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Abstract
We investigate some classes of untangle, a combinatorial game connected to

knot theory. In particular, we o↵er results for twist untangle, which is a pile
subtraction game like nim and wythoff’s game, but which does not break easily
into a sum of games.

1. Introduction

The game untangle, introduced in [6], is an impartial combinatorial game inspired
by knot theory. It is a hard game in the sense that it does not easily break into
sums to which the Sprague-Grundy algebraic theory of games can be applied.

1.1. Reidemeister Moves and Rules of the Game

untangle is a 2-player game played on a diagram1 of the unknot. The players take
turns reducing the number of crossings in the diagram using Reidemeister moves,
which are well-known from knot theory. Given a knot diagram, the three types of
Reidemeister moves are simple deformations that change the crossings but do not
change the knot. They are illustrated in Figure 1, where each picture is meant to
represent a portion of a larger knot diagram.

1A diagram of a knot is a regular, planar projection with extra structure indicating over- and
under-crossings. See [1], [7] or [8] for the general theory.
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Figure 1: Reidemeister moves.

Reidemeister [9], and independently, Alexander and Briggs [3] proved that any
two diagrams of a knot can be transformed from one to the other using only these
moves, together with planar isotopies. In particular, any diagram of the unknot
can be transformed into a circle with a finite sequence of Reidemeister moves and
planar isotopies. Figure 2 shows an example of this process.

Type III Type II

Type I

Type I

Figure 2: Transforming the unknot.

The positions of untangle are diagrams of the unknot, and players alternate
moves. A move in the game consists of changing the diagram by using a sequence of
Reidemeister moves (typically a single Reidemeister move), subject to the restriction
that it must be a minimal reducing sequence. That is, the sequence of Reidemeister
moves must reduce the number of crossings in the diagram, and if the sequence
consists of m Reidemeister moves, there cannot be a sequence of fewer than m
Reidemeister moves that would reduce the number of crossings. The game ends
when there are no crossings remaining in the diagram. The winner is the last player
to move, that is, the player who untangles the diagram.
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The rules guarantee that the game will end in a finite number of turns. Note
that, if a reducing Type I or Type II move is available, the restriction to a minimal
reducing sequence forces a turn to consist of a single Reidemeister move. If both
such reducing moves are available, the player may make either move. In all classes
of games that we will consider in this paper, there will be reducing Reidemeister
moves available from every position.

untangle is an impartial game, as both players have the same available moves
from every position. So, every game of untangle is equivalent to a single-heap
game of nim via the Sprague-Grundy theory. The size of the equivalent nim heap
is called the Grundy value of the game. One can compute the Grundy value recur-
sively: given a game position T with available options (positions to which a player
can move) S1, . . . , Sk, the Grundy value G(T ) := mex{G(S1), . . . ,G(Sk)}. Here the
mex (minimal excluded value) of a set of nonnegative integers is the smallest non-
negative integer not in the set. An impartial game is considered to be solved if
there is a formula (computable in polynomial time) for the Grundy value of any
given position. It is su�cient for a winning strategy to know all the positions that
have Grundy value 0, i.e., the P -positions. These are the positions that guarantee
a winning strategy for the previous player (or the second player to move). Players
want to move to these positions. All other positions are called N -positions, since
the next player to move has a winning strategy. It is always possible to move from
an N -position to a P -position, and never possible to move from a P -position to a
P -position. For the general theory of combinatorial games, see [2], [4] or [5].

1.2. Games of Two or Fewer Crossings

We can get a flavor for the structure of the game untangle by looking at the
positions with two or fewer crossings. Figure 3 is a directed graph of all such
positions, where moves in the game follow the edges downward. We may use this
diagram to notice that, for instance, the position in the center at the top of the
figure is a P -position since all play ends after exactly two moves. The position in
the very center of the diagram has Grundy value 2, since one of its options has
Grundy value 0 and the other two have Grundy value 1, and mex{0, 1} = 2. The
diagram also gives a sense of the vast expanse of the general game—such a diagram
of positions with three or fewer crossings would be a mess.

1.3. Twists and Their Relatives

A twist is a game position created from a planar circle by performing Type I Rei-
demeister moves (twisting left or twisting right) on a single arc. Figure 4 shows the
diagram of a twist position created with a left twists followed by b right twists. We
label this position LaRb. In general, a twist may be denoted La1Ra2La3Ra4 · · ·Lan ,
or La1 · · ·Ran , depending on whether n, the number of groupings of same-direction
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Figure 3: Positions of untangle with two or fewer crossings.

twists, is odd or even. We will also denote this twist by the vector of nonnega-
tive integers (a1, a2, a3, . . . , an). (Occasionally it will be useful notationally to have
ai = 0.) We call each instance of L and R in a twist a letter, and each expression of
the form Lk or Rk is a syllable of length k. So, the position (a, b) = LaRb is a twist
with two syllables and a + b letters. Note that all the options of a twist position
are also twists. So, the game twist untangle is a subgame of untangle. As we
will see, twist untangle is itself a nontrivial game.

Figure 4: The LaRb twist position.

An inner twist is a game position created by the same method as a twist,
except that the arc is twisted inside the original circle. Note that the twist position
(a1, a2, a3, . . . , an) is equivalent to (an, . . . , a3, a2, a1), but for an inner twist, the
order is not reversible. We denote an inner twist by (a1, a2, a3, . . . , an]. Figure 5(a)
shows the inner twist position (2, 2, 1].

An outer flower is a game position created from a circle by performing Type I
Reidemeister moves, twisting outward from the circle on separate arcs. As with
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Figure 5: Inner twist and outer flower.

twists, we may denote an outer flower by counting left and right twists as we trace
the diagram in one direction. Figure 5(b) shows the outer flower {L1;R2;R3},
which has three petals of one syllable each.

An inner flower is created the same way, except all twists are inward, into the
original circle. Because there are never Type II moves available that reduce two
petals at once, every inner flower is equivalent to the sum of the inner twist games
for each petal, so all analysis of inner flowers reduces to the computation of Grundy
values of inner twists.

Figure 6: An inner flower is a sum of inner twists.

Note that these are all special cases of untangle that can be obtained from the
circle by Type I moves only. This more general class of all such cases appears quite
di�cult to analyze.

2. Twists

2.1. General Facts

Recall that a position in twist untangle is represented by (a1, a2, · · · , an) where
each ai represents a syllable of ai letters, or twists, all of the same type (either
right or left twists). The available moves on these positions are reducing type I and
type II Reidemeister moves. A type I Reidemeister move will reduce either a1 or an
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by one, by untwisting the last twist on either the left or right end of the twist. If, for
example, a1 = 1 and we remove that one twist, then we end up with the new position
(a2, . . . , an). A type II Reidemeister move will reduce a pair of consecutive ai by
one each, by removing either LR or RL in the middle of the twist. If both of these
ai are reduced from one to zero, then both syllables are removed and the remaining
syllables are concatenated. For example, a type II move on the second and third
syllables of (2, 1, 1, 5, 6) leads to the position (2, 5, 6). If exactly one of the ai is
reduced to zero, then that syllable is removed and the two syllables surrounding
it are combined. For example, a type II move on the second and third syllables
of (2, 3, 1, 5, 6) results in the position (2, 7, 6). Our notation here makes twist
untangle look like a nim-type game, and in some cases (see Theorem 2 below) it
is. The fact that one can reduce neighboring syllables in one move reminds us of
wythoff’s game. As with many interesting games, this one does not break into
sums of games, as the above examples of concatenating and combining syllables
show, and so the typical algebraic analysis does not easily apply. Since each move
only reduces syllables by one letter, we have the following general result.

Theorem 1. A twist T = (a1, a2, a3, . . . , an), with all ai even, is a P -position.

Proof. We will prove this by induction. Let T be a game position (a1, a2, . . . , an)
with all ai even. Suppose that the above statement is true for all potential positions
obtained from T . Player 1’s move will a↵ect two adjacent letters (if he makes a type
2 Reidemeister move in somewhere in the center), or will a↵ect the single letter a1 or
an (if he makes a type 1 Reidemeister move on one of the ends). Player 2 can then
respond by mimicking Player 1, a↵ecting the same letters as Player 1. Notice that
the resulting position contains only syllables with even values, which is a P -position
by the induction hypothesis. Thus, no matter what move Player 1 makes on T , the
result is an N -position. Therefore, T is a P -position. The base case T = (0) is a
P -position as well.

The game contains a simple subtraction game, when all syllables have one letter.

Theorem 2. A twist in which every syllable has one letter has Grundy value equal
to the residue of the number of syllables modulo three. In particular, it is a P -
position i↵ the number of syllables is divisible by three.

Proof. Let T be a game position (1, 1, 1, . . . , 1) of arbitrary length n. Notice that
any Type I Reidemeister move on the endpoints will result in a game position
(1, 1, 1, . . . , 1) of length n � 1. Furthermore, any Type II Reidemeister move will
result in a game position (1, 1, 1, . . . , 1) of length n� 2. So, this game is equivalent
to the single pile subtraction game where a move consists of taking either one or
two counters, for which the Grundy values are well known.
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For further results on twists of arbitrary length, see Theorem 6.
We now consider the positions with three or fewer syllables. Clearly, a twist with

one syllable ends in the same number of moves as the number of letters, and so is
a P -position if and only if it has an even number of letters.

Theorem 3. A twist (a, b) with a � b has Grundy value 0 if a and b are both even,
2 if a and b are both odd, 1 if a is odd and b is even, and 3 if a is even and b is odd.

Corollary 4. A twist with two syllables is a P -position i↵ each syllable is even
(i.e., has an even number of letters).

Proof. Let T be a twist, T = (a, b). If a and b are both even, then the position
has Grundy value 0 by Theorem 1. We use induction to cover the remaining cases.
Suppose that the theorem statement is true for all potential positions from T :

1. Suppose a and b have opposite parity. Then one Type I move results in
Grundy value 0 while the other results in Grundy value 2. A Type II move
results in a position (a0, b0), where a0 and b0 have opposite parity but have
switched roles. Thus, if a is even, then (a0, b0) has Grundy value 1 and (a, b)
has Grundy value 3. If a is odd, then (a0, b0) has Grundy value 3 and (a, b)
has Grundy value 1.

2. Suppose a and b are both odd. Then a Type I move on b results in Grundy
value 1, while a Type I move on a results in Grundy value 3 (or 1 if a = b). A
Type II move results in Grundy value 0 (even when a or b or both are equal
to one). Thus T has Grundy value 2.

Therefore, in all cases the theorem statement is true for T . This completes the
proof

With similar methods, we may compute the Grundy values for positions with
three syllables.

Theorem 5. Suppose the twist T = (a, b, c) has a � c. Then the Grundy value of
T is

G(T ) =

8<
:

0 if a ⌘ c (mod 2)
2 if a 6⌘ c (mod 2), c = 1, and b > a
1 otherwise

Here we show only that T is a P -position if and only if a ⌘ c (mod 2).
Suppose a ⌘ c (mod 2). Then a Type I move will lead to a three-syllable position

with a 6⌘ c (mod 2), unless it removes the entire syllable. Note that if it removes the
syllable a or c, that syllable is 1 and the other is odd. In that case, the move results
in a two-syllable position, one of whose syllables is odd, which is an N -position by
Corollary 4. A Type II move will lead to a position where a 6⌘ c (mod 2) unless it
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removes one or two syllables. If it removes an end syllable, the result is a two-syllable
position, at least one of whose syllables is odd. If it removes the center syllable, the
result is a one-syllable position with an odd number of letters. If it removes two
syllables, the result again is a one-syllable position with an odd number of letters.
Thus, every possible move results in an N -position, and so T is a P -position.

Now suppose a 6⌘ c (mod 2). Then either a > 1 or c > 1, and so there is a Type
I move that results in a three-syllable position with a ⌘ c (mod 2), a P -position.
Thus, T is an N -position.

Theorem 6. Suppose T = (a1, 1, a2, 1, . . . , an, 1), S = (a1, 1, a2, 1, . . . , an), and
R = (a1, 1, a2, 1, . . . , an, 1, 1), with all ai > 1. If ai is odd for an even number of i,
then G(T ) = 3, G(S) = 0 and G(R) = 1. If ai is odd for an odd number of i, then
G(T ) = 2, G(S) = 1 and G(R) = 0.

Proof. In most cases, the options of these positions are of the same type as those
positions covered in the theorem. Note that a type II move typically results in the
sequence ai, 1, ai+1 being replaced by the single number ai +ai+1�1, thus changing
the total number of odd ai by 1 and keeping all ai > 1. As we proceed by induction,
the base cases are those where the options may not be covered by the statement of
the theorem: those where the position has three or fewer syllables (which are cases
of the theorems above), and those where a1 = 2, an = 2, or both (cases in which
an option can have some ai = 1).

For now we assume neither a1 nor an is 2. We say a position is T -type if it
fits the hypotheses of T above, and analogously for S-type and R-type. For any
such position Q, we let m(Q) be the residue of the number of odd ai modulo 2.
In the inductive proof, we will say an option Q0 of Q has the same m as Q if
m(Q0) = m(Q). Otherwise, we say it has the opposite m. By induction, these
options will have the Grundy values claimed in the statement of the theorem for
their type and parity m.

The options of T are (a1� 1, 1, . . . , an, 1), which is T -type with opposite m from
that of T , (a1, 1, a2, . . . , an), which is S-type with the same m, (a1, 1, . . . , 1, ai +
ai+1 � 1, 1, . . . , an, 1), which is T -type with opposite m, and (a1, 1, . . . , 1, an � 1),
which is S-type with opposite m. If m(T ) is even, then by induction these options
have Grundy values 2, 1, 2, and 0 respectively, and so G(T ) = mex{0, 1, 2} = 3.
If m(T ) is odd, then by induction these options have Grundy values 3, 0, 3, and 1
respectively, and so G(T ) = mex{0, 1, 3} = 2.

Similarly, any type I or type II move on S will result in an S-type position with
opposite m. So, by induction, if m(S) is even, then G(S) = mex{1} = 0, and if
m(S) is odd, then G(S) = mex{0} = 1.

With the exception of moves involving the two rightmost syllables, any type I
or type II move on R will result in an R-type position with opposite m. The other
three options are an S-type position with the same m and a T -type position with
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the same m. Thus, by induction, if m(R) is even, then the options of R have Grundy
values 0 and 3, and so G(R) = 1. If m(R) is odd, then the options of R have Grundy
values 1 and 2, and so G(R) = 0.

Now for the base cases a1 = 2 or an = 2, with the positions having at least
four syllables. In case an = 2, the last of the options of T listed above becomes
(a1, 1, . . . , an�1, 1, 1), which is R-type with the same m, and thus has the same
Grundy value as an S-type position with opposite m. Thus, in this case G(T ) will
be as claimed. If an = 2, S will also have the additional option (a1, 1, . . . , an�1, 1, 1),
which has the same Grundy value as an S-type position with opposite m, and so
G(S) will remain as claimed. The options of R are unchanged in case an = 2.

In case a1 = 2, the first option of T becomes T 0 = (1, 1, . . . , an, 1), which itself
has the option (a2, 1, . . . , an, 1), which is T -type with the same m. Thus by the
mex rule, T 0 does not have the claimed Grundy value of T . Since the remaining
options of T cover the same types of options as in the case a1 > 2, G(T ) will be
as claimed. If a1 = 2, a type II move on S gives a position of S-type and opposite
m, but S has the additional option (1, 1, a2, . . . , an). By symmetry, this position
is again of R-type with the same m as S, and thus has the same Grundy value as
an S-type position with opposite m. Thus, S has the claimed Grundy value. If
a1 = 2, R has the options listed above with the exception of the first option, which
will be R0 = (1, 1, a2, . . . , an, 1, 1). But, R0 has the option (a2, 1, . . . , an, 1, 1), which
is R-type with the same m as R, and thus R0 cannot have the same Grundy value
as an R-type position with the same m as R. Since R-type Grundy values are only
0 or 1, G(R) will be as claimed.

One might hope to find a similar result when the 1’s in the even positions are
replaced by general odd numbers. The situation is a bit more complicated, as
seen in the theorem on twists with four syllables below. Furthermore, the position
(2, 3, 2, 1, 2, 3, 4, 8, 4) has Grundy value 1 and (2, 3, 2, 1, 2, 3, 4, 9, 4) has Grundy value
3, which would rule out a similar result for the S-type positions, even when the ai

are all even.
Using Theorem 6 and similar techniques, we can also prove

Theorem 7. Suppose U = (1, a1, 1, a2, 1, . . . , an, 1), V = (1, a1, 1, a2, 1, . . . , an, 1, 1),
and W = (1, 1, a1, 1, a2, 1, . . . , an, 1, 1), with all ai > 1. If ai is odd for an even num-
ber of i, then G(V ) = 2 and G(W ) = 0. If ai is odd for an odd number of i, then
G(V ) = 3 and G(W ) = 1. G(U) is 0 if n is odd and 1 if n is even.

2.2. Twists with Four Syllables

Our theorem on four-syllable twists illustrates some of the complexity of twist
untangle.
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Theorem 8. Let T = (a, b, c, d) be a twist with four letters, reflected so that
(a, b, c, d) mod 2 is smaller in the dictionary order. T is a P -position if and only
if it satisfies one of the following.

1. (a, b, c, d) ⌘ (0, 0, 0, 0) (mod 2)

2. (a, b, c, d) ⌘ (0, 0, 1, 0) (mod 2), b� a > c� d and b > a

3. (a, b, c, d) ⌘ (0, 1, 0, 1) (mod 2), a > b and c < d

4. (a, b, c, d) ⌘ (0, 1, 0, 1) (mod 2), a < b, b� a > c� d and d > 1

5. (a, b, c, d) ⌘ (0, 1, 1, 1) (mod 2), a > b and d � c

6. (a, b, c, d) ⌘ (0, 1, 1, 1) (mod 2), a < b, b� a > c� d and d > 1

7. (a, b, c, d) ⌘ (1, 0, 0, 1) (mod 2), a < b, b� a = c� d, a > 1 and d > 1

Our proof of this theorem is omitted, but uses the same ideas as those used to
prove the special case of Theorem 5 above.

2.3. Palindromes

A twist is a palindrome if it can be read the same way backwards and forwards:
for example, the twist (5, 4, 2, 6, 2, 4, 5) is a palindrome. Palindromes are somewhat
easier to analyze due to their symmetry.

Theorem 9. Let S be a palindrome with 2n � 1 letters. If the nth (i.e., central)
syllable of S is even, then S is a P -position.

Proof. We will prove this by induction. Let S be the palindrome described above,
and suppose that the above statement is true for all potential positions of S. Then
no matter where Player 1 moves, Player 2 can make a symmetrical move. Notice
that the resulting twist will be a palindrome with an even center. By induction,
this is a P -position, making T a P -position as well. Note that our base case T = (0)
is a P position.

The case when the central syllable is odd is interesting. Such twists with three
syllables are P -positions, as we can see easily from Theorem 5. Those with five
syllables are N -positions, since they have an option of the type covered in the
following theorem.

Theorem 10. Let S = (a1, a2, a3, a2 � 1, a1), where a3 � 0 is even and a1, a2 > 0.
Then S is a P -position.
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Proof. We note that if a3 = 0 or a2 = 1, the position resolves to a three syllable
position where the ends have the same parity, and is thus a P -position. Assuming
a3 > 0 and a2 > 1, we suppose that the statement is true of all potential positions
of S. In most cases, Player 2 can make a symmetrical move to Player 1’s move
and obtain the same type of position, which is a P -position by induction. The
cases not covered are when a1 = 1 and Player 1 moves to either (a2, a3, a2 � 1, 1),
(a2 � 1, a3, a2 � 1, 1), (1, a2, a3, a2 � 2), or (1, a2, a3, a2 � 1). These positions have
one of the options (a2, a3, a2�2), or (a2�1, a3, a2�1), which are both P -positions,
even if a2 = 2. Thus, the theorem is proved.

Seven-syllables palindromes with central syllable odd can be either. For example,
(1, 2, 3, 1, 3, 2, 1) is a P -position while (1, 2, 3, 3, 3, 2, 1) is an N -position. We have
the following conjectures based on data for seven syllable palindromes.

Conjecture 11. For a five syllable palindrome vector S and a > 0, if (a, S, a) is a
P -position, then (a + k, S, a + k) is a P -position for all k � 0.

Conjecture 12. The only seven syllable palindrome N-positions are (1, 2, 1, 1, 1, 2, 1)
and for k � 1, (1, 1, 1, k, 1, 1, 1), (2, 1, 1, k, 1, 1, 2), and (1, 2, k+2, 2k+1, k+2, 2, 1).

3. Relatives of Twists

3.1. Inner Twists

Intuitively, inner twists are slightly easier to analyze than full twists, since there
is one fewer option from every position. For an inner twist (a1, . . . , an], we call a1

the open end syllable and an the closed end syllable. First, we have an analogue of
Theorem 1 with the same proof.

Theorem 13. An inner twist with all even syllables is a P -position.

We can also analyze the cases with a small number of syllables, as before.

Theorem 14. The inner twist (a, b] has Grundy value 0 if a is even, 2 if a = 1,
and 1 otherwise.

Proof. The two options from the position (a, b] are (a � 1, b] and (a � 1, b � 1].
If a = 1, these options are single syllables of opposite parity, which have Grundy
values 0 and 1, and thus (a, b] has Grundy value 2. If a is even and b > 1, these
options are two syllables with the open end being odd or 1, and so by induction
have Grundy value 1 or 2. If a is even and b = 1, the second option is a single odd
syllable, and thus has Grundy value 1. By the mex rule, the Grundy value of (a, b]
is 0. If a > 1 is odd, these options are two syllables with the open end being even,
and so by induction have Grundy value 0. Thus, (a, b] has Grundy value 1 in this
case.
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Theorem 15. The inner twist (a, b, c] is a P -position if and only if either a > 1
has the same parity as c or a = 1, b = 1, and c is odd.

Proof. Suppose a > 1 has the same parity as c. Any move will change the parity
of a or c, but not both, and so by induction will lead to an N -position. If a = 1,
b = 1, and c is odd, then the options are (1, c], (1, c � 1], and (c], all of which are
N -positions, even if c = 1. Now suppose (a, b, c] does not satisfy the condition in
the statement of the theorem, so that it falls into one of the following four cases,
each of which we will show has a P -position option. Suppose a = 1, b = 1, and c is
even. Then one option is (c], which is a P -position. Suppose a = 1 and b > 1. Then
two options are (b, c] and (b � 1, c], one of which is a P -position by Theorem 14.
Suppose a > 1 is odd and c is even. Then the option (a� 1, b, c] is a P -position by
induction. Lastly, suppose a is even and c is odd. Then the option (a, b� 1, c� 1]
is a P -position. We know this by induction if it is a three syllable position, and by
previous results if it is a one or two syllable position.

We have an analogue of Theorem 6 for inner twists.

Theorem 16. Consider the inner twist position T = (a1, 1, a2, 1, . . . , an], or T =
(a1, 1, a2, 1, . . . , an, 1], where ai > 1 for all i. If ai is odd for an even number of i,
then G(T ) = 0. If ai is odd for an odd number of i, then G(T ) = 1.

Proof. The type I move creates T 0 = (a1 � 1, 1, a2, . . .]. Type II moves replace the
sequence ai, 1, ai+1 with the single number ai +ai+1� 1, or replace (. . . , an, 1] with
(. . . , an � 1]. As long as a1, an > 2, all options of T are covered by the theorem
statement, and so by induction they have the Grundy value claimed by the theorem.
All of the options have one more or one fewer odd ai than T , and so have Grundy
value 0 in the case G(T ) is claimed to be 1, and vice versa. By the mex rule, T has
the Grundy value as claimed in the theorem. One exception occurs when a1 = 2,
in which case T 0 = (1, 1, a2, 1, . . .] is not covered in the theorem statement. This
position itself has the option (a2, 1, . . .], a position covered by the theorem with the
same parity of odd ai as (2, 1, a2, . . .]. Thus, T 0 cannot have the Grundy value we
claim for T . Since T also has the option T 00 = (2 + a2 � 1, 1, . . .], which is of the
same type with one more or one fewer odd ai as before, the theorem remains true
for T . The exception an = 2 is handled similarly: T = (. . . , an�1, 1, 2, 1] has option
T 0 = (. . . , an�1, 1, 1], which is not covered by the theorem statement. But this T 0

has an option (. . . , an�1]. Thus T 0 cannot have the Grundy value claimed for T .
But since T also has the option T 00 = (. . . , an�1 +1, 1] (which has opposite parity of
odd ai), the theorem is true for T . The only remaining base case is T = (2], which
has Grundy value 0 as claimed.

As with twists, we have evidence for conjectures that extend Theorems 13 and
16.
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Conjecture 17. The inner twist (a, b, c, d] is a P -position if a > 2 and a and c
have the same parity.

Conjecture 18. Let S = (a1, . . . , ak] an inner twist. If for all i odd, ai is even
and greater than 2, then S is a P -position.

3.2. Flowers

As stated in the introduction, inner flowers are sums of the inner twist positions
that make up each of their petals, and so computing Grundy values for inner twists
is useful for determining the outcome of games of untangle on inner flowers.
Theorem 14 then leads to the following

Corollary 19. Suppose an inner flower has petals with at most two syllables. It
is a P -position if and only if it has an even number of two syllable petals with the
open end syllable of length 1, and an even total number of two syllable petals with
the open end syllable a > 1 odd and one syllable petals with odd length.

Outer flowers are interesting because towards the end of the game the petals can
interact. However, in the case of outer flowers with all one-syllable petals, the e↵ect
is nearly the same as if they did not interact. Of course, an outer flower with one
or two petals is a game of twist untangle.

Theorem 20. Suppose an outer flower has all one-syllable petals. In case there
are more than two petals, it is a P -position if and only if the number of odd petals
is even.

Proof. The only available move in a position with more than two petals is a type
I move to reduce a petal by one twist. Unless it removes a petal entirely, such a
move will always change the parity of the number of odd petals. By induction, the
options of a position with an even number of odd petals are N -positions, and the
options of a position with an odd number of odd petals are P -positions, as long as
the options have at least three petals. The only case we need to check is that of a
three-petal outer flower, one of whose petals has one letter. Call this position F .
In case the only odd petal of F is the single letter, we may remove it with a type I
move, and the result will be a position of twist untangle with all (one or two)
even syllables, a P -position. So, in this case F is indeed an N -position. In case
the other two petals are opposite parity, removing the single letter petal results in
a position of twist untangle with at most two syllables and an odd number of
total letters, which is an N -position. The remaining options of F were already seen
to be N -positions, and so F is a P -position. Lastly, suppose F has an odd number
of letters in each petal. If any of the petals has more than one letter, we may reduce
that petal to an even number of letters, which is a P -position by induction. If all
the petals have one letter, we consider F to be the result of performing one type
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I twist on each of three arcs of a circle. At least one pair of these twists will have
had the same orientation outward from the circle (both left twists or both right
twists). Removing the third petal reduces to the one-syllable position (2) in twist
untangle, which is a P -position, and thus F is an N -position.

Question 21. Suppose an outer flower has more than two petals. Can we determine
if it is a P -position from the Grundy values of the petals (considered as inner twists)?

4. Nim Dimension

We conclude with a question regarding large Grundy values found in positions of
twist untangle, inspired by [10].

Question 22. Does twist untangle have infinite nim dimension? That is, given
any n, is there a twist untangle position T such that G(T ) � n?

Our current record-holder is G((1, 2, 3, 4, 5, 6, 3, 4, 3, 5)) = 11.

Acknowledgement We would like to thank the anonymous reviewer for pointing
out the first example presented in the paragraph preceeding Theorem 7.
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