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Abstract
Balancing numbers n and balancers r are solutions of the Diophantine equation
1424+...+(n—=1)=Mn+1)+n+2)+...+ (n+7). It is well-known that if n
is a balancing number, then 8n2 + 1 is a perfect square and its positive square root
is called a Lucas-balancing number. In this paper, some new identities involving
balancing and Lucas-balancing numbers are obtained. Some divisibility properties
of these numbers are also studied.

1. Introduction

The concept of balancing numbers was originally introduced by A. Behera and G.K.
Panda [1] in connection with the Diophantine equation

142+...+(n—1)=n+1)+n+2)+...+(n+7r),

where n is a balancing number, and r is a balancer corresponding to n. The numbers
6, 35 and 204 are balancing numbers with balancers 2, 14 and 84 respectively. The
nt" balancing number is denoted by B, and the balancing numbers satisfy the

recurrence relation
BnJrl = 6Bn - anﬁ n Z 27 (1)

with By = 1 and By = 6 [1]. The recurrence relation for Lucas-balancing numbers
is also similar to balancing numbers and is given by

Cn—i—l =6C, — Cn—l; n>2, (2)

where C,, = \/8B2 4 1 denotes the nth Lucas-balancing number with C; = 3 and
Cy =17 [12]. In [6], K. Liptai searched for those balancing numbers which are also
Fibonacci numbers and found that the only balancing number in the sequence of
Fibonacci numbers is 1. In [7], he also proved that there is no Lucas number in the
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sequence of balancing numbers. L. Szalay, in [16], also obtained the same result. In a
subsequent paper, K. Liptai et al. [8] added another interesting result to the theory
of balancing numbers by generalizing these numbers. A. Berczes et al. [2] and P.
Olajos [9] studied many interesting properties of generalized balancing numbers.
G.K. Panda [12] established many useful identities involving balancing and Lucas-
balancing numbers. Certain congruence properties of balancing numbers were also
studied in [15]. In [13, 14], the author established some new product formulas for
balancing and Lucas-balancing numbers. Recently, R. Keskin and O. Karaath [4]
obtained some new properties for balancing numbers and square triangular numbers.

There are many well-known relationships between balancing and Lucas-balancing
numbers. Most of the relationships were established from the Binet’s formulas

n —n n —n
B, - M AT o ATEAT
2v/8 2

where A = 3+ v/8 and A~! = 3 — /8. An interesting fact is that, for all integers n,
AN =AB, —B,_1and A" =\"'B, - B,_;.

In this paper, we establish some interesting sum formulas involving balancing
and Lucas-balancing numbers and then obtain some congruences concerning these
numbers. These congruences allow us to prove many known and new properties of

3)

balancing and Lucas-balancing numbers. With these congruences, certain results
concerning divisibility properties are also discussed.

2. Sums and Congruences Concerning Balancing and Lucas-Balancing
Numbers

The following lemma is useful for proving the subsequent important results.

Lemma 2.1. If X is a square matriz of order 2 with X? = 6X — I where I is the
identity matriz of the same order as X, then X™ = B, X — B,,_11 for all integers
n.

Proof. Since A = 3++/8, it can be easily shown that the set Z[\] = {aA—b: a,b € Z}
is a ring. Therefore, the set Z[X] = {aX —bI : a,b € Z} is also a ring. Further, the
mapping ¢ : Z[\| — Z[X] defined by p(aX —b) = aX — bl is a ring isomorphism
and by considering the facts ¢(\) = X and ¢(Cy,) = —C, 1, we get

O

Observe that if § = E g] then S? = 6S — I. Using the well known identity

3B,, — B,—1 = C,, [12], the following result follows from Lemma 2.1.
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Corollary 2.2. If S = [ ] ;8" = [Bn Cn} '

As usual, let B,, and C,, be the m‘" balancing number and m*" Lucas-balancing
number respectively. Since A = 34+/8, the following identities can be easily verified.

A2 20, A ™ 4+ 1 =0,
A2 _ 9B, V/8A — 1 = 0.

(4)
()

Moreover, as the mapping ¢ : Z[\] — Z[S] defined by ¢(aX —b) = aS — bl is a

ring isomorphism, applying ¢ to the identities (4) and (5), we obtain

S2m —920,,8™ +1 =0,
S§%m _ 9B, KS™ — I =0,

where K = ¢(v/8) = p(A—3) =8 — 3] = [(1) g}

We are now in a position to present our main results.

Theorem 2.3. For any n € N and m,k € Z, we have

Can+k = (71)n Z (?) (71)j2j07jncmj+ka
7=0

B = (0" 3 () (12 .
=0
Proof. By (5), §*™ = 2C,,S™ — I for each m € Z. This gives

g2mn _ (2Cmsm . I)n _ (_l)n i <;L) (_1)j2jc7j;l5mj.

=0

Multiplying both sides by S*, we obtain
g2mntk _ (_1)n "Y1 i9i gmithk.
1y (G) cvve,
7=0
Now the results follow from Corollary 2.2.

The following corollary is an immediate consequence of Theorem 2.3.

Corollary 2.4. For anyn € N and m,k € Z,

B2mn+k = (—1)”Bk (mod Cm), Can—i—k = (—1)"Ck (mod Cm)

(6)
(7)
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Since K = S — 31, it follows that 2K = S — S~!. Therefore, S"K = KS™ for
every integer m. Moreover, K2 = 81 and

0 8|a b| |8 8&d
1 0||c d|l |a b
These results are very useful for the proof of the following theorem.

Theorem 2.5. For eachn € N and m,k € Z,

L3 L5+
Comntk = Z( ) 87221 B2 Copj ik + Z <2 . 1) gt BRI,

7=0

13 = |

B2mn+k = <2 > 8]22JB ]BQm_H—k + Z ( i 4 1) 8j22]+13727{+1c2mj+m+k:-
j=0

S

3

Proof. By (6), S?™ = 2B,, KS™ + I and we have

C2mn+k SBanJrk
BZmn+k C2mn+k:

S 2mn-+k
( B K57n+])nsk

Mz

(”;) 9J )i gi_ gmitk
j m

=0
%] L2z _ _ _ _
= Z (2]) 22JK2JB2JS2mJ+k + Z < - 1) 22J+1K2j+133rg+15(2j+1)m+k
j=0
1] n TJ "
_ 7627 R2j o2mj+k jo2i+1 p2j+1 (2j+1)m+k
_Z<2j>82 B#S +Z<2j+1)82 BYHKS
7=0 7=0
L5)
— 8]22]B2j Cij+k 8Bng+k
=0 2.7 B2mj+k: CQmj+k

5
n 8B, t S8Comjtm+k
T ) 87 221+1K2J+1B2j+1 mj+m+ mj
ZO <27 + 1) CZm]+m+k 8B2m]+m+k
This completes the proof. O

The following corollary is an immediate consequence of Theorem 2.5.

Corollary 2.6. For each n € NU{0} and m,k € Z,
Bomntk = B (mod By,), Comnir = Cr (mod Byp,). (9)



INTEGERS: 14 (2014) )

The following result is an important congruence for balancing numbers.
Theorem 2.7. For positive integers I, m and n with | # m,
B%Bln = Blann (mOd B’m—l)~
In order to prove Theorem 2.7, we need the following lemma. Note that the
n
lemma’s equation is an expansion of the identity Z (Z) BlkBl":lk B = By,,.

k=0
Lemma 2.8. For positive integers I, m and n with | # m,

3 <Z> BFB" B, = B" Bi.
k=0

Proof. By virtue of (1) and the identities A = AB,, — B,,—_1 and B,,—; = Bi11 B, —
By B,4+1, we obtain

> (3) st =3 (3) ot
k=0 k=0
= (BIA™ + Bm)"
= [Bi(ABm — Bm-1) + Biy1By — BiBj1]"
= [ABiBy, — 6B1By, + Bis1B|"
= B" [A\B; — B;_1]" = B \'".

In a similar manner, we can get

> (3) BB = g

k=0
Consequently,
n n o n n . )\mk: _ )\—nbk
> () BhEnima =3 (1) Bhm
k=0 k=0
)\ln _ )\—ln
=B —— = B} Bj,.
mUN AT mt

This ends the proof. O

Now we are in a position to prove Theorem 2.7.

Proof of Theorem 2.7. By virtue of Lemma 2.8 and the fact that B,,_; divides

n—k
B, we have

n—1

n n n — J—

BmBln - Bl an = Z (k) BlkBsLJ?Bmk =0 (mOd Bm—l)a
k=0

from which Theorem 2.7 follows. O



INTEGERS: 14 (2014) 6

3. Divisibility Properties of Balancing and Lucas-Balancing Numbers

The oldest non-trivial example of a divisibility sequence is probably the Fibonacci
sequence. Since then many examples of divisibility sequences such as Lucas
sequence, Mersenne sequence, generalized Mersenne sequences, balancing and
Lucas-balancing sequences were studied by different authors [5, 12, 17]. In [3], J.P.
Bézivin et al. characterized the totality of the divisibility properties of such
sequences.

In this section, we prove some known and new results concerning the divisibility
properties of balancing and Lucas-balancing numbers with the help of the
congruences given in Corollary 2.4 and Corollary 2.6. Before proving the results,
we first present some identities involving balancing and Lucas-balancing numbers
which will be needed subsequently. The proofs of these identities are omitted as
they can be easily obtained from the Binet’s formulas (3).

Lemma 3.1. For any integers m and k,

Cerk = Bk:Cerl - Cmkalv (10)
SBmfk = Cmckfl - Ckcmflv (11)
Bm-l—k - Bm+1Bk - BmBk—1~ (12)

Theorem 3.2. If m and n are any integers with m > 1, then C,,|Cy, if and only
if m|n and 7 is an odd integer.

Proof. Assume that C,,|C,, and n = mq + k, where 0 < k < m. if ¢ is an even
integer, then ¢ = 2t for some ¢t € Z. So using (7), we obtain

On = Cth+k = (—1)t0k (mod Om)

It follows that C,,|Ck. This is impossible because k < m, implies that Cy < Cp,.
Therefore ¢ must be an odd integer. Let ¢ = 2t + 1 for some t € Z. Now by (7), we
have

Cn = C2mt+m+k = (—1)tCm+k (mod Cm)

Thus, C,,|C,, implies that Cp,|Cptk. If & > 0, in view of (10), Cpn|BrCris1-
Since ged(Cyy,, Crpy1) = 1, Cpy| By, which is impossible because k < m and hence
By < By, < Cp,. Thus, k = 0 and hence n = mq where ¢ is an odd integer.
Conversely, suppose m|n and - is an odd integer. Let n = (2t 4 1)m for some
t € Z. By (7), we have C,, = Comirm = (=1)!C,, (mod Cp,); it follows that
Cin|Ch- O

Theorem 3.3. If m and n are any integers with m > 1, then Cp,| By, if and only
if m|n and % is an even integer.
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Proof. Assume that C,,|C,, and n = mqg + k where 0 < k < m and m > 1. If ¢ is
an odd integer, then ¢ = 2¢ — 1 for some ¢ € Z. Now by virtue of (7) and the well
known identity B_,, = —B,,, we obtain

By = Bomt—mik = (—=1)'B_ix (mod Cp,) = (=1)"™B,,_ (mod Cy,).

Now Cy,|Bn, we have C,|Bp,—r which implies that C,,|8Bm,—r. By (11),
Cm|CrCrr—1. Since ged(Chn, Cn—1) = 1, Cp|Cy which is impossible since k < m.
Thus, ¢ must be an even integer. Putting ¢ = 2¢ and using (7), we get

B, = Bopiir = (=1)'By (mod C,,).

Now C,,|B,, implies C,,|B; which is impossible since k < m. Therefore, we must
have k£ = 0. Thus, n = mq where ¢ is an even integer.

Conversely, suppose that m|n and > is an even integer. Let n = 2tm for some
t € Z. Using (7), we get

By, = Boyt = (—1)' By (mod Cy,),
from which it follows that C,,|B,. O

Theorem 3.4. If m and n are any natural numbers with m > 1, then By,|B,, if
and only if m|n.

Proof. Suppose that By,|By,, and if possible assume that m { n. Let n = mqg+r
where 0 < r < m and m > 1. If ¢ is an even integer, ¢ = 2t for some t € Z.
Using (9) and the fact that B_,, = —B,,, we obtain B,, = Boy+r = B, (mod B,).
Again B,,|B,, implies that B,,|B,. This is a contradiction since r < m. If ¢ is odd,
setting ¢ = 2t + 1 for some t € Z, we obtain B,, = Boymttmtr = Bmar (mod By,).
Since By,|By, it follows that By,|Bm4r. So by virtue of (12), B,,|Bmy1Br. As
gcd(B, Bm+1) = 1, we have B,,|B,.. Thus, we must have r = 0. This implies that
n = mgq and consequently m|n.

Conversely, suppose that m|n. Then n = mgq for some ¢ € N. Therefore by
equation (10) of [15], we get

q
By =3 (1) (-0 8522, B,
§=0
from which it follows that B,,|B,. O
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