k)n�1 � 1
(�!k)� 1

=
n�2X
j=0

(�!k)j ,
1� !k

1 + !�k
=

n�2X
j=0

(�!�k)j . (4)

Since tan ⇡k
n = � tan ⇡(n�k)

n , we have

2�(n, p) =
n�1X
k=1

tan2p ⇡k

n
(5)

and by (3)–(5),

2�(n, p) =
n�1X
k=1

(
n�2X
j=0

(�!k)j)p(
n�2X
j=0

(�!�k)j)p =

n�1X
k=1

(
p�1Y
l=0

n�2X
j=0

(�!k)j
p�1Y
l=0

n�2X
j=0

(�!�k)j) =

=
n�1X
k=1

(
2p�1Y
t=0

n�2X
j=0

(�!(�1)tk)j). (6)

Furthermore, we note that

(n� 1)t ⌘ (�1)t (mod n). (7)
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Indeed, (7) is evident for odd t. If t is even and t = 2hs with odd s, then

(n� 1)t � (�1)t = ((n� 1)s)2
h � ((�1)s)2

h

=

((n� 1)s � (�1)s)((n� 1)s + (�1)s)((n� 1)2s+

(�1)2s) · . . . · ((n� 1)2
h�1s + (�1)2

h�1s),

and, since (n � 1)s + 1 ⌘ 0 (mod n), we are done. Using (7), we can write (6) in
the form (summing from k = 0, adding the zero summand)

2�(n, p) =
n�1X
k=0

2p�1Y
t=0

(1� !k(n�1)t

+ !2k(n�1)t � . . .� !(n�2)k(n�1)t

). (8)

Considering 0, 1, 2, . . . , n� 2 as digits in base n� 1, after the multiplication of the
factors of the product in (8) we obtain summands of the form (�1)(r)!kr, r =
0, . . . , (n� 1)2p � 1, where s(r) is the digit sum of r in base n� 1. Thus we have

2�(n, p) =
n�1X
k=0

(n�1)2p�1X
r=0

(�1)s(r)!kr =
(n�1)2p�1X

r=0

(�1)s(r)
n�1X
k=0

(!k)r. (9)

However,
n�1X
k=0

(!k)r =

(
n, if r ⌘ 0 (mod n)
0, otherwise.

Therefore, by (9),

2�(n, p) = n

(n�1)2p�1X
r=0, n|r

(�1)s(r) (10)

and, consequently, 2�(n, p) is an integer multiple of n. It remains to show that the
right-hand side of (10) is even. It is su�cient to show that the sum contains an
even number of summands. The number of summands is

1 + b (n� 1)2p

n
c = 1 +

(n� 1)2p � 1
n

=

1 +
2p�1X
l=0

(�1)l

✓
2p
l

◆
n2p�1�l ⌘ 1 +

2p�1X
l=0

(�1)l

✓
2p
l

◆
(mod 2).

But

1 +
2p�1X
l=0

(�1)l

✓
2p
l

◆
= 1� (�1)2p

✓
2p
2p

◆
= 0.

This completes the proof of the theorem.
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3. Proof of Theorem 2

Proof. We start with a construction similar to the one found in [16]. As is well-
known,

sinn↵ =

n�1
2X

i=0

(�1)i

✓
n

2i + 1

◆
cosn�(2i+1) ↵ sin2i+1 ↵,

or

sinn↵ = tan↵ cosn ↵

n�1
2X

i=0

(�1)i

✓
n

2i + 1

◆
tan2i ↵.

Let ↵ = k⇡
n , k = 1, 2, . . . , n�1

2 . Since tan↵ 6= 0, cos↵ 6= 0, then

0 =

n�1
2X

i=0

(�1)i

✓
n

2i + 1

◆
tan2i ↵ =

(�1)
n�1

2 (tann�1 ↵�
✓

n

n� 2

◆
tann�3 ↵ + . . .�

(�1)
n�1

2

✓
n

3

◆
tan2 ↵ + (�1)

n�1
2

✓
n

1

◆
).

This means that the equation

�
n�1

2 �
✓

n

2

◆
�

n�3
2 +

✓
n

4

◆
�

n�5
2 � . . . + (�1)

n�1
2

✓
n

n� 1

◆
= 0 (11)

has n�1
2 roots: �k = tan2 k⇡

n , k = 1, 2, . . . , n�1
2 . Note that (11) is the characteristic

equation for the di↵erence equation

y(p) =
✓

n

2

◆
y(p� 1)�

✓
n

4

◆
y(p� 2) + . . .�

(�1)
n�1

2

✓
n

n� 1

◆
y(p� n� 1

2
) (12)

which, consequently, has a closed solution

y(p) =

n�1
2X

k=1

(tan2 k⇡

n
)p = �(n, p).

Now, using Newton’s formulas for equation (11),

�(n, 1) =
✓

n

2

◆
,
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�(n, 2) =
✓

n

2

◆
�(n, 1)� 2

✓
n

4

◆
,

�(n, 3) =
✓

n

2

◆
�(n, 2)�

✓
n

4

◆
�(n, 1) + 3

✓
n

6

◆
, etc. (13)

We conclude that �(n, p) is a polynomial in n of degree 2p. Note that, by induction,
all these polynomials are integer-valued and thus we have another independent proof
of Theorem 1. To find the leading terms of these polynomials, we carry out some
transformations of (1). Let m = n�1

2 and l = m � k. Changing the order of the
summands in (1), and noting that

(m� l)⇡
2m + 1

+
(2l + 1)⇡
4m + 2

=
⇡

2
,

we have

�(n, p) =
m�1X
l=0

cot2p (2l + 1)⇡
4m + 2

. (14)

Further, we have

�(n, p) =
X

0lpm

cot2p (2l + 1)⇡
4m + 2

+

X
p

m<lm�1

cot2p (2l + 1)⇡
4m + 2

= ⌃1 + ⌃2. (15)

Let p > 1. Let us estimate the second sum ⌃2. The convexity of sinx on [0, ⇡
2 ] gives

the inequality sinx � 2
⇡ x. Therefore, for summands in the second sum, we have

cot2p (2l + 1)⇡
4m + 2

< sin�2p (2l + 1)⇡
4m + 2

<

(
2m + 1
2l + 1

)2p < (
2m + 1

2
p

m + 1
)2p < mp.

This means that ⌃2 < mp+1 < m2p and has no influence on the leading term. Note
that

(2l + 1)⇡
4m + 2

cot
(2l + 1)⇡
4m + 2

! 1

uniformly over l  pm. Thus

⌃1 =
X

0lpm

(
(4m + 2)
(2l + 1)⇡

)2p + ↵(m) =

(
(4m + 2)

⇡
)2p

X
0lpm

1
(2l + 1)2p

+ ↵(m),
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where ↵(m)  "
p

m. Thus the coe�cient of the leading term of the polynomial
�(n, p) is

lim
m!1

⌃1

n2p
= (

2
⇡

)2p
1X

l=0

1
(2l + 1)2p

=

(
2
⇡

)2p(⇣(2p)�
1X

l=1

1
(2l)2p

) =

(
2
⇡

)2p(⇣(2p)� 1
22p

⇣(2p)) =
2p(22p � 1)

⇡2p
⇣(2p).

It is left to note that, using ⇣(2p) = |B2p|22p�1⇡2p

(2p)! , we have that the leading coe�cient
is defined by (2).

4. Several Numerical Results

In 2002, Chen [1], using generating functions, presented a rather complicated method
for finding formulas for �(n, p) for every positive p. Similar results appeared in Chu
[2]. However, using Newton’s formulas (13) for equation (11), we can e↵ectively find
the required formulas in a polynomial form. From (1), �(1, p) = 0, so �(n, p) ⌘ 0
(mod n(n� 1)). Let

�⇤(n, p) = 2�(n, p)/(n(n� 1)).

By (13), the first polynomials {�⇤(n, p)} are

�⇤(n, 1) = 1,

�⇤(n, 2) =
n2 + n

3
� 1,

�⇤(n, 3) =
2(n2 + n)(n2 � 4)

15
+ 1,

�⇤(n, 4) =
(n2 + n)(17n4 � 95n2 + 213)

315
� 1,

�⇤(n, 5) =
2(n2 + n)(n2 � 4)(31n4 � 100n2 + 279)

2835
+ 1.

It is well-known (cf. Problem 85 in [9]) that integer-valued polynomials have in-
teger coe�cients in the binomial basis {

�n
k

�
}. The first integer-valued polynomials

{�(n, p)} represented in the binomial basis have the form

�(n, 1) =
✓

n

2

◆
,
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�(n, 2) =
✓

n

2

◆
+ 6

✓
n

3

◆
+ 4

✓
n

4

◆
,

�(n, 3) =
✓

n

2

◆
+ 24

✓
n

3

◆
+ 96

✓
n

4

◆
+ 120

✓
n

5

◆
+ 48

✓
n

6

◆
,

�(n, 4) =
✓

n

2

◆
+78

✓
n

3

◆
+836

✓
n

4

◆
+3080

✓
n

5

◆
+5040

✓
n

6

◆
+3808

✓
n

7

◆
+1088

✓
n

8

◆
.

Note that the recursion (12) presupposes a fixed n. In general, by (12), we have

�(n, p) =
✓

n

2

◆
�(n, p� 1)�

✓
n

4

◆
�(n, p� 2) + ...�

(�1)
n�1

2

✓
n

n� 1

◆
�(n, p� n� 1

2
), p � n� 1

2
. (16)

From (1), �(n, 0) = n�1
2 , n = 3, 5, . . . , and then by (13) we have the recursions

�(3, p) = 3�(3, p� 1), p � 1, �(3, 0) = 1;

�(5, p) = 10�(5, p� 1)� 5�(5, p� 2), p � 2, �(5, 0) = 2, �(5, 1) = 10;

�(7, p) = 21�(7, p� 1)� 35�(7, p� 2) + 7�(7, p� 3), p � 3,

�(7, 0) = 3, �(7, 1) = 21, �(7, 2) = 371;

�(9, p) = 36�(9, p� 1)� 126�(9, p� 2) + 84�(9, p� 3)� 9�(9, p� 4), p � 4,

�(9, 0) = 4, �(9, 1) = 36, �(9, 2) = 1044, �(9, 3) = 33300; etc.

Thus
�(3, p) = 3p, (17)

and a few terms of the other sequences {�(n, p)} are

n = 5) 2, 10, 90, 850, 8050, 76250, 722250, 6841250, 64801250,

613806250, 5814056250, . . . ;

n = 7) 3, 21, 371, 7077, 135779, 2606261, 50028755, 960335173,

18434276035, 353858266965, 6792546291251, . . . ;

n = 9) 4, 36, 1044, 33300, 1070244, 34420356, 1107069876,

35607151476, 1145248326468, 36835122753252, . . . ;

n = 11) 5, 55, 2365, 113311, 5476405, 264893255, 12813875437,

619859803695, 29985188632421, 1450508002869079, . . . .
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5. Applications to Digit Theory

For x 2 N and odd n � 3, let Sn(x) be the sum

Sn(x) =
X

0r<x: r⌘0 (mod n)

(�1)sn�1(r), (18)

where sn�1(r) is the digit sum of r in base n � 1. Note that S3(x) equals the
di↵erence between the numbers of multiples of 3 with even and odd binary digit
sums (or multiples of 3 from sequences A001969 and A000069 in [15]) in the interval
[0, x).

Moser (cf. [8], Introduction) conjectured that

S3(x) > 0. (19)

Newman [8] proved this conjecture. Moreover, he obtained the inequalities

1
20

< S3(x)x�� < 5, (20)

where
� =

ln 3
ln 4

= 0.792481 . . . . (21)

In connection with Newman’s remarkable results, we will call the qualitative result
(19) a “weak Newman phenomenon” (or “Moser–Newman phenomenon”), while an
estimating result of the form (20) will be called a “strong Newman phenomenon.”

In 1983, Coquet [3] studied a very complicated continuous and nowhere di↵eren-
tiable fractal function F (x) with period 1 for which

S3(3x) = x�F

✓
lnx

ln 4

◆
+

⌘(x)
3

, (22)

where

⌘(x) =

(
0, if x is even,

(�1)s2(3x�1), if x is odd.
(23)

He obtained

lim sup
x!1, x2N

S3(3x)x�� =
55
3

✓
3
65

◆�

= 1.601958421 . . . , (24)

lim inf
x!1, x2N

S3(3x)x�� =
2
p

3
3

= 1.154700538 . . . . (25)

In 2007, Shevelev [13] gave an elementary proof of Coquet’s formulas (24)–(25)
and gave sharp estimates in the form

2
p

3
3

x�  S3(3x)  55
3

✓
3
65

◆�

x�, x 2 N. (26)
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Shevelev also showed that the sequence {(�1)s2(n)(S3(n) � 3S3(bn/4c))} is peri-
odic with period 24, taking the values �2,�1, 0, 1, 2. This gives a simple recursion
for S3(n). In 2008, Drmota and Stoll [4] proved a generalized weak Newman phe-
nomenon, showing that (19) is valid for the sum (18) for all n � 3, at least beginning
with x � x0(n). Our proof of Theorem 1 allows us to treat a strong form of this gen-
eralization, but only in “full” intervals with even base n�1 of the form [0, (n�1)2p)
(see also the preprint of Shevelev [14]).

Theorem 3. For xn,p = (n� 1)2p, p � 1, we have

Sn(xn,p) ⇠
2
n

x�
n,p , �(n, p) ⇠ x�

n,p (p !1), (27)

where
� = �n =

ln cot( ⇡
2n )

ln(n� 1)
. (28)

Proof. Employing (10) and (18), we have

Sn(xn,p) =
2
n

�(n, p), p � 1. (29)

Thus, choosing the maximum exponent in (1) as p !1, we find

Sn(xn,p) ⇠
2
n

tan2p (n� 1)⇡
2n

=

2
n

cot2p ⇡

2n
= exp(ln

2
n

+ 2p ln cot
⇡

2n
) =

exp(ln
2
n

+ 2p� ln(n� 1)) = exp(ln
2
n

+ lnx�
n,p) =

2
n

x�
n,p. (30)

In particular, in the cases of n = 3, 5, 7, 9, 11, we have �3 = ln 3
ln 4 = 0.79248125 . . . ,

�5 = 0.81092244 . . . , �7 = 0.82452046 . . . , �9 = 0.83455828 . . . ,�11 = 0.84230667 . . .,
respectively.

To show that

1�
ln ⇡

2

ln(n� 1)
 �n  1�

ln ⇡
2

ln(n� 1)
+

1
(n� 1) ln(n� 1)

, (31)

we note the convexity of cosx on [0, ⇡
2 ], cosx � 1� 2

⇡ x, and therefore cos ⇡
2n � 1� 1

n .
Noting that tan ⇡

2n �
⇡
2n � sin ⇡

2n , we have

2
⇡

(n� 1)  cot
⇡

2n
 2

⇡
n



INTEGERS: 14 (2014) 10

and, by (28),

1�
ln ⇡

2

ln(n� 1)
 �n  1�

ln ⇡
2

ln(n� 1)
+

ln(1 + 1
n�1 )

ln(n� 1)
,

which yields (31), since, for n � 3, ln(1 + 1
n�1 ) < 1

n�1 . Finally, let us show that �n

is monotonic increasing. For f(x) = ln cot( ⇡
2x )

ln(x�1) , we have

ln(x� 1)f 0(x) =
⇡

x2 sin ⇡
x

� f(x)
x� 1

. (32)

As in (31), we also have

f(x)  1�
ln ⇡

2

ln(x� 1)
+

1
(x� 1) ln(x� 1)

. (33)

On the other hand, since sin ⇡
x 

⇡
x , then

⇡(x� 1)
x2 sin ⇡

x

� 1� 1
x

,

and, by (32), in order to show that f 0(x) > 0, it is su�cient to prove that f(x) <
1� 1

x , or, by (33), to show that

1�
ln ⇡

2

ln(x� 1)
+

1
(x� 1) ln(x� 1)

< 1� 1
x

,

or
ln(x� 1)

x
+

1
x� 1

< ln
⇡

2
.

This inequality holds for x � 7, and since �3 < �5 < �7, then the monotonicity
of �n follows. Thus we have the monotonic strengthening of the strong form of a
Newman-like phenomenon for base n� 1 in the intervals considered.

6. An Identity

Since (29) was proved for xn,p = (n� 1)2p, p � 1, then by (16), for Sn(xn,p) in the
case p � n+1

2 , we have the relations

n�1
2X

k=0

(�1)k

✓
n

2k

◆
�(n, p� k) =

n�1
2X

k=0

(�1)k

✓
n

2k

◆
Sn((n� 1)2p�2k) = 0.
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When p = n�1
2 , the latter relation does not hold. Let us show that in this case, we

have the identity

n�1
2X

k=0

(�1)k

✓
n

2k

◆
Sn((n� 1)n�2k�1) = (�1)n,

or, putting n� 2k � 1 = 2j, the identity

n�1
2X

j=0

(�1)j

✓
n

2j + 1

◆
Sn((n� 1)2j) = 1. (34)

Indeed, when j = 0 we have Sn(1) = 1, while by (29), for p = 0, we obtain

Sn(1) =
2
n

�(n, 0) =
2
n

n� 1
2

=
n� 1

n
,

i.e., the error is � 1
n , and the error in the corresponding sum is n(� 1

n ) = �1.
Therefore, in the latter formula, instead of 0, we have 1. Note that (34) can be
written in the form

n�1
2X

j=1

(�1)j�1

✓
n

2j + 1

◆
�(n, j) =

✓
n

2

◆
.

7. Explicit Combinatorial Representation

The representation (29) allows us to find an explicit combinatorial representation
for �(n, p). We need three lemmas.

Lemma 4. ([11], p. 215 ) The number of compositions C(m,n, s) of m with n
positive parts not exceeding s is given by

C(m,n, s) =
min(n,bm�n

s c)X
j=0

(�1)j

✓
n

j

◆✓
m� sj � 1

n� 1

◆
. (35)

Since C(m,n, 1) = �m,n (Kronecker delta), then we have the identity

min(n,m�n)X
j=0

(�1)j

✓
n

j

◆✓
m� j � 1

n� 1

◆
= �m,n. (36)
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Lemma 5. The number of compositions C0(m,n, s) of m with n nonnegative parts
not exceeding s is given by

C0(m,n, s) =

8>>>>>><
>>>>>>:

C(m + n, n, s + 1), if m � n � 1, s � 2,Pm
⌫=1 C(m, ⌫, s)

� n
n�⌫

�
, if 1  m < n, s � 2,

1, if m = 0, n � 1, s � 0,
0, if m > n � 1, s = 1,�n
m

�
, if 1  m  n, s = 1.

(37)

Proof. First, let s � 2, m � n � 1. Decrease by 1 every part of a composition of
m + n with n positive parts not exceeding s + 1. Then we obtain a composition
of m with n nonnegative parts not exceeding s such that zero parts are allowed.
Second, let s � 2, 1  m < n. Consider C(m, ⌫, s) compositions of m with ⌫  m
parts. To obtain n parts, consider n�⌫ zero parts, which we choose in

� n
n�⌫

�
ways.

Summing over 1  ⌫  m gives the required result. The other cases follow.

Now let (n� 1)h  N < (n� 1)h+1, n � 3. Consider the representation of N in
base n� 1 :

N = gh(n� 1)h + ... + g1(n� 1) + g0,

where gi = gi(N), i = 0, ..., h, are the digits of N, 0  gi  n� 2. Let

se(N) =
X

i is even

gi, so(N) =
X

i is odd

gi.

Lemma 6. N is a multiple of n if and only if so(N) ⌘ se(N) (mod n).

Proof. The lemma follows from the relation (n� 1)i ⌘ (�1)i (mod n), i � 0.

Now we obtain an explicit combinatorial formula for �(n, p).

Theorem 7. For n � 3, p � 1, we have

�(n, p) =
n

2

(n�2)pX
j=0

((C0(j, p, n� 2))2+

2
b (n�2)p�j

n cX
k=1

(�1)kC0(j, p, n� 2)C0(j + nk, p, n� 2)), (38)

where C0(m,n, s) is defined by (37).

Proof. Consider all nonnegative integers N not exceeding (n�1)2p�1 that have 2p
digits gi(N) in base n� 1 (leading zeroes are allowed). Let the sum of the digits of
N in the even p positions be j, while for the odd p positions, let the sum be j + kn
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where k is a positive integer. Then, by Lemma 6, such N are multiples of n. Since
in base n � 1 the digits do not exceed n � 2, then the number of ways to choose
such N , for k = 0, is (C0(j, p, n � 2))2. In case k � 1, we should also consider the
symmetric case when in the odd p positions the sum of the digits of N is j, while
over the even p positions, the sum is j +kn with a positive integer k. For k � 1 this
gives 2C0(j, p, n � 2)C0(j + kn, p, n � 2) required N . Furthermore, since n is odd,
then if k is odd, sn�1(N) is also odd. If k is even, then sn�1(N) is even. Thus the
di↵erence, Sn((n� 1)2p), between n-multiple Ns with even and odd digit sums is

Sn((n� 1)2p) =
X

j

((C0(j, p, n� 2))2+

2
X

k

(�1)kC0(j, p, n� 2)C0(j + nk, p, n� 2)).

Now to obtain (38), note that 0  j  (n� 2)p, and for k � 1, j + nk  (n� 2)p,
so that 1  k  (n�2)p�j

n , and that by (29), �(n, p) = n
2 Sn((n� 1)2p).

Example 8. Let n = 5, p = 2. By Theorem 7, we have

�(5, 2) = 2.5
6X

j=0

((C0(j, 2, 3))2+

2
b 6�j

3 cX
k=1

(�1)kC0(j, 2, 3)C0(j + 5k, 2, 3)). (39)

We have
C0(0, 2, 3) = 1, C0(1, 2, 3) = 2, C0(2, 2, 3) = 3,

C0(3, 2, 3) = 4, C0(4, 2, 3) = 3, C0(5, 2, 3) = 2, C0(6, 2, 3) = 1.

Thus
6X

j=0

((C0(j, 2, 3))2 = 44.

In the cases j = 0, k = 1 and j = 1, k = 1 we have

C0(0, 2, 3)C0(5, 2, 3) = 2, C0(1, 2, 3)C0(6, 2, 3) = 2.

Thus

2
6X

j=0

b 6�j
3 cX

k=1

(�1)kC0(j, 2, 3)C0(j + 5k, 2, 3)) = �8

and, by (39),
�(5, 2) = 2.5(44� 8) = 90.
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On the other hand, by (1),

�(5, 2) =
2X

k=1

tan4 ⇡k

5
= 0.278640 . . . + 89.721359 . . . = 89.999999 . . .

Example 9. In case n = 3, then by Theorem 7 and formulas (17) and (37), we
have

3p =
3
2

pX
j=0

((C0(j, p, 1))2+

2
b p�j

3 cX
k=1

(�1)kC0(j, p, 1)C0(j + 3k, p, 1)) =

3
2

pX
j=0

(
✓

p

j

◆2

+ 2
b p�j

3 cX
k=1

(�1)k

✓
p

j

◆✓
p

3k + j

◆
.

Using the well-known formula
Pp

j=0(
�p

j

�2 =
�2p

p

�
, we obtain the identity

pX
j=0

b p�j
3 cX

k=1

(�1)k

✓
p

j

◆✓
p

3k + j

◆
= 3p�1 � 1

2

✓
2p
p

◆
,

or, changing the order of summation,

b p
3 cX

k=1

(�1)k
p�3kX
j=0

✓
p

j

◆✓
p

3k + j

◆
= 3p�1 � 1

2

✓
2p
p

◆
.

Since (cf. [10], p. 8)

p�3kX
j=0

✓
p

j

◆✓
p

3k + j

◆
=

✓
2p

p + 3k

◆
, (40)

we obtain the identity

b p
3 cX

k=1

(�1)k�1

✓
2p

p + 3k

◆
=

1
2

✓
2p
p

◆
� 3p�1, p � 1. (41)

Note that (41) was proved by another method by Shevelev [12] and again by
Merca [7] (cf. Cor. 8.3)
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