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Abstract
For integers m and p, we study the tangent power sums » ., tan?? 2;;’11. We
give recurrence, asymptotic and explicit formulas for these polynomials and indicate
their connections with Newman’s digit sums in base 2m. In particular, for increasing
m, we prove a monotonic strengthening of the Moser-Newman digit phenomenon
for certain intervals.

1. Introduction

Everywhere below we suppose that n > 1 is an odd number and p is a positive
integer. In the present paper we study tangent power sums of the form

n

—1
2

o(n,p) = Z tan?? F—Tf (1)
k=1

Shevelev [14] and Hassan [5] independently proved the following statements:
Theorem 1. For every p, o(n,p) is an integer and a multiple of n.

Theorem 2. For fized p, o(n,p) is a polynomial in n of degree 2p with the leading

term
221’*1(22? — 1)

o Pl @

where By, is a Bernoulli number.

Hassan [5] proved these results (see his Theorem 4.3 and formula 4.19) using a
sampling theorem associated with second-order discrete eigenvalue problems.
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Shevelev’s proof [14] (see his Remarks 1 and 2) used some elementary arguments
including the well-known Littlewood expression for the power sums of elementary

polynomials in a determinant form [6].

In this paper we give another proof of these two theorems. In addition, we find
several other representations, numerical results, and identities involving o (n, p). We
give digit theory applications of o(n, p) in Section 5; and in Section 7, using the digit
interpretation and a combinatorial idea, we find an explicit expression for o(n, p)

(Theorem 7).

2. Proof of Theorem 1

27i

Proof. Let w = e™» . Note that

k 1—wk ok 1—wF 1wk
a2 _

__Zl—&—w—’f’ e 14wk 14+wFk

¢ wk 1—w
an— =1
n 14+ wk

k

For the factors of tan? =% we have

1-w®  (=F)r1l-1 2 VI AL 2 kv
Tk~ (o1 DM g = D (e
j=0 j=0
Since tan %’“ = —tan @, we have
n—1
20(n,p) = Z tan? —
k=1
and by (3)-(5),
n—1 n—-2 ) n—2
20(n,p) = > (D _(—wF))P(Q_(—w )P =
k=1 j=0 j=0
n—1 p—1n-2 p—1n—2
( (—w"y (o)) =
k=1 1=0 j=0 1=0 j=0
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Indeed, (7) is evident for odd ¢. If ¢ is even and t = 2"s with odd s, then

h h

(=1 = (1) = ((n =1 =~ (1)) =

((n—=1)* = (=1)")((n = 1)* + (=1)*)((n — D>+
(*1)25) v ((n— 1)2h_1s 1 (,1)2'1_15)7

and, since (n —1)* +1 =0 (mod n), we are done. Using (7), we can write (6) in
the form (summing from k = 0, adding the zero summand)

n—12p—1
20(n,p) = ] (1 —wh=D 2= =Dk o (g)
k=0 t=0

Considering 0,1, 2,...,n — 2 as digits in base n — 1, after the multiplication of the
factors of the product in (8) we obtain summands of the form (—1)Mw*r 7 =

0,...,(n—1)% — 1, where s(r) is the digit sum of r in base n — 1. Thus we have
n—1(n—1)*"—1 (n—1)%—1 n—1
20(p) =3 D ()= 3 (0 (9)
k=0  r=0 =0 o
However,

i(wk)r _ {n,if r=0 (modn)

0, otherwise.

Therefore, by (9),
(n—1)*"—1
20(n,p)=n Y (=17 (10)

r=0, n|r
and, consequently, 20(n, p) is an integer multiple of n. It remains to show that the

right-hand side of (10) is even. It is sufficient to show that the sum contains an
even number of summands. The number of summands is

1+LMJ=1+%=
2p—1 2p—1
TR AN U (od 2.
1+l§20( 1)(1) _1+l§:0( ”(z) (mod 2)

But
2p—1

Eion)-or )

This completes the proof of the theorem. O
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3. Proof of Theorem 2

Proof. We start with a construction similar to the one found in [16]. As is well-

known,
anl
sinna = Z(—l)i (221 1) cos" =D gsin?
i=0
or

n—1

2 ) n )
: —t n —1)? t 21 )
sinna = tan a cos” a ZE:O( ) (22, N 1) an” «

Let v = &7 | = 1,2,...,"7_1. Since tana # 0, cosa # 0, then

n

n—1

RN i " 2% _
O—Z( 1) <2i+1>tan a

=0

(—1)"51 (tan™ ' o — < " 2) tan" Pa ... —
n—

This means that the equation

/\"Tl—(Z>A"T3+(Z)A”Ts—...ﬂ—l)%l(nﬁl):o (11)

has 251 roots: A, = tan? kn—”, k=1,2,..., an Note that (11) is the characteristic
equation for the difference equation

y(p) = (Z)y(p— 1) — (Z)y(p—Q) T

S N TR (12)

n—1

which, consequently, has a closed solution

y(p) = 3 (tan? 1) = ().
k=1

Now, using Newton’s formulas for equation (11),

o(n,1) = (g)
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o(n,2) = (7;)0(71, 1) — 2(2),
o(n,3) = (g) o(n,2) — (Z)a(n, 1) + 3(2) ete. (13)

We conclude that o(n,p) is a polynomial in n of degree 2p. Note that, by induction,
all these polynomials are integer-valued and thus we have another independent proof
of Theorem 1. To find the leading terms of these polynomials, we carry out some
transformations of (1). Let m = and | = m — k. Changing the order of the
summands in (1), and noting that

n—1
2

(m—-DOr  Q+L)r «

2m + 1 dm+2 2

)

we have .
o(n,p) = ; cot?P (ii:_:); (14)
Further, we have 2+ 1)
2% + 1)m
o(n,p) = Oglgmcot i 12
Z cot?P % =31 + Y. (15)

Let p > 1. Let us estimate the second sum Y. The convexity of sinz on [0, §] gives
the inequality sinx > %x Therefore, for summands in the second sum, we have

@+ D7 o, (214 D7

t2P
0 dm + 2 . 4dm + 2

2m+1
20+ 1

( )
This means that Y5 < mP*! < m?" and has no influence on the leading term. Note

that l l
Q2+ 1)x t(2 + 7 .

am+2 " am+2
uniformly over [ < y/m. Thus

B (4m +2) 1o, alm) —
Eloggm(@l“)”) +a(m)

(4m+2) ), 1 o
. o<lz<:\/m CIESVEIR
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where a(m) < ey/m. Thus the coefficient of the leading term of the polynomial
o(n,p) is

2.9, 1 B 2P(22P — 1)
(—)7(C(2p) = 53,¢(2p)) = ——5,—C(2p).
Tt is left to note that, using ((2p) = %, we have that the leading coefficient

is defined by (2). O

4. Several Numerical Results

In 2002, Chen [1], using generating functions, presented a rather complicated method
for finding formulas for o(n, p) for every positive p. Similar results appeared in Chu
[2]. However, using Newton’s formulas (13) for equation (11), we can effectively find
the required formulas in a polynomial form. From (1), o(1,p) = 0, so o(n,p) =0
(mod n(n —1)). Let

o*(n,p) = 20(n,p)/(n(n —1)).

By (13), the first polynomials {c*(n,p)} are

c*(n,1) =1,
n?>+n
*(n,2) = —1
o n2) =",
2(n? 2_4
o*(n,3) = (n” +n)(n )—|—1,
15
. (n? +n)(17n* — 9512 4 213)
4) = -1
o (n,4) 315 ’
2(n? 2 _ 4)(31n% — 10002 + 2
o (n,5) = (n®+n)(n )2(;%3; 00n° + 279) Ll

Tt is well-known (cf. Problem 85 in [9]) that integer-valued polynomials have in-
teger coefficients in the binomial basis {(})}. The first integer-valued polynomials
{o(n,p)} represented in the binomial basis have the form

o(n,1) = (Z)
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o= (3) +6(3) +16)
o= (3) 23 ) +2(5) + (o)
o= () #7(5) e () s (3) swa(() () 10 ().

Note that the recursion (12) presupposes a fixed n. In general, by (12), we have

o(n,p) = (Z)a(n,p— 1) — <Z>a(n,p— 2) 4 .-

e B L (16)

From (1), o(n,0) = "T’l, n=3,5,..., and then by (13) we have the recursions
o(3,p) =30(3,p—1), p=1, 0(3,0) = 1L;

o(5,p) =100(5,p— 1) — 50(5,p—2), p > 2, (5,0) =2, o(5,1) = 10;
o(7,p) =210(7,p—1) — 350(7,p — 2) + To(7,p —3), p > 3,
o(7,0)=3, o(7,1) =21, o(7,2) = 371;

(9,p) =360(9,p—1) —1260(9,p — 2) + 840(9,p — 3) — 90(9,p — 4), p > 4,
5(9,0) = 4, 0(9,1) = 36, 0(9,2) = 1044, o(9,3) = 33300; etc.

Thus
o(3,p) =3, (17)

and a few terms of the other sequences {o(n,p)} are
n=>5) 2,10,90,850,8050, 76250, 722250, 6841250, 64801250,

613806250, 5814056250, . . . ;
n="7) 3,21,371,7077,135779, 2606261, 50028755, 960335173,
18434276035, 353858266965, 6792546291251, . . . ;
n=29) 4, 36,1044, 33300, 1070244, 34420356, 1107069876,
35607151476, 1145248326468, 36835122753252, . . . ;
n=11) 5,55,2365,113311, 5476405, 264893255, 12813875437,
619859803695, 29985188632421, 1450508002869079, . . . .
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5. Applications to Digit Theory

For x € N and odd n > 3, let S,,(z) be the sum

Sn(x) = Z (71)Sn71(7ﬁ)7 (18)
0<r<z: r=0 (mod n)
where s,_1(r) is the digit sum of r in base n — 1. Note that Ss3(z) equals the
difference between the numbers of multiples of 3 with even and odd binary digit
sums (or multiples of 3 from sequences A001969 and A000069 in [15]) in the interval
[0, ).
Moser (cf. [8], Introduction) conjectured that

Newman [8] proved this conjecture. Moreover, he obtained the inequalities
1 .Y
— 2
50 < Ssz(z)x™" <5, (20)
where In3
n
A=—=0.792481... . 21
il 0.79248 (21)

In connection with Newman’s remarkable results, we will call the qualitative result
(19) a “weak Newman phenomenon” (or “Moser—Newman phenomenon”), while an
estimating result of the form (20) will be called a “strong Newman phenomenon.”

In 1983, Coquet [3] studied a very complicated continuous and nowhere differen-
tiable fractal function F'(x) with period 1 for which

Inz n(z)
— A = AN
S3(3z) = F<In4>+ 3 (22)
where
0,if x is even
_J)o ) 23
(@) {(—1)52(3$_1)7if x is odd. (23)
He obtained
_ v 55/ 3\
limsup S3(3z)z™" = — [ = ] =1.601958421... , (24)
r—o0, TEN 3 65
2v/3
liminf Ss(3x)z* = \Tf = 1.154700538 . .. . (25)

In 2007, Shevelev [13] gave an elementary proof of Coquet’s formulas (24)—(25)
and gave sharp estimates in the form

A

2v/3 95 (3

?\/_:f‘ < S3(3z) < 3 (%> z*, zeN. (26)
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Shevelev also showed that the sequence {(—1)%2(")(S3(n) — 3S3(|n/4]))} is peri-
odic with period 24, taking the values —2,—1,0, 1, 2. This gives a simple recursion
for S3(n). In 2008, Drmota and Stoll [4] proved a generalized weak Newman phe-
nomenon, showing that (19) is valid for the sum (18) for all n > 3, at least beginning
with > xg(n). Our proof of Theorem 1 allows us to treat a strong form of this gen-
eralization, but only in “full” intervals with even base n— 1 of the form [0, (n—1)?P)
(see also the preprint of Shevelev [14]).

Theorem 3. For z,,, = (n—1)?", p > 1, we have

2
Sn(xn,p) ~ Hxi;,p > G(nap) ~ .733;71) (p - OO), (27)
where In cot( )
ncot(-
A=)\, = ———2n° 2
In(n — 1) (28)

Proof. Employing (10) and (18), we have

2
Sn(xn,p) = Ea(nvp)a p > 1. (29)

Thus, choosing the maximum exponent in (1) as p — oo, we find

2 -1
Sy (Xn,p) ~ ﬁtangp % =

2 2
= cot? % = exp(ln - + 2plncot %) =
2 2 L2
exp(ln - +2pAln(n — 1)) = exp(ln - +Inzy ) = T p (30)

O

In particular, in the cases of n = 3,5,7,9, 11, we have A3 = E—i =0.79248125. . .,
A5 = 0.81092244 ..., A7 = 0.82452046..., Ag = 0.83455828..., A1 = 0.84230667. ..
respectively.

To show that

In

In(n — 1)

In 5 1
In(n—1)  (n—1)ln(n—1)’

(SIE]

1—

<A <1-— (31)

s
)
we have

we note the convexity of cosx on [0, 3], cosz > 1— 2z, and therefore cos 7~ > 1—+.

Noting that tan 5~ > 5~ > sin o,

3
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and, by (28),

3

InZ In In(1 + ﬁ)

1-—2 <)\, <1-
ln(n—l)_)\n_ 1n(n—1)+ In(n—1) ’

vl

which yields (31), since, for n > 3, In(1+ —15) < —L-. Finally, let us show that A,
In cot(75)
In(z—1)

, we have

n(z — 1)f'(z) = 5~ — 1@ (32)

xQSin% x—1"

is monotonic increasing. For f(x) =

As in (31), we also have

In 3 1

fay=1- In(z — 1) + (x — ) In(z —1)

On the other hand, since sin > < %, then

and, by (32), in order to show that f’(z) > 0, it is sufficient to prove that f(z) <
1 — 1, or, by (33), to show that

1 3 + ! <1 =
In(z —1)  (x—1)In(z —1) x’
o m@E—1) 1
n(r — m

This inequality holds for z > 7, and since A3 < A5 < A7, then the monotonicity
of A\, follows. Thus we have the monotonic strengthening of the strong form of a
Newman-like phenomenon for base n — 1 in the intervals considered.

6. An Identity

Since (29) was proved for z,, , = (n —1)?P, p > 1, then by (16), for S, (2, ) in the
case p > ”TH, we have the relations
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When p = "7_17 the latter relation does not hold. Let us show that in this case, we
have the identity

n—1

S (5 )Sulln = 1) = (-

k=0

or, putting n — 2k — 1 = 27, the identity

S8y, )Sultn = 1) = 1. 3
j=0

Indeed, when j = 0 we have S, (1) = 1, while by (29), for p = 0, we obtain

2 2n—1 n—1
Sn(:l): EO‘(’I’L, 0): E 9 = n y

i.e., the error is —%, and the error in the corresponding sum is n(—%) = —1.
Therefore, in the latter formula, instead of 0, we have 1. Note that (34) can be
written in the form

n—1

> (1 (5,74 )70 = (3)

L

<

7. Explicit Combinatorial Representation

The representation (29) allows us to find an explicit combinatorial representation
for o(n,p). We need three lemmas.

Lemma 4. ([11], p. 215 ) The number of compositions C(m,n,s) of m with n
positive parts not exceeding s is given by

min(n,|[ #5*])

Clm,n,s) = (1) (”) <m — - 1). (35)

= j n—1

Since C(m,n,1) = d,, n (Kronecker delta), then we have the identity

min(nzﬂi"b”)(_l)j (T;) <m;z 1— 1) — S (36)

Jj=0
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Lemma 5. The number of compositions Co(m,n, s) of m with n nonnegative parts
not exceeding s is given by

Cm+n,mn,s+1),ifm>n>1,5>2,
St Clmv,s)(,",),if L<m<n,s>2,
Co(m,n,s) =< 1,ifm=0,n>1,5>0, (37)
0,if m>n>1,s=1,
(::L)Jflgmgn,s:l.

Proof. First, let s > 2, m > n > 1. Decrease by 1 every part of a composition of
m + n with n positive parts not exceeding s + 1. Then we obtain a composition
of m with n nonnegative parts not exceeding s such that zero parts are allowed.
Second, let s > 2, 1 < m < n. Consider C(m, v, s) compositions of m with v < m
parts. To obtain n parts, consider n — v zero parts, which we choose in (nfy) ways.
Summing over 1 < v < m gives the required result. The other cases follow. O

Now let (n —1)" < N < (n — 1)1 n > 3. Consider the representation of N in
base n —1:
N=gyn—1"+ .. +g(n—1)+ g,

where g; = ¢;(N), ¢ =0, ..., h, are the digits of N, 0<g¢g; <n —2. Let

)= S g =Y g

i is even i s odd
Lemma 6. N is a multiple of n if and only if s°(N) = s¢(N) (mod n).
Proof. The lemma follows from the relation (n — 1) = (=1)" (mod n),i >0. O
Now we obtain an explicit combinatorial formula for o(n, p).

Theorem 7. Forn >3, p > 1, we have

(n—2)p
n .
U(nap) = 5 Z ((COU»PJL - 2))2+
j=0
[
2 > (=1)*Co(j,p.n—2)Co(j + nk,p,n — 2)), (38)

k=1
where Co(m,n, s) is defined by (37).
Proof. Consider all nonnegative integers N not exceeding (n —1)?? — 1 that have 2p

digits g;(IN) in base n — 1 (leading zeroes are allowed). Let the sum of the digits of
N in the even p positions be j, while for the odd p positions, let the sum be j + kn
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where k is a positive integer. Then, by Lemma 6, such N are multiples of n. Since
in base n — 1 the digits do not exceed n — 2, then the number of ways to choose
such N, for k = 0, is (Co(j,p,n — 2))?. In case k > 1, we should also consider the
symmetric case when in the odd p positions the sum of the digits of IV is j, while
over the even p positions, the sum is j+ kn with a positive integer k. For £ > 1 this
gives 2Cy(j,p,n — 2)Co(j + kn,p,n — 2) required N. Furthermore, since n is odd,
then if k is odd, s,—1(N) is also odd. If k is even, then s,_1(N) is even. Thus the
difference, S,,((n — 1)?P), between n-multiple N's with even and odd digit sums is

Su((n = 1)) = ((Co(j.p,n —2))*+

J

2 " (=1)*Co(j,p,n — 2)Co(j + nk,p,n — 2)).

k
Now to obtain (38), note that 0 < j < (n — 2)p, and for k > 1, j + nk < (n — 2)p,
sothat 1 <k < %, and that by (29), o(n,p) = 25,((n — 1)?). O

Example 8. Let n = 5,p = 2. By Theorem 7, we have

6
0(57 2) =25 Z((OO(.]a 27 3))2+
=0
L%5]
2 Y (~1)*Co(4,2,3)Co(j + 5k, 2,3)). (39)

k=1

We have
Co(0,2,3) =1,C9(1,2,3) =2,Cs(2,2,3) = 3,
CO(37 27 3) = 47 00(43 23 3) = 37 00(55 2’ 3) = 27 C0(67 27 3) =1.

Thus

((Co(4,2,3))? = 44.

-

Il
o

J

In the cases j =0,k =1and j =1,k =1 we have
Co(0,2,3)Co(5,2,3) =2, Cp(1,2,3)Cy(6,2,3) = 2.
Thus

23 > (—1)*Co(4,2,3)Co(j + 5k, 2,3)) = -8

=0 k=1

and, by (39),
0(5,2) = 2.5(44 — 8) = 90.
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On the other hand, by (1),

2
k
o(5,2) = > tan* % = 0.278640.. .. + 89.721359 ... = 89.999999 . ..
k=1
Example 9. In case n = 3, then by Theorem 7 and formulas (17) and (37), we

have
p

P = ;;)((Co(ja% D)+

L252)

2 )" (=1)*Co(j,p, 1)Co(j + 3k, p, 1)) =
k=1

) e S ()

Using the well-known formula 520((2)2 = (2;’), we obtain the identity

ji:o 2 @ <3kp+ j) =3 - %(2;)

or, changing the order of summation,

(p —|2—p3k) ’ (40)

b

U
<
N——
7N

(U8

ol

_i_’@
.
N——

I

we obtain the identity

)

Note that (41) was proved by another method by Shevelev [12] and again by
Merca [7] (cf. Cor. 8.3)

L5

wls

k=1
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