GENERATING d-COMPOSITE SANDWICH NUMBERS

Lenny Jones
Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania
lkjone@ship.edu
Alicia Lamarche
Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania
al5903@ship.edu

Received: 6/2/13, Revised: 12/6/13, Accepted: 2/17/14, Published: 6/15/15

Abstract

Let $d \in \mathcal{D}=\{1, \ldots, 9\}$, and let k be a positive integer with $\operatorname{gcd}(k, 10 d)=1$. Define a sequence $\left\{s_{n}(k, d)\right\}_{n=1}^{\infty}$ by $$
s_{n}(k, d):=k \underbrace{d d \ldots d}_{n} k .
$$

We say k is a d-composite sandwich number if $s_{n}(k, d)$ is composite for all $n \geq 1$. For a d-composite sandwich number k, we say k is trivial if $s_{n}(k, d)$ is divisible by the same prime for all $n \geq 1$, and nontrivial otherwise. In this paper, we develop a simple criterion to determine when a d-composite sandwich number is nontrivial, and we use it to establish many results concerning which types of integers can be d-composite sandwich numbers. For example, we prove that there exist infinitely many primes that are simultaneously trivial d-composite sandwich numbers for all $d \in \mathcal{D}$. We also show that there exist infinitely many positive integers that are simultaneously nontrivial d-composite sandwich numbers for all $d \in D$, where $D \subset \mathcal{D}$ with $|D|=4$ and $D \neq\{3,6,7,9\}$.

1. Introduction

In [22], the first author proved that for any given fixed digit $d \in\{1,3,5,7\}$, there exist infinitely many positive integers k, such that $\operatorname{gcd}(k, d)=1$ and every integer in the sequence

$$
k d, \quad k d d, \quad k d d d, \quad k d d d d, \quad k d d d d d, \quad \ldots,
$$

is composite. Other authors $[16,23,24]$ have handled modifications of this appendingdigits problem. An inserting-digits problem was treated in [13]. In this paper, we
investigate the following variation. Let $d \in \mathcal{D}=\{1, \ldots, 9\}$, and let k be a positive integer with $\operatorname{gcd}(k, 10 d)=1$. Define a sequence $\left\{s_{n}(k, d)\right\}_{n=1}^{\infty}$ by

$$
\begin{equation*}
s_{n}(k, d):=k \underbrace{d d \ldots d}_{n} k . \tag{1.1}
\end{equation*}
$$

We say k is a d-composite sandwich number if $s_{n}(k, d)$ is composite for all $n \geq 1$. If there exists a prime p such that $s_{n}(k, d) \equiv 0(\bmod p)$ for all $n \geq 1$, we say k is trivial, otherwise we say k is nontrivial. The restriction that $\operatorname{gcd}(k, 10 d)=1$ has been imposed to discard obvious trivial situations. If $d=0$, we observe that $\operatorname{gcd}(k, 10 d)=$ k, so that $d=0$ is ruled out except possibly in the case of $k=1$. However, since $s_{1}(1,0)=101$ is prime, we see that $k=1$ is not a 0 -composite sandwich number, and we can exclude the digit $d=0$ from all consideration. Therefore, we assume throughout this article that $d \in \mathcal{D}$ and k is a positive integer with $\operatorname{gcd}(k, 10 d)=1$. We prove results concerning what types of integers can be d-composite sandwich numbers, and we consider both trivial and nontrivial situations. In particular, we prove the following.

Theorem 1.1. For any $d \in \mathcal{D}$, there exist infinitely many primes that are trivial d-composite sandwich numbers.
Theorem 1.2. There exist infinitely many primes q that are simultaneously trivial d-composite sandwich numbers for all $d \in \mathcal{D}$.
Theorem 1.3. For any $d \in \mathcal{D}$, there exist infinitely many nontrivial d-composite sandwich numbers.

Theorem 1.4. There exist infinitely many positive integers that are simultaneously nontrivial d-composite sandwich numbers for all $d \in D$, where $D \subset \mathcal{D}$ with $|D|=4$ and $D \neq\{3,6,7,9\}$.
Theorem 1.5. For any $d \in \mathcal{D}$, there are infinitely many sets of 13 consecutive positive integers that are all d-composite sandwich numbers.
Theorem 1.6. For any $d \in \mathcal{D}$, there are infinitely many positive integers k such that k^{2} is simultaneously a d-composite sandwich number, a Sierpinski number and a Riesel number.
Remark 1.7. Although Theorem 1.1 follows directly from Theorem 1.2, we nevertheless treat it independently since we find the smallest trivial d-composite sandwich number for each individual digit $d \in \mathcal{D}$.

2. Preliminaries

This section contains some basic definitions and concepts that are useful in this paper. Other preliminary concepts that are needed for the proof of only one theorem are presented in the appropriate section.

Definition 2.1. Let $a>1$ be an integer. A prime divisor p of $a^{n}-1$ is called a primitive divisor of $a^{n}-1$ if $a^{m} \not \equiv 1(\bmod p)$ for all positive integers $m<n$.

The following theorem concerning the existence of primitive divisors is due to Bang [1].

Theorem 2.2. Let a and n be positive integers with $a \geq 2$. Then $a^{n}-1$ has a primitive divisor with the following exceptions:

- $a=2$ and $n=6$
- $a+1$ is a power of 2 and $n=2$.

In terms of group theory, the prime p is a primitive divisor of $a^{n}-1$ if and only if n is the order of a in the group of units modulo p. We denote this order as $\operatorname{ord}_{p}(a)$.

The following concept, which is due to Erdős [9], plays an essential role in the proofs of many of our results.

Definition 2.3. A (finite) covering system, or simply a covering, of the integers is a system of congruences $x \equiv a_{i}\left(\bmod m_{i}\right)$, with $1 \leq i \leq t$ such that every integer n satisfies at least one of the congruences. To avoid a trivial situation, we require $m_{i}>1$ for all i. We let $\mathcal{M}=\operatorname{lcm}_{i}\left(m_{i}\right)$ for all moduli m_{i} in a covering.

Many applications of coverings require an associated set of primes, where each of these primes corresponds in some way to a particular modulus in the covering. It will be convenient throughout this article to represent a covering and the associated set of primes using a set \mathcal{C} of ordered triples $\left(a_{i}, m_{i}, p_{i}\right)$ (or simply ordered pairs $\left(a_{i}, m_{i}\right)$ if the primes p_{i} are too large to display conveniently), where $x \equiv a_{i}\left(\bmod m_{i}\right)$ is a congruence in the covering and p_{i} is the corresponding prime. When a covering is used for a proof of a theorem in this article, the correspondence between the prime p_{i} and the modulus m_{i} is that p_{i} is either a primitive divisor of $10^{m_{i}}-1$ (with the exception of $p_{i}=3$), or that p_{i} is a primitive divisor of $2^{m_{i}}-1$ for all i in the covering. For certain moduli m_{i}, the numbers $10^{m_{i}}-1$ and $2^{m_{i}}-1$ have more than one primitive divisor. In those cases, the corresponding modulus m_{i} can be used repeatedly in the covering - once for each primitive divisor. Abusing notation slightly, we refer to \mathcal{C} as a "covering".

For a positive integer k, we let $\ell(k)$ denote the number of digits in the decimal representation of k. In this paper, we are concerned with the sequence $\left\{s_{n}(k, d)\right\}_{n=1}^{\infty}$ defined in (1.1). It will be convenient to use the following easily-derived formula for $s_{n}(k, d)$:

$$
\begin{equation*}
s_{n}(k, d)=k\left(10^{\ell(k)+n}+1\right)+d \cdot 10^{\ell(k)}\left(\frac{10^{n}-1}{9}\right) . \tag{2.1}
\end{equation*}
$$

Computer computations in this paper were performed by the authors using Maple and MAGMA.

3. Trivial Situations

Recall that k is a trivial d-composite sandwich number if there exists a prime p such that $s_{n}(k, d) \equiv 0(\bmod p)$ for all $n \geq 1$. It may not be immediately apparent that such numbers even exist, but in fact, we shall see that they are quite abundant. In this section we determine necessary and sufficient conditions on k, such that k is a trivial d-composite sandwich number.

Theorem 3.1. Let $d \in \mathcal{D}$ and let $k \geq 1$ be an integer such that $\operatorname{gcd}(k, 10 d)=1$. Then k is a trivial d-composite sandwich number if and only if $\operatorname{gcd}\left(9 k+d, 10^{\ell(k)}+\right.$ 1) >1.

Proof. Assume first that k is a trivial d-composite sandwich number. Then there exists a prime p such that $s_{n}(k, d) \equiv 0(\bmod p)$ for all $n \geq 1$. Note that if $p=3$, then
$s_{n}(k, d)=k\left(10^{n+\ell(k)}+1\right)+d\left(10^{n-1}+10^{n-2}+\cdots+1\right) 10^{\ell(k)} \equiv 2 k+n d \quad(\bmod 3)$.
Hence, $s_{n}(k, d) \equiv 0(\bmod 3)$ for all $n \geq 1$ if and only if $\operatorname{gcd}(k, d) \equiv 0(\bmod 3)$, which we have excluded from consideration here. Thus, $p \geq 7$, since the condition $\operatorname{gcd}(k, 10 d)=1$ also excludes the possibility that $p=2$ or $p=5$. Since $s_{n}(k, d) \equiv 0$ $(\bmod p)$, we have that

$$
0 \equiv 9 \cdot s_{n}(k, d) \equiv A \cdot 10^{n}+B \quad(\bmod p)
$$

where

$$
\begin{equation*}
A \equiv(9 k+d) 10^{\ell(k)} \quad(\bmod p) \quad \text { and } \quad B \equiv 9 k-d \cdot 10^{\ell(k)} \quad(\bmod p) \tag{3.1}
\end{equation*}
$$

Since $s_{1}(k, d) \equiv s_{2}(k, d) \equiv 0(\bmod p)$, we deduce that $90 A \equiv 0(\bmod p)$. Since $p \geq 7$, it follows that $A \equiv B \equiv 0(\bmod p)$, and so $9 k+d \equiv 0(\bmod p)$. Also, solving the second congruence in (3.1) for $9 k$ and substituting into the first congruence in (3.1) gives

$$
d \cdot 10^{\ell(k)}\left(10^{\ell(k)}+1\right) \equiv 0 \quad(\bmod p)
$$

which implies that $10^{\ell(k)}+1 \equiv 0(\bmod p)$, unless $p=d=7$. But in this case, since $A \equiv 0(\bmod 7)$, we have that $k \equiv 0(\bmod 7)$, which we have excluded. Thus, $\operatorname{gcd}\left(9 k+d, 10^{\ell(k)}+1\right) \equiv 0(\bmod p)$.

Conversely, suppose that p is a prime such that $\operatorname{gcd}\left(9 k+d, 10^{\ell(k)}+1\right) \equiv 0$ $(\bmod p)$. Then, in (3.1), we have $A \equiv 0(\bmod p)$, and since $10^{\ell(k)} \equiv-1(\bmod p)$, we also get that

$$
B \equiv 9 k+d \equiv 0 \quad(\bmod p)
$$

Therefore,

$$
9 \cdot s_{n}(k, d) \equiv A \cdot 10^{n}+B \equiv 0 \quad(\bmod p)
$$

and since $p \geq 7$, we conclude that $s_{n}(k, d) \equiv 0(\bmod p)$ for all $n \geq 1$, and the proof is complete.

Example 3.2. Let $k=260487394697203$ and $d=2$. Then $\ell(k)=15, \operatorname{gcd}(k, 10 d)=$ 1 and

$$
\operatorname{gcd}\left(9 \cdot 260487394697203+2,10^{15}+1\right)=211
$$

so that $s_{n}(k, 2) \equiv 0(\bmod 211)$ for all $n \geq 1$. Hence, k is a trivial 2 -composite sandwich number.

Remark 3.3. We caution the reader that if $\operatorname{gcd}\left(9 k+d, 10^{\ell(k)}+1\right)=1$, then it does not follow that k is a nontrivial d-composite sandwich number, since not all integers are composite sandwich numbers. However, this condition can be used to detect if a known d-composite sandwich number is trivial or not. We apply this condition in Section 4.

3.1. Theorem 1.1

To prove Theorem 1.1, we first need some preliminary results. The first result, which we state without proof, is a well-known version of the prime number theorem for arithmetic progressions [27]. We use the standard Landau little-o notation.

Theorem 3.4. Let $\operatorname{gcd}(a, m)=1$ and let $\pi(x ; m, a)$ be the number of primes $p \leq x$ such that $p \equiv a(\bmod m)$. Then

$$
\pi(x ; m, a)=\frac{x(1+o(1))}{\phi(m) \log x}
$$

The following corollary is immediate from Theorem 3.4.
Corollary 3.5. Let $f(z)>1$ and $g(z)>1$ be strictly increasing functions with $f(z)<g(z)$ for all sufficiently large z. Then the number of primes p with $f(z)<$ $p \leq g(z)$ such that $p \equiv a(\bmod m)$ is

$$
\pi(g(z) ; m, a)-\pi(f(z) ; m, a)=\frac{(1+o(1))}{\phi(m)}\left(\frac{g(z)}{\log g(z)}-\frac{f(z)}{\log f(z)}\right)
$$

We need the following lemma.
Lemma 3.6. Let x be a positive integer and let p be a prime such that $10^{x}+1 \equiv 0$ $(\bmod p)$. If y is an integer with $1 \leq y \leq p-1$, then there exist nonnegative integers N and z such that $k=p N+y$ is odd with $\ell(k)=(2 z+1) x$.

Proof. Note that $\ell(p) \leq x+1$. Let $z \geq p$ and let $w=(2 z+1) x-\ell(p)$. Then $w>\ell(p)$. If y is odd, let $N=10^{w}$, and if y is even, let $N=10^{w}+1$. Let $k=p N+y$. Then k is odd and

$$
\ell(k)=\ell(p N+y)=\ell(p)+w=(2 z+1) x
$$

3.1.1. Proof of Theorem 1.1

Let $p \geq 7$ be a prime such that $\operatorname{ord}_{p}(10) \equiv 0(\bmod 2)$. For the sake of brevity of notation, we let $x=\operatorname{ord}_{p}(10) / 2$. Then

$$
10^{x}+1 \equiv 0 \quad(\bmod p)
$$

Let $y \leq p-1$ be a positive integer such that $y \equiv-d / 9(\bmod p)$. By Lemma 3.6, there exists a nonnegative integer z and an odd positive integer k such that $k \equiv y(\bmod p)$ and $\ell(k)=(2 z+1) x$. Apply Corollary 3.5 with $a=y, m=p$, $f(z)=10^{(2 z+1) x-1}$ and $g(z)=10^{(2 z+1) x}$ to get that

$$
\lim _{z \rightarrow \infty}(\pi(g(z) ; p, y)-\pi(f(z) ; p, y))=\infty
$$

Thus, for any sufficiently large integer z, there is a prime q such that $q \equiv y \equiv-d / 9$ $(\bmod p)$ and $\ell(q)=(2 z+1) x$. Then $\operatorname{gcd}\left(9 q+d, 10^{\ell(q)}+1\right) \equiv 0(\bmod p)$, and hence, by Theorem 3.1, it follows that q is a trivial d-composite sandwich number, and the proof of Theorem 1.1 is complete.

For each $d \in \mathcal{D}$, we use Theorem 3.1 to give in Table 1 the smallest prime q that is a trivial d-composite number with $\operatorname{gcd}(q, 10 d)=1$. The primes p such that $s_{n}(q, d) \equiv 0(\bmod p)$ for all $n \geq 1$ are also given.

d	q	p
1	101	7,13
2	11	101
3	7	11
4	101	11
5	107	11
6	109	7
7	89	101
8	101	7
9	103	13

Table 1: Smallest Trivial d-Composite Sandwich Primes q with $\operatorname{gcd}(q, 10 d)=1$

3.2. Proof of Theorem 1.2

Suppose that m is a positive integer such that $10^{m}+1$ has at least 9 distinct prime factors $p_{1}, p_{2}, \ldots, p_{9}$. Using the Chinese remainder theorem, we solve the system of congruences

$$
k \equiv-d / 9 \quad\left(\bmod p_{d}\right)
$$

Thus, for sufficiently large such m, by Lemma 3.6 and Corollary 3.5 (as in the proof of Theorem 1.1), there is a prime q in the resulting arithmetic progression such that
$\ell(q)=m$. Since $\operatorname{gcd}(q, 10 d)=1$ and $\operatorname{gcd}\left(9 q+d, 10^{\ell(q)}+1\right)=p_{d}$, it follows from Theorem 3.1 that q is a trivial d-composite sandwich prime for all $d \in \mathcal{D}$.

We illustrate the techniques with an example.
Example 3.7. The smallest value of m such that $10^{m}+1$ has at least 9 distinct prime factors is $m=39$. These distinct primes are

$$
\begin{equation*}
P=[1058313049,859,7,6397,157,388847808493,13,11,216451] \tag{3.2}
\end{equation*}
$$

Using the Chinese remainder theorem, we solve the system of congruences

$$
k \equiv-d / 9 \quad(\bmod P[d]), \quad d \in \mathcal{D}
$$

to get

$$
k \equiv 23095145832174487336140994425364380822 \quad\left(\bmod \prod_{d} P[d]\right)
$$

The smallest prime in this arithmetic progression with 39 digits is

$$
q=100018222755251410413064071348441303899
$$

Since $\operatorname{gcd}(q, 10 d)=1$ and $\operatorname{gcd}\left(9 q+d, 10^{\ell(q)}+1\right)=P[d]$, it follows from Theorem 3.1 that q is a trivial d-composite sandwich number for all $d \in \mathcal{D}$.

Remark 3.8. The particular order of the primes in the list (3.2) gives the smallest prime q that is simultaneously a trivial d-composite sandwich number for all $d \in \mathcal{D}$.

4. Nontrivial Situations

Recall that nontrivial d-composite sandwich numbers are positive integers k such $s_{n}(k, d)$ is composite for all $n \geq 1$, but not every term $s_{n}(k, d)$ is divisible by the same prime. We use a covering to find such numbers. Given $d \in \mathcal{D}$, we want to construct a covering $\mathcal{C}=\mathcal{C}(d)$, such that for each triple $\left(a_{i}, m_{i}, p_{i}\right) \in \mathcal{C}$, we have that $s_{n}(k, d) \equiv 0\left(\bmod p_{i}\right)$ whenever $n \equiv a_{i}\left(\bmod m_{i}\right)$. Here the primes p_{i}, with the exception of $p_{i}=3$, are chosen to be primitive divisors of $10^{m_{i}}-1$ (but we still assume that 3 is a divisor of $\left(10^{m_{i}}-1\right) / 9$ if $\left.p_{i}=3\right)$. To find a number k that satisfies these conditions, we first set $s_{n}(k, d)$ congruent to 0 modulo p_{i} and solve (2.1) for k modulo p_{i} for each i, noting that $10^{n} \equiv 10^{a_{i}}\left(\bmod p_{i}\right)$. Then we use the Chinese remainder theorem to piece together this information and get an infinite arithmetic progression of such values of k that simultaneously solve all congruences $s_{n}(k, d) \equiv 0\left(\bmod p_{i}\right)$. Two additional congruences

$$
\begin{equation*}
k \equiv 1 \quad(\bmod 2) \quad \text { and } \quad k \equiv z \quad(\bmod 5), \quad \text { where } z \not \equiv 0 \quad(\bmod 5) \tag{4.1}
\end{equation*}
$$

can be added to the system, if necessary, to ensure that $\operatorname{gcd}(k, 10)=1$. Note that these two new congruences do not conflict with any congruences in \mathcal{C} since 2 and 5 are never primitive divisors of numbers of the form $10^{z}-1$. Also, it is usually easy to guarantee that $\operatorname{gcd}(k, d)=1$ by adding additional congruences for k if necessary, or by choosing appropriate residues associated with the primes 3 and 7 , if they appear in \mathcal{C}. Once k is found, we can easily check that $\operatorname{gcd}(k, 10 d)=1$, and then use Theorem 3.1 to determine if k is nontrivial.

Certain criteria must be satisfied to accomplish this task. To begin, we set $s_{n}(k, d)=0$ and formally solve for k in (2.1) to get

$$
\begin{equation*}
k=-\frac{d \cdot 10^{\ell(k)}\left(10^{n}-1\right)}{9 \cdot\left(10^{\ell(k)+n}+1\right)} . \tag{4.2}
\end{equation*}
$$

However, modulo p_{i} there are two difficulties here: (4.2) makes no sense if $p_{i}=3$ or if $10^{\ell(k)+n}+1 \equiv 0\left(\bmod p_{i}\right)$.

The first difficulty is easily overcome with a modest price. If $p_{i}=3$, then we can expand $\left(10^{n}-1\right) / 9$ to get

$$
\frac{10^{n}-1}{9}=10^{n-1}+10^{n-2}+\cdots+10+1 \equiv n \quad(\bmod 3)
$$

We would like to replace n here with a_{i} since $n \equiv a_{i}\left(\bmod m_{i}\right)$ in \mathcal{C}. To do this, we must have that $m_{i} \equiv 0(\bmod 3)$ to guarantee that 3 is a divisor of $\left(10^{m_{i}}-1\right) / 9$. In other words, if $p_{i}=3$ in \mathcal{C}, then $m_{i} \equiv 0(\bmod 3)$. Hence, since $10^{\ell(k)+a_{i}}+1 \equiv 2 \not \equiv 0$ $(\bmod 3)$, we can rewrite (4.2) modulo p_{i}, when $p_{i}=3$, as

$$
\begin{equation*}
k \equiv-\frac{d \cdot 10^{\ell(k)} a_{i}}{10^{\ell(k)+a_{i}}+1} \equiv d a_{i} \quad(\bmod 3) \tag{4.3}
\end{equation*}
$$

The second difficulty is slightly more annoying. Here we have $p_{i} \neq 3$ and we can reduce (4.2) modulo p_{i} to

$$
\begin{equation*}
k \equiv-\frac{d \cdot 10^{\ell(k)}\left(10^{a_{i}}-1\right)}{9 \cdot\left(10^{\ell(k)+a_{i}}+1\right)} \quad\left(\bmod p_{i}\right) \tag{4.4}
\end{equation*}
$$

which makes sense provided $10^{\ell(k)+a_{i}}+1 \not \equiv 0\left(\bmod p_{i}\right)$. Since we are looking for k, we obviously do not know the value of $\ell(k)$. But, using a suitable specific value x in place of $\ell(k)$, we can construct a corresponding value of k. A "suitable" x is a number that satisfies two conditions. The first condition is that $10^{x+a_{i}}+1$ must be invertible modulo p_{i} for each i. The second condition we require is that $x \geq \ell(\mathcal{P})$, where $\mathcal{P}=10 \prod_{i=1}^{t} p_{i}$ and t is the total number of elements in \mathcal{C}. The factor of 10 here arises from the fact that we have added the two additional congruences for k modulo 2 and 5 . This second condition can be achieved since if one value of x exists that satisfies the first condition, then there exist infinitely many values of x satisfying the first condition. This follows from the fact that

$$
10^{x+a_{i}}+1 \equiv 10^{x+s \mathcal{M}+a_{i}}+1 \quad\left(\bmod p_{i}\right)
$$

for any positive integer s. Then, since $x \geq \ell(\mathcal{P})$, we can "jack-up" the value of k in the arithmetic progression we get from solving the system of congruences for k using the Chinese remainder theorem by adding multiples of \mathcal{P}, and hence produce a value of k with exactly $\ell(k)=x$. Moreover, if $k \equiv z(\bmod \mathcal{P})$, where $0 \leq z \leq \mathcal{P}-1$, and we choose $x \geq 2 \ell(\mathcal{P})$, then we can choose $k=10^{x-\ell(\mathcal{P})} \mathcal{P}+z$. Observe then that $\ell(k)=x$. Hence, we have

$$
\begin{equation*}
k=10^{\ell(k)-\ell(\mathcal{P})} \mathcal{P}+z \tag{4.5}
\end{equation*}
$$

In many situations in this article, it is convenient to restrict our attention to values of k in the form of (4.5). Note that, in practice, it is not always necessary to choose a value of $x \geq 2 \ell(\mathcal{P})$ to achieve the form (4.5).

Finally, in order to verify that we have not created a trivial situation, we use Theorem 3.1 and check that $\operatorname{gcd}\left(9 k+d, 10^{\ell(k)}+1\right)=1$. We illustrate this method with an example.

Example 4.1. Let $d=1$ and let $\mathcal{C}=\{(2,3,3),(1,3,37),(0,6,7),(3,6,13)\}$. Let $x=7$. Then $x \geq \ell(\mathcal{P})=\ell\left(10 \prod_{i} p_{i}\right)=\ell(101010)=6$, and it is straightforward to check that $10^{x+a_{i}}+1 \not \equiv 0\left(\bmod p_{i}\right)$, for all i. Using (4.3) and (4.4), we get that the resulting system of congruences for k is:

$$
\begin{array}{ll}
k \equiv 2 & (\bmod 3) \\
k \equiv 1 & (\bmod 37) \\
k \equiv 0 & (\bmod 7) \\
k \equiv 2 & (\bmod 13) \tag{4.6}\\
k \equiv 1 & (\bmod 2) \\
k \equiv 1 & (\bmod 5) .
\end{array}
$$

Using the Chinese remainder theorem to solve (4.6) gives $k \equiv 85841(\bmod 101010)$. Then $k=10 \cdot 101010+85841=1095941$ is in this arithmetic progression and $\ell(k)=7$. Clearly, $\operatorname{gcd}(k, 10)=1$, and using a computer we verify that $\operatorname{gcd}(9 k+$ $\left.1,10^{\ell(k)}+1\right)=1$. Hence, by Theorem 3.1, we conclude that k is a nontrivial 1 -composite sandwich number.

While it is true that the infinitely many values of x described in the discussion prior to Example 4.1 give rise to infinitely many d-composite sandwich numbers k, it is not true that k is necessarily nontrivial. In Example 4.1, we chose to let $x=7$. Since $\mathcal{M}=6$, every value of $x \equiv 1(\bmod 6)$, with $x \geq 7$, will generate 1 -composite sandwich numbers k, although k may be trivial. For example, if $x=13$ and $k=$ $10000371 \cdot 101010+85841=1010137560551$, then $\ell(k)=13$ and k is a 1 -composite sandwich number. However, k is trivial by Theorem 3.1 since $\operatorname{gcd}(k, 10)=1$ and $\operatorname{gcd}\left(9 k+1,10^{\ell(k)}+1\right)=859$. Note that this particular value of k is not in the form (4.5); and indeed every value of k in the form (4.5) with $\ell(k) \equiv 1(\bmod 6)$ is nontrivial. To see this, we let $k=10^{\ell(k)-6} \cdot 101010+85841$ and we suppose that q is
a prime divisor of $\operatorname{gcd}\left(9 k+1,10^{\ell(k)}+1\right)$. Since $10^{\ell(k)} \equiv-1(\bmod q)$ and $9 k+1 \equiv 0$ $(\bmod q)$, we deduce that q is a prime divisor of

$$
9 \cdot 10^{6} \cdot 85841+10^{6}-9 \cdot 101010=772569090910=2 \cdot 5 \cdot 77256909091
$$

Clearly, $q \notin\{2,5\}$, and so $q=77256909091$. But then $2 \ell(k)=\operatorname{ord}_{q}(10)=$ 77256909090 implies that

$$
\ell(k)=77256909090 / 2=38628454545 \equiv 0 \quad(\bmod 3)
$$

which contradicts the fact that $\ell(k) \equiv 1(\bmod 6)$.
The question still remains as to whether a suitable value of x can always be found to generate d-composite sandwich numbers using the method described in this section. We provide conditions on \mathcal{C} to guarantee the existence of such an x, but first we need a lemma.

Lemma 4.2. Let x, a and m be positive integers with $m \equiv 0(\bmod 2)$. Let $\widehat{m}=$ $m / 2$, and let p be a primitive divisor of $10^{m}-1$. Then

$$
10^{x+a}+1 \equiv 0 \quad(\bmod p) \Longleftrightarrow x \equiv \widehat{m}-a \quad(\bmod m)
$$

Proof. Suppose first that $10^{x+a}+1 \equiv 0(\bmod p)$. Then $10^{2(x+a)} \equiv 1(\bmod p)$ so that $m=\operatorname{ord}_{p}(10)$ divides $2(x+a)$. Thus, $x+a \equiv 0(\bmod \widehat{m})$. Note that if $x+a \equiv 0(\bmod m)$, then $0 \equiv 10^{x+a}+1 \equiv 2(\bmod p)$, which is impossible since p is odd. Hence, $x+a \not \equiv 0(\bmod m)$. Therefore, there is an integer b such that

$$
x+a=\frac{(2 b+1) m}{2}=b m+\widehat{m} \equiv \widehat{m} \quad(\bmod m)
$$

Conversely, suppose that $x \equiv \widehat{m}-a(\bmod m)$. Then $2(x+a) \equiv 0(\bmod m)$, which implies that $\left(10^{x+a}-1\right)\left(10^{x+a}+1\right)=10^{2(x+a)}-1 \equiv 0(\bmod p)$. Hence, $10^{x+a}+1 \equiv 0(\bmod p)$ since $x+a \not \equiv 0(\bmod m)$.

Proposition 4.3. Let $\mathcal{C}=\left\{\left(a_{i}, m_{i}, p_{i}\right)\right\}$ be a covering with exactly t congruences such that p_{i} is a primitive divisor of $10^{m_{i}}-1$ for each $p_{i} \neq 3$. Relabel, if necessary, so that m_{1}, \ldots, m_{s} are even, where $s \leq t$. Let $\widehat{m}_{i}=m_{i} / 2$ for each i with $1 \leq i \leq s$. If there exists $y \in \mathbb{Z}$ such that

$$
\begin{equation*}
\widehat{m}_{i}-a_{i} \not \equiv y \quad\left(\bmod m_{i}\right) \quad \text { for all } i \text { with } 1 \leq i \leq s \tag{4.7}
\end{equation*}
$$

then there exist infinitely many values of x such that $10^{x+a_{i}}+1 \not \equiv 0\left(\bmod p_{i}\right)$ for all i.

Proof. We first claim that $10^{x+a_{i}}+1 \not \equiv 0\left(\bmod p_{i}\right)$ for each i with m_{i} odd. If $p_{i}=3$, then this fact is obvious, so assume that $p_{i} \neq 3$. If $10^{x+a_{i}}+1 \equiv 0\left(\bmod p_{i}\right)$, then $10^{2\left(x+a_{i}\right)} \equiv 1\left(\bmod p_{i}\right)$. Hence, $2\left(x+a_{i}\right) \equiv 0\left(\bmod m_{i}\right)$, since by the construction
of \mathcal{C} we have that $\operatorname{ord}_{p_{i}}(10)=m_{i}$. Thus $x+a_{i} \equiv 0\left(\bmod m_{i}\right)$ since m_{i} is odd. But then, $0 \equiv 10^{x+a_{i}}+1 \equiv 2\left(\bmod p_{i}\right)$, which is impossible since clearly $p_{i} \neq 2$. Hence, if m_{i} is odd, any value of x will suffice to ensure that $10^{x+a_{i}}+1 \not \equiv 0\left(\bmod p_{i}\right)$, and the claim is established. This also proves the proposition if $s=0$.

Suppose now that $s \geq 1$ and consider the list of congruences

$$
\begin{array}{rr}
x \equiv \widehat{m}_{1}-a_{1} & \left(\bmod m_{1}\right) \\
x \equiv \widehat{m}_{2}-a_{2} & \left(\bmod m_{2}\right) \tag{4.8}\\
\vdots & \\
x \equiv \widehat{m}_{s}-a_{s} & \left(\bmod m_{s}\right) .
\end{array}
$$

It follows from (4.7) that (4.8) is not a covering, and therefore there exist infinitely many positive integers x that do not satisfy any of the congruences in (4.8). Hence, for any such value of x, we have by Lemma 4.2 that $10^{x+a_{i}}+1 \not \equiv 0\left(\bmod p_{i}\right)$ for all i, which completes the proof of the proposition.

4.1. Proof of Theorem 1.3

We first show that if there exists a covering \mathcal{C} that can be used to generate a nontrivial d-composite sandwich number k (as in Example 4.1) with $\operatorname{gcd}(\ell(k), \mathcal{M})=$ 1 , then there exist infinitely many nontrivial d-composite sandwich numbers. To complete the proof, we then find a covering \mathcal{C} to construct a nontrivial d-composite sandwich number k with $\operatorname{gcd}(\ell(k), \mathcal{M})=1$ for each value of d.

Assume that k is a nontrivial d-composite sandwich number in the form (4.5) that has been constructed from $\mathcal{C}=\left\{\left(a_{i}, m_{i}, p_{i}\right)\right\}$ using the method described at the beginning of Section 4 . Suppose also that $\operatorname{gcd}(\ell(k), \mathcal{M})=1$ and $k \equiv z(\bmod \mathcal{P})$ with $1 \leq z \leq \mathcal{P}-1$, where $\mathcal{P}=10 \prod_{i} p_{i}$ or $\mathcal{P}=\prod_{i} p_{i}$, depending on whether the two additional congruences (4.1) have been added. Then $k=10^{\ell(k)-\ell(\mathcal{P})} \mathcal{P}+z$, and $\operatorname{gcd}\left(9 k+d, 10^{\ell(k)}+1\right)=1$, by Theorem 3.1. Let P be the largest prime divisor of

$$
\mathcal{Z}=9\left(z \cdot 10^{\ell(\mathcal{P})}-\mathcal{P}\right)+d \cdot 10^{\ell(\mathcal{P})} .
$$

Since $\operatorname{gcd}(\ell(k), \mathcal{M})=1$, by Dirichlet's theorem on primes in an arithmetic progression, there exist infinitely many positive integers j such that $\ell(k)+j \mathcal{M}$ is a prime with $\ell(k)+j \mathcal{M}>P$. We claim that

$$
k_{j}:=10^{\ell(k)-\ell(\mathcal{P})+j \mathcal{M} \mathcal{P}+z}
$$

is a nontrivial d-composite sandwich number for each such value of j. Note that k_{j} is indeed a d-composite sandwich number since

$$
s_{n}\left(k_{j}, d\right) \equiv s_{n}(k, d) \equiv 0 \quad\left(\bmod p_{i}\right),
$$

when $n \equiv a_{i}\left(\bmod m_{i}\right)$. Also note that $\ell\left(k_{j}\right)=\ell(k)+j \mathcal{M}$. Let

$$
A=9 k_{j}+d \quad \text { and } \quad B=10^{\ell(k)+j \mathcal{M}}+1,
$$

and assume that k_{j} is trivial. Then, by Theorem 3.1, we have that $\operatorname{gcd}(A, B) \equiv 0$ $(\bmod p)$ for some prime p. Since $B \equiv 0(\bmod p)$, we get that $10^{\ell(k)-\ell(\mathcal{P})+j \mathcal{M}} \equiv$ $-10^{-\ell(\mathcal{P})}(\bmod p)$. Then, since $A \equiv 0(\bmod p)$, we have

$$
A \equiv 9\left(-10^{-\ell(\mathcal{P})} \mathcal{P}+z\right)+d \equiv 0 \quad(\bmod p)
$$

which implies that $\mathcal{Z} \equiv 0(\bmod p)$. In other words, if k_{j} is trivial, then $s_{n}\left(k_{j}, d\right) \equiv 0$ $(\bmod p)$ for all $n \geq 1$, for some prime divisor p of the fixed positive integer \mathcal{Z}. However, since $10^{\ell(k)+j \mathcal{M}}+1 \equiv 0(\bmod p)$, and $\ell(k)+j \mathcal{M}$ is prime, it follows that $2(\ell(k)+j \mathcal{M})=\operatorname{ord}_{p}(10)$ divides $p-1$, which is impossible since $\ell(k)+j \mathcal{M} \geq p$. This contradiction proves the existence of infinitely many nontrivial d-composite sandwich numbers k if one is known to exist with $\operatorname{gcd}(\ell(k), \mathcal{M})=1$. To complete the proof of the theorem, we construct such a nontrivial d-composite sandwich number for each value of d. We use the following covering for each d :

$$
\begin{aligned}
\mathcal{C}=\{ & (0,3,37),(3,4,101),(2,5,41),(0,5,271),(2,6,13),(4,10,9091) \\
& (5,12,9901),(1,15,31),(28,30,211),(19,30,241),(13,30,2161)\}
\end{aligned}
$$

Here $\mathcal{M}=60$, and $\ell(k)=29$ for each d, so that $\operatorname{gcd}(\ell(k), \mathcal{M})=1$. Also, it is easily verified using a computer that $\operatorname{gcd}\left(9 k+d, 10^{\ell(k)}+1\right)=1$ in each case. We add the two congruences $k \equiv 1(\bmod 2)$ and $k \equiv 1(\bmod 5)$ for k. We omit the details and simply provide in Table 2 the value of k for each d.

d	k
1	17447080826852847307281356871
2	18177573287783379196675646521
3	17252957989711701638754384961
4	17983450450642233528148674611
5	17058835152570555970227413051
6	17789327613501087859621702701
7	16864712315429410301700441141
8	17595204776359942191094730791
9	16670589478288264633173469231

Table 2: Nontrivial d-Composite Sandwich Numbers k with $\operatorname{gcd}(\ell(k), \mathcal{M})=1$

5. Proof of Theorem 1.4

In order to prove the existence of infinitely many positive integers that are simultaneously nontrivial d-composite sandwich numbers for all $d \in D \subset \mathcal{D}$, where $|D|=4$
and $D \neq\{3,6,7,9\}$, we use an argument similar to the one used in the proof of Theorem 1.3. In this situation, however, we must construct four separate coverings $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ and \mathcal{C}_{4} corresponding to the four digits. As before, in each of these coverings, with the exception of $p_{i}=3, p_{i}$ is a primitive divisor of $10^{m_{i}}-1$, where m_{i} is a modulus in the covering. The tricky part is that if we use the same prime p_{i} in more than one covering, the resulting congruences for k must be the same. For this reason, we have avoided using any prime more than once. The price we pay for this avoidance is that the coverings are more difficult to construct. The four coverings we use are as follows:
$\mathcal{C}_{1}=\{(1,4,101),(0,6,13),(3,8,73),(7,8,137),(8,12,9901),(10,16,17),(2,16,5882353)$
$(16,18,19),(14,24,99990001),(28,36,999999000001),(22,48,9999999900000001)$
$(4,72,3169),(40,72,98641),(46,72,3199044596370769),(94,144,8929)\}$,
$\mathcal{C}_{2}=\{(1,3,3),(0,3,37),(5,6,7),(2,18,52579),(26,27,757),(14,27,440334654777631)$,
$(44,54,70541929),(32,54,14175966169),(35,81,163),(77,81,9397),(50,81,2462401)$,
($62,81,676421558270641),(23,81,130654897808007778425046117)$,
$(8,162,456502382570032651)\}$,
$\mathcal{C}_{3}=\{(1,5,41),(4,5,271),(7,10,9091),(13,15,31),(8,15,2906161),(15,20,3541)$,
$(2,20,27961),(20,25,21401),(0,25,25601),(5,25,182521213001),(3,30,211)$, $(18,30,241),(22,30,2161),(40,50,251),(10,50,5051),(15,50,78875943472201)$, $(32,60,61),(12,60,4188901),(45,60,39526741),(35,75,151),(10,75,4201)\}$,
$\mathcal{C}_{4}=\{(1,7,239),(6,7,4649),(7,9,333667),(0,14,909091),(5,21,43),(17,21,1933)$, $(9,21,10838689),(11,28,29),(18,28,281),(7,28,121499449)$,
$(17,32,353),(9,32,449),(1,32,641),(25,32,1409),(2,42,127)$,
$(24,42,2689),(12,42,459691),(4,56,7841),(32,56,127522001020150503761)$,
$(31,63,10837),(37,63,23311),(40,63,45613),(19,63,45121231)$,
$(10,63,1921436048294281),(23,84,226549),(3,84,4458192223320340849)$,
$(93,96,97),(69,96,206209),(45,96,66554101249),(21,96,75118313082913)$,
(53, 112, 113), (109, 112, 73765755896403138401),
($21,112,119968369144846370226083377),(58,126,5274739)$,
(121, 126, 189772422673235585874485732659), (149, 168, 603812429055411913),
$(243,252,22906246896437231227899575633620139766044690040039603689929)$,
($75,252,43266855241$), ($159,252,1009$),
($77,336,1433319827159466789806966856379479179916136529424792832495021393$), (301, 336, 2070270028985341766616009080161) \}.

Let $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3} \cup \mathcal{C}_{4}$, and let \mathcal{P} be the product of all the primes in \mathcal{C} multiplied by 10 (adding the primes 2 and 5). Then $\ell(\mathcal{P})=741$. We give details only for the case of $D=\{1,2,3,4\}$ since the other cases are similar. Here, \mathcal{C}_{i} corresponds to the digit i. We create a system of congruences for k using (4.3) and (4.4), together with
the two added congruences $k \equiv 1(\bmod 2)$ and $k \equiv 1(\bmod 5)$. Then we search over values of $x \geq 741$ (in place of $\ell(k)$) to find a solution to the system (via the Chinese remainder theorem), in accordance with (4.5), that simultaneously satisfies the criteria from Proposition 4.3 and Theorem 1.3. The smallest value of x that satisfies these conditions is $x=779$, and a solution with $\ell(k)=779$ is

$$
\begin{aligned}
k= & 3544029195368912316666174784482258650911694860681098307631700188746035217 \\
& 6407222366102321143987082440414733816824588900746485360827171938317666194 \\
& 1962697722999233244836274692059265000444349545898458405127628855138731166 \\
& 7148130944698360348586790802593012202168051368277728925506156403451950936 \\
& 5780984731537231402963019726914499525385017784735089846291975875191298265 \\
& 1913308322351447448556852926964902686932331389498620135407404152771923058 \\
& 4123751445781205058216540960465709674609765053940878499898580013583705525 \\
& 8947379236808321956781785581251473983275672044111717060569043689583610615 \\
& 9678355083536441937227174321720691339534757036108747356654837948550243646 \\
& 5471117811031822098052647767973565747345134645161034457609214662167122526 \\
& 6391841423913444597795160981393953097819656099201 .
\end{aligned}
$$

Indeed, it is straightforward to check that

$$
\operatorname{gcd}\left(9 k+d, 10^{\ell(k)}+1\right)=\operatorname{gcd}(k, 10 d)=1
$$

for each digit $d \in\{1,2,3,4\}$. In addition, $\mathcal{M}=453600$ so that $\operatorname{gcd}(\ell(k), \mathcal{M})=1$, which completes the proof of the theorem.

Remark 5.1. Note that there are 4! possible ways the coverings $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ and \mathcal{C}_{4} can be "assigned" to the digits in a set $D \subset \mathcal{D}$ with $|D|=4$. For a particular D, some of these correspondences do not yield a solution that satisfies all of the necessary criteria. However, with the exception of $D=\{3,6,7,9\}$, at least one correspondence produces a desired solution using these four coverings. The exceptional case $D=\{3,6,7,9\}$ in Theorem 1.4 is a result of the fact that, regardless of how we assign these four coverings to the digits in D, the congruences arising from the covering \mathcal{C}_{2} force either $k \equiv 0(\bmod 3)$ or $k \equiv 0(\bmod 7)$. Although k is still a composite sandwich number in this case, it is trivial.

6. Proof of Theorem 1.5

Given any $d \in \mathcal{D}$, to prove that there are infinitely many sets of 13 consecutive positive integers that are all d-composite sandwich numbers, we utilize the method and coverings that were used in the proof of Theorem 1.4. However, here we use the same d for all four coverings $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ and \mathcal{C}_{4}. In addition, we substitute $k+2$ for k in the congruences generated from $\mathcal{C}_{2}, k+4$ for k in the congruences for k in the
congruences generated from \mathcal{C}_{3}, and $k+6$ for k in the congruences generated from \mathcal{C}_{4}. We also add the congruences $k \equiv 1(\bmod 2)$ and $k \equiv 2(\bmod 5)$ to the system for k. Since the techniques are similar, we give details only in the case of $d=1$. The smallest value of $x \geq 741$ here, in accordance with (4.5), that simultaneously satisfies the criteria from Proposition 4.3 and Theorem 1.3 is $x=811$. Using the Chinese remainder theorem, a solution to the system of congruences for k, with $\ell(k)=841$, is
$k=3544029195368912316666174784482258650908326838647239060200876864650079431$ 1711630812697324230525538611838646043882766742346069163764391075438928881 3699789159029469059047678298092672792216574482270249499003001497798585976 5344308183364637135810236440486282392927159604420693600828207861578411170 6681186262615978434167536949357633418075684192054467217185023166944874737 1689757054755673346721553522756962087212178947796157521768786309652796994 4685765718557579581798061572469898685785778779323768087150735721199826790 4782770253370103767597480428692295437780589986448693949970580537837368249 5758123653025610979354753176939604748433221775845235692325886596409193285 7213743007630396022221086807104788683968673543948689532792465149164194750 8378705604021354244189937489028854509228736851403542592414929979630436913 87637597.

Note that $k+z \equiv 0(\bmod 2)$ for all odd integers z with $-3 \leq z \leq 9$. Also, $k+z \equiv 0(\bmod 5)$ for $z \in\{-2,3,8\}$. Hence, in these cases, the integers $k+z$ are trivial 1-composite sandwich numbers. For the values of z with $z \in\{0,2,4,6\}$, we have used the respective coverings $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ and \mathcal{C}_{4}, to ensure that $k+z$ is a 1 -composite sandwich number. It is again easy to check that

$$
\operatorname{gcd}\left(9 k+1,10^{\ell(k)}+1\right)=\operatorname{gcd}(k, 10)=1
$$

and $\operatorname{gcd}(\ell(k), \mathcal{M})=1$. Thus, we can construct infinitely many nontrivial 1-composite sandwich numbers k such that $k-3, k-2, \ldots, k+9$ are all 1-composite (not necessarily nontrivial) sandwich numbers. As mentioned, the methods are similar for the other digits.

7. Theorem 1.6

Definition 7.1. A Sierpiński number k is an odd positive integer such that $k \cdot 2^{n}+1$ is composite for all integers $n \geq 1$.

Definition 7.2. A Riesel number k is an odd positive integer such that $k \cdot 2^{n}-1$ is composite for all integers $n \geq 1$.

In 1956, Riesel [26] proved that there are infinitely many Riesel numbers, and in 1960, Sierpiński [28] proved that there are infinitely many Sierpiński numbers. Since then, other authors have examined extensions and variations of these ideas $[2,4,5,6,7,8,10,12,11,12,14,15,18,19,20,21,22,23,24]$. Coverings are used quite extensively in these investigations.

7.1. Proof of Theorem 1.6

We provide details only for $d=2$ since the procedure is identical for other values of $d \in D$.

The approach we use is similar to one used in [23]. We build three coverings \mathcal{C}_{1}, \mathcal{C}_{2} and \mathcal{C}_{3} with the following properties:

- \mathcal{C}_{1} is used to generate infinitely many 2 -composite sandwich numbers that are also perfect squares. The corresponding primes here are primitive divisors of numbers of the form $10^{m}-1$, where m is a modulus in \mathcal{C}_{1}.
- \mathcal{C}_{2} is used to generate infinitely many squares that are also Sierpiński numbers. The corresponding primes here are primitive divisors of numbers of the form $2^{m}-1$, where m is a modulus in \mathcal{C}_{2}.
- \mathcal{C}_{3} is used to generate infinitely many squares that are also Riesel numbers. The corresponding primes here are primitive divisors of numbers of the form $2^{m}-1$, where m is a modulus in \mathcal{C}_{3}.
- The only corresponding prime that appears in more than one covering is $p=3$.

Even though we use the prime $p_{i}=3$ in all three coverings, the resulting congruence for k^{2} is the same in all cases. Thus, we can piece together all three coverings and use the Chinese remainder theorem to get squares that are simultaneously 2 -composite sandwich, Sierpiński and Riesel.

The first covering is: $\mathcal{C}_{1}=\{(2,3,3),(1,3,37),(3,6,7),(0,6,13)\}$. Here, we have $\ell\left(\prod_{i=1}^{4} p_{i}\right)=\ell(10101)=5$, and so we need to choose x with $x \geq 5$. In addition, by Proposition 4.3, we need to choose x such that $x \not \equiv 0(\bmod 3)$. We choose $x=5$. Replacing k with k^{2} in (4.3) and (4.4), we get the following set of congruences for k^{2} :

$$
\begin{align*}
& k^{2} \equiv 1 \quad(\bmod 3) \\
& k^{2} \equiv 11 \quad(\bmod 37) \tag{7.1}\\
& k^{2} \equiv 1 \quad(\bmod 7) \\
& k^{2} \equiv 0 \quad(\bmod 13)
\end{align*}
$$

Note that each of the residues in (7.1) is a square modulo the corresponding prime.
The second covering is:
$\mathcal{C}_{2}=\{(1,2,3),(2,4,5),(4,8,17),(8,16,257),(16,32,65537),(32,64,641),(0,64,6700417)\}$.

We use \mathcal{C}_{2} and solve for k^{2} in each congruence $k^{2} \cdot 2^{n}+1 \equiv 0\left(\bmod p_{i}\right)$. The resulting system of congruences is:

$$
\begin{array}{lll}
k^{2} \equiv 1 & (\bmod 3) & k^{2} \equiv 1 \quad(\bmod 65537) \\
k^{2} \equiv 1 & (\bmod 5) & k^{2} \equiv 1 \quad(\bmod 641) \\
k^{2} \equiv 1 & (\bmod 17) & k^{2} \equiv-1 \quad(\bmod 6700417) \tag{7.2}\\
k^{2} \equiv 1 & (\bmod 257) . &
\end{array}
$$

Again, each of the residues in (7.2) is a square modulo the corresponding prime.
The third covering is:

$$
\begin{aligned}
\mathcal{C}_{3}= & \{(0,2,3),(3,5,31),(6,7,127),(8,9,73),(4,15,151),(7,20,41),(12,21,337), \\
& (9,24,241),(11,25,601),(21,25,1801),(11,27,262657),(17,28,113),(0,35,71), \\
& (15,35,122921),(37,40,61681),(14,45,631),(29,45,23311),(37,56,15790321), \\
& (39,60,1321),(5,63,92737),(25,70,281),(49,72,433),(25,72,38737), \\
& (16,75,10567201),(1,75,100801),(3,84,14449),(41,90,18837001), \\
& (40,105,152041),(100,105,29191),(10,105,106681),(29,108,279073), \\
& (101,108,246241),(69,120,4562284561),(23,126,77158673929),(56,135,271), \\
& (101,135,49971617830801),(135,140,7416361),(31,150,1133836730401), \\
& (143,168,88959882481),(59,168,3361),(116,175,39551),(37,180,54001), \\
& (110,189,207617485544258392970753527),(47,189,1560007),(31,200,401), \\
& (91,200,3173389601),(131,200,2787601),(141,210,664441),(21,210,1564921), \\
& (41,216,138991501037953),(185,216,33975937),(51,225,13861369826299351), \\
& (201,225,1348206751),(126,225,617401),(167,270,15121), \\
& (191,280,84179842077657862011867889681),(81,300,1201)\} .
\end{aligned}
$$

Here we solve the congruence $k^{2} \cdot 2^{n}-1 \equiv 0\left(\bmod p_{i}\right)$ for k^{2} in each case to get:

$k^{2} \equiv 1 \quad(\bmod 3)$	$k^{2} \equiv 65738 \quad(\bmod 106681)$
$k^{2} \equiv 4 \quad(\bmod 31)$	$k^{2} \equiv 213401 \quad(\bmod 279073)$
$k^{2} \equiv 2 \quad(\bmod 127)$	$k^{2} \equiv 128 \quad(\bmod 246241)$
$k^{2} \equiv 2 \quad(\bmod 73)$	$k^{2} \equiv 2147481600 \quad(\bmod 4562284561)$
$k^{2} \equiv 85 \quad(\bmod 151)$	$k^{2} \equiv 57868481159 \quad(\bmod 77158673929)$
$k^{2} \equiv 33 \quad(\bmod 41)$	$k^{2} \equiv 138 \quad(\bmod 271)$
$k^{2} \equiv 175 \quad(\bmod 337)$	$k^{2} \equiv 17179869184 \quad(\bmod 49971617830801)$
$k^{2} \equiv 233 \quad(\bmod 241)$	$k^{2} \equiv 32 \quad(\bmod 7416361)$
$k^{2} \equiv 157 \quad(\bmod 601)$	$k^{2} \equiv 549201642000 \quad(\bmod 11338336730401)$
$k^{2} \equiv 16 \quad(\bmod 1801)$	$k^{2} \equiv 33554432 \quad(\bmod 88959882481)$
$k^{2} \equiv 65536 \quad(\bmod 262657)$	$k^{2} \equiv 1792 \quad(\bmod 3361)$
$k^{2} \equiv 14 \quad(\bmod 113)$	$k^{2} \equiv 15631 \quad(\bmod 39551)$
$k^{2} \equiv 1 \quad(\bmod 71)$	$k^{2} \equiv 28376 \quad(\bmod 54001)$
$k^{2} \equiv 65208 \quad(\bmod 122921)$	$k^{2} \equiv 604462909807314587353088$
$k^{2} \equiv 8 \quad(\bmod 61681)$	$\quad(\bmod 207617485544258392970753527)$

```
k}\mp@subsup{k}{}{2}\equiv86 (mod 631) < k N \equiv1283744 (mod 1560007)
k}\mp@subsup{k}{}{2}\equiv18914 (mod 23311) < k \ \equiv390 (mod 401)
k
k
k}\mp@subsup{}{}{2}\equiv89839 (mod 92737
k}\mp@subsup{}{2}{2}\equiv100 (mod 281
k}\mp@subsup{k}{}{2}\equiv99 (mod 433
k
k
k}\mp@subsup{}{2}{= 50401 (mod 100801)
k}\mp@subsup{k}{}{2}\equiv12643 (mod 14449)
k
k}\mp@subsup{k}{}{2}\equiv90500 (mod 152041)
k
k
k}\mp@subsup{k}{}{2}\equiv1194865 (mod 2787601
k}\mp@subsup{}{}{2}\equiv414908 (mod 664441
k
k}\mp@subsup{k}{}{2}\equiv134645869146869 (mod 138991501037953
k
k}\mp@subsup{}{}{2}\equiv1244027990477916 (mod 13861369826299351)
k
k}\mp@subsup{k}{}{2}\equiv503159 (mod 617401
k
k
k}\mp@subsup{k}{}{2}\equiv18\quad(\operatorname{mod}1201
```

Adding the congruence $k^{2} \equiv 1(\bmod 2)$ to the total system comprised of the congruences from $\mathcal{C}_{1}, \mathcal{C}_{2}$ and \mathcal{C}_{3}, and choosing a square root in each congruence, we solve for k. Denote the smallest positive solution arising from this choice of square roots as k_{s}. Then $\ell\left(k_{s}^{2}\right) \equiv 0(\bmod 6)$. To get a desired value of k with $\ell\left(k^{2}\right) \equiv 5$ $(\bmod 6)$, we simply choose an appropriate value in the arithmetic progression. The smallest such value is

$$
\kappa=k_{s}+100 \cdot 2\left(\prod_{p_{i} \in \mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3}} p_{i}\right)
$$

where $\ell\left(\kappa^{2}\right)=755 \equiv 5(\bmod 6)$. Then

$$
\begin{aligned}
\kappa^{2}= & 10190477368057640819849474558065396072470509397203727838645536786 \\
& 38142454585827043519020410130464180579866064397962252087699283422 \\
& 44926208918865114738410931496217285274113004623675936166102414532 \\
& 88335031474568807643223345477551037588779177594977927000285137096 \\
& 53958463097776585171728242780882009635406861719490631462356043344 \\
& 53554713693505769091074734126666326169209493105114952132826287819 \\
& 46450436597977898812671503038105142619408620244266209983512079649 \\
& 02702573864246544934381849990614732027662942914035791594676896536 \\
& 16888717719317050738539768537653566067446726452080221478290577620 \\
& 31771790038966916282261877462005855073963044528428373940918889306 \\
& 54643038648628277723975722234454521723228403577353586765723156863 \\
& 7833737869781777339143234199470291788881
\end{aligned}
$$

is a 2-composite sandwich square that is also a Sierpiński and Riesel number. Since
there are infinitely many such values of k in the arithmetic progression, the theorem is established.

Remark 7.3. Since $\operatorname{gcd}\left(9 \kappa^{2}+2,10^{\ell\left(\kappa^{2}\right)}+1\right)=1$, it follows from Theorem 3.1 that κ^{2} is nontrivial. This is not the case for all such values of k^{2} produced from the arithmetic progression. For example, the number $\left(k_{s}+102 \cdot 2 \prod_{p_{i} \in \mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{C}_{3}} p_{i}\right)^{2}$ is a trivial 2-composite sandwich square that is a Sierpiński and Riesel number.

We give in Table 3 a list of coverings to generate d-composite sandwich squares. These coverings can be used in conjunction with \mathcal{C}_{2} and \mathcal{C}_{3}, as in the given case of $d=2$, to generate d-composite sandwich squares that are also Sierpiński and Riesel. The number of digits modulo \mathcal{M} for these squares is also given in each case.

d	Covering	$\ell\left(k^{2}\right)(\bmod \mathcal{M})$
1	$\{(1,3,3),(2,3,37),(3,6,7),(0,6,13)\}$	5
2	\mathcal{C}_{1}	5
3	$\{(0,2,11),(2,3,37),(1,4,101),(3,6,13),(7,12,9901)\}$	8
4	$\{(1,3,3),(2,3,37),(3,6,7),(0,6,13)\}$	5
5	$\{(2,3,3),(1,3,37),(0,6,7),(3,6,13)\}$	5
6	$\{(0,2,11),(0,3,37),(1,6,13)$,	
	$(5,9,333667),(17,18,19),(11,18,52579)\}$	4
7	$\{(0,2,11),(0,3,37),(3,4,101),(5,6,13),(1,12,9901)\}$	8
8	\mathcal{C}_{1}	5
9	$\{(0,2,11),(1,3,37),(3,6,13)$,	
	$(5,9,333667),(17,18,19),(11,18,52579)\}$	4

Table 3: Coverings Used to Generate d-Composite Sandwich Squares

8. Final Comments

In Theorem 1.1 and Theorem 1.2, we found infinitely many primes that are trivial d-composite sandwich numbers. However, in Theorem 1.3, all the nontrivial d composite numbers are composite. The reason for this is that using a covering argument to produce such numbers inherently produces composite numbers. To see this, note that any covering \mathcal{C} must have at least one zero residue. Suppose that $\left(0, m_{i}, p_{i}\right) \in \mathcal{C}$. Then, by (4.3) and (4.4), we have that $k \equiv 0\left(\bmod p_{i}\right)$ so that k is composite. Thus, a covering argument cannot be used to find nontrivial d-composite sandwich primes. Of course, this raises two natural questions: Do any such primes exist; and if so, how do we find them? A computer search has found candidates for such primes. For example, 7 "seems" to be a 1-composite sandwich number, but there is no apparent obstruction to encountering a prime in
the sequence $\left\{s_{n}(7,1)\right\}_{n=1}^{\infty}$. A partial covering

$$
\{(1,3,3),(2,6,11),(5,6,13),(0,6,7)\}
$$

shows that there is indeed a pattern to the prime divisors of $s_{n}(7,1)$ for these congruence classes modulo n. However, the uncovered class of $n \equiv 3(\bmod 6)$ remains somewhat of a mystery; and if a prime occurs in $\left\{s_{n}(7,1)\right\}_{n=1}^{\infty}$, it must occur in this class. Further splitting of this class reveals that there are still patterns to the prime divisors, but ultimately no covering has been found to explain the entire situation. Similar phenomena have been observed before in [11, 18, 22] where the sequence in question defies a covering argument; but, in fact, the sequence is composite. In these situations, the "bad" class yields to a factorization rather than the same prime divisor. It is conjectured that the smallest prime divisor of these "bad" terms in the sequence is unbounded as n approaches infinity. It appears, however, in the case of nontrivial d-composite sandwich numbers, that such a factorization is unlikely, although we have not been able to confirm this belief.

Recently, Bob Hough [17] has given a negative answer to a famous question in covering systems known as the minimum modulus problem. This problem, originally posed by Erdős [9], asks if the minimum modulus in a covering with distinct moduli can be arbitrarily large. Previously, the best known result was due to Nielsen [25], who constructed a covering with distinct moduli and minimum modulus 40. To prove Theorem 1.4 and Theorem 1.5, we constructed four coverings with no repeated associated prime. Admittedly, our situation is not as restrictive as the minimum modulus problem since we can use repeated moduli. So, it is conceivable that we might be able to extend our results somewhat by constructing more than four coverings with no repeated corresponding prime, but it seems computationally infeasible, and perhaps impossible, in light of Hough's theorem, to extend this process to nine coverings.

Acknowledgements We thank Daniel White for conversations concerning Corollary 3.5 . We also thank the referee for the many useful comments and suggestions that helped to improve the paper.

References

[1] A.S. Bang, Taltheoretiske Undersøgelser, Tidsskrift for Mat., 5 (1886), 70-80, 130-137.
[2] B. Banks, C. Finch, F. Luca, C. Pomerance and P. Stănică, Sierpiński and Carmichael Numbers, Trans. Amer. Math. Soc. (to appear)
[3] Y. Bilu, G. Hanrot, and P.M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, with an appendix by M. Mignotte, J. Reine Angew. Math. 539 (2001), 75-122.
[4] Y.G. Chen, On integers of the form $2^{n} \pm p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$, Proc. Amer. Math. Soc. 128 (2000), 1613-1616.
[5] Y.G. Chen, On integers of the form $k 2^{n}+1$, Proc. Amer. Math. Soc. 129 (2001), 355-361.
[6] Y.G. Chen, On integers of the forms $k-2^{n}$ and $k 2^{n}+1$, J. Number Theory 89 (2001), 121-125.
[7] Y.G. Chen, On integers of the forms $k^{r}-2^{n}$ and $k^{r} 2^{n}+1$, J. Number Theory 98 (2003), 310-319
[8] Y.G. Chen, On integers of the forms $k \pm 2^{n}$ and $k 2^{n} \pm 1$, J. Number Theory 125 (2007), 14-25.
[9] P. Erdős, On integers of the form $2^{k}+p$ and some related problems, Summa Brasil. Math., (1950), 113-123.
[10] M. Filaseta, Coverings of the integers associated with an irreducibility theorem of A. Schinzel, Number theory for the millennium, II (2002), 1-24.
[11] M. Filaseta, C. Finch and M. Kozek, On powers associated with Sierpiński numbers, Riesel numbers and Polignac's conjecture, J. Number Theory 128 (2008), 1916-1940.
[12] M. Filaseta and J. Harrington, A polynomial investigation inspired by work of Schinzel and Sierpiński, Acta Arith. 155 (2012), no. 2, 149-161.
[13] M. Filaseta, M. Kozek, C. Nicol and John Selfridge, Composites that remain composite after changing a digit, J. Comb. Number Theory 2 (2010), no. 1, 25-36.
[14] C. Finch, J. Harrington and L. Jones, Nonlinear Sierpiński and Riesel numbers, J. Number Theory 133 (2013), no. 2, 534-544.
[15] C. Finch and L. Jones, Perfect Power Riesel Numbers (submitted).
[16] J. Grantham, W. Jarnicki, J. Rickert and S. Wagon, Repeatedly appending any digit to generate composite numbers, Amer. Math. Monthly (to appear).
[17] B. Hough, The least modulus of a covering system, (2013), arXiv:1307.0874.
[18] A.S. Izotov, A note on Sierpiński numbers, Fibonacci Quart. 33 (1995), 206-207.
[19] L. Jones, Polynomial variations on a theme of Sierpiński, Int. J. Number Theory 5 (2009), 1-17.
[20] L. Jones, Using Lucas sequences to generalize a theorem of Sierpiński, Acta Arith. 152 (2012), no. 3, 307-322.
[21] L. Jones, Variations on a theme of Sierpiński, J. Integer Seq. 10 (2007), Article 07.4.4, 15 pp. (electronic).
[22] L. Jones, When does appending the same digit repeatedly on the right of a positive integer generate a sequence of composite integers?, Amer. Math. Monthly, 118 (2011), 153-160.
[23] L. Jones and M. Markovich, Generating composite sequences by appending digits to special types of integers, The Fibonacci Quarterly (to appear).
[24] L. Jones and D. White, Appending digits to generate an infinite sequence of composite numbers, J. Integer Seq. 14 (2011), no. 5, Article 11.5.7, 12 pp.
[25] P. Nielsen, A covering system whose smallest modulus is 40, J. Number Theory 129 (2009), no. 3, 640-666.
[26] H. Riesel, Några stora primtal, Elementa 39 (1956), 258-260.
[27] H. N. Shapiro, Some assertions equivalent to the prime number theorem for arithmetic progressions, Comm. Pure Appl. Math. 2, (1949), 293-308.
[28] W. Sierpiński, Sur un problème concernant les nombres k. $2^{n}+1$, Elem. d. Math. 15 (1960), 73-74.

