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Abstract
Let d 2 D = {1, . . . , 9}, and let k be a positive integer with gcd(k, 10d) = 1. Define
a sequence {sn(k, d)}1n=1 by

sn(k, d) := k dd . . . d| {z }
n

k.

We say k is a d-composite sandwich number if sn(k, d) is composite for all n � 1.
For a d-composite sandwich number k, we say k is trivial if sn(k, d) is divisible by
the same prime for all n � 1, and nontrivial otherwise. In this paper, we develop
a simple criterion to determine when a d-composite sandwich number is nontrivial,
and we use it to establish many results concerning which types of integers can be
d-composite sandwich numbers. For example, we prove that there exist infinitely
many primes that are simultaneously trivial d-composite sandwich numbers for
all d 2 D. We also show that there exist infinitely many positive integers that
are simultaneously nontrivial d-composite sandwich numbers for all d 2 D, where
D ⇢ D with |D| = 4 and D 6= {3, 6, 7, 9}.

1. Introduction

In [22], the first author proved that for any given fixed digit d 2 {1, 3, 5, 7}, there
exist infinitely many positive integers k, such that gcd(k, d) = 1 and every integer
in the sequence

kd, kdd, kddd, kdddd, kddddd, . . . ,

is composite. Other authors [16, 23, 24] have handled modifications of this appending-
digits problem. An inserting-digits problem was treated in [13]. In this paper, we
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investigate the following variation. Let d 2 D = {1, . . . , 9}, and let k be a positive
integer with gcd(k, 10d) = 1. Define a sequence {sn(k, d)}1n=1 by

sn(k, d) := k dd . . . d| {z }
n

k. (1.1)

We say k is a d-composite sandwich number if sn(k, d) is composite for all n � 1. If
there exists a prime p such that sn(k, d) ⌘ 0 (mod p) for all n � 1, we say k is trivial,
otherwise we say k is nontrivial. The restriction that gcd(k, 10d) = 1 has been
imposed to discard obvious trivial situations. If d = 0, we observe that gcd(k, 10d) =
k, so that d = 0 is ruled out except possibly in the case of k = 1. However, since
s1(1, 0) = 101 is prime, we see that k = 1 is not a 0-composite sandwich number,
and we can exclude the digit d = 0 from all consideration. Therefore, we assume
throughout this article that d 2 D and k is a positive integer with gcd(k, 10d) = 1.
We prove results concerning what types of integers can be d-composite sandwich
numbers, and we consider both trivial and nontrivial situations. In particular, we
prove the following.

Theorem 1.1. For any d 2 D, there exist infinitely many primes that are trivial
d-composite sandwich numbers.

Theorem 1.2. There exist infinitely many primes q that are simultaneously trivial
d-composite sandwich numbers for all d 2 D.

Theorem 1.3. For any d 2 D, there exist infinitely many nontrivial d-composite
sandwich numbers.

Theorem 1.4. There exist infinitely many positive integers that are simultaneously
nontrivial d-composite sandwich numbers for all d 2 D, where D ⇢ D with |D| = 4
and D 6= {3, 6, 7, 9}.
Theorem 1.5. For any d 2 D, there are infinitely many sets of 13 consecutive
positive integers that are all d-composite sandwich numbers.

Theorem 1.6. For any d 2 D, there are infinitely many positive integers k such
that k2 is simultaneously a d-composite sandwich number, a Sierpiński number and
a Riesel number.

Remark 1.7. Although Theorem 1.1 follows directly from Theorem 1.2, we never-
theless treat it independently since we find the smallest trivial d-composite sandwich
number for each individual digit d 2 D.

2. Preliminaries

This section contains some basic definitions and concepts that are useful in this
paper. Other preliminary concepts that are needed for the proof of only one theorem
are presented in the appropriate section.
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Definition 2.1. Let a > 1 be an integer. A prime divisor p of an � 1 is called a
primitive divisor of an � 1 if am 6⌘ 1 (mod p) for all positive integers m < n.

The following theorem concerning the existence of primitive divisors is due to
Bang [1].

Theorem 2.2. Let a and n be positive integers with a � 2. Then an � 1 has a
primitive divisor with the following exceptions:

• a = 2 and n = 6

• a + 1 is a power of 2 and n = 2.

In terms of group theory, the prime p is a primitive divisor of an�1 if and only if
n is the order of a in the group of units modulo p. We denote this order as ordp(a).

The following concept, which is due to Erdős [9], plays an essential role in the
proofs of many of our results.

Definition 2.3. A (finite) covering system, or simply a covering, of the integers is
a system of congruences x ⌘ ai (mod mi), with 1  i  t such that every integer
n satisfies at least one of the congruences. To avoid a trivial situation, we require
mi > 1 for all i. We let M = lcmi(mi) for all moduli mi in a covering.

Many applications of coverings require an associated set of primes, where each of
these primes corresponds in some way to a particular modulus in the covering. It will
be convenient throughout this article to represent a covering and the associated set
of primes using a set C of ordered triples (ai,mi, pi) (or simply ordered pairs (ai,mi)
if the primes pi are too large to display conveniently), where x ⌘ ai (mod mi) is a
congruence in the covering and pi is the corresponding prime. When a covering is
used for a proof of a theorem in this article, the correspondence between the prime
pi and the modulus mi is that pi is either a primitive divisor of 10mi � 1 (with
the exception of pi = 3), or that pi is a primitive divisor of 2mi � 1 for all i in
the covering. For certain moduli mi, the numbers 10mi � 1 and 2mi � 1 have more
than one primitive divisor. In those cases, the corresponding modulus mi can be
used repeatedly in the covering – once for each primitive divisor. Abusing notation
slightly, we refer to C as a “covering”.

For a positive integer k, we let `(k) denote the number of digits in the decimal
representation of k. In this paper, we are concerned with the sequence {sn(k, d)}1n=1

defined in (1.1). It will be convenient to use the following easily-derived formula for
sn(k, d):

sn(k, d) = k
⇣
10`(k)+n + 1

⌘
+ d · 10`(k)

✓
10n � 1

9

◆
. (2.1)

Computer computations in this paper were performed by the authors using Maple
and MAGMA.
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3. Trivial Situations

Recall that k is a trivial d-composite sandwich number if there exists a prime p such
that sn(k, d) ⌘ 0 (mod p) for all n � 1. It may not be immediately apparent that
such numbers even exist, but in fact, we shall see that they are quite abundant. In
this section we determine necessary and su�cient conditions on k, such that k is a
trivial d-composite sandwich number.

Theorem 3.1. Let d 2 D and let k � 1 be an integer such that gcd(k, 10d) = 1.
Then k is a trivial d-composite sandwich number if and only if gcd(9k + d, 10`(k) +
1) > 1.

Proof. Assume first that k is a trivial d-composite sandwich number. Then there
exists a prime p such that sn(k, d) ⌘ 0 (mod p) for all n � 1. Note that if p = 3,
then

sn(k, d) = k
⇣
10n+`(k) + 1

⌘
+d

�
10n�1 + 10n�2 + · · ·+ 1

�
10`(k) ⌘ 2k+nd (mod 3).

Hence, sn(k, d) ⌘ 0 (mod 3) for all n � 1 if and only if gcd(k, d) ⌘ 0 (mod 3),
which we have excluded from consideration here. Thus, p � 7, since the condition
gcd(k, 10d) = 1 also excludes the possibility that p = 2 or p = 5. Since sn(k, d) ⌘ 0
(mod p), we have that

0 ⌘ 9 · sn(k, d) ⌘ A · 10n + B (mod p),

where

A ⌘ (9k + d) 10`(k) (mod p) and B ⌘ 9k � d · 10`(k) (mod p). (3.1)

Since s1(k, d) ⌘ s2(k, d) ⌘ 0 (mod p), we deduce that 90A ⌘ 0 (mod p). Since
p � 7, it follows that A ⌘ B ⌘ 0 (mod p), and so 9k+d ⌘ 0 (mod p). Also, solving
the second congruence in (3.1) for 9k and substituting into the first congruence in
(3.1) gives

d · 10`(k)
⇣
10`(k) + 1

⌘
⌘ 0 (mod p),

which implies that 10`(k) + 1 ⌘ 0 (mod p), unless p = d = 7. But in this case,
since A ⌘ 0 (mod 7), we have that k ⌘ 0 (mod 7), which we have excluded. Thus,
gcd(9k + d, 10`(k) + 1) ⌘ 0 (mod p).

Conversely, suppose that p is a prime such that gcd(9k + d, 10`(k) + 1) ⌘ 0
(mod p). Then, in (3.1), we have A ⌘ 0 (mod p), and since 10`(k) ⌘ �1 (mod p),
we also get that

B ⌘ 9k + d ⌘ 0 (mod p).

Therefore,
9 · sn(k, d) ⌘ A · 10n + B ⌘ 0 (mod p),
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and since p � 7, we conclude that sn(k, d) ⌘ 0 (mod p) for all n � 1, and the proof
is complete.

Example 3.2. Let k = 260487394697203 and d = 2. Then `(k) = 15, gcd(k, 10d) =
1 and

gcd(9 · 260487394697203 + 2, 1015 + 1) = 211,

so that sn(k, 2) ⌘ 0 (mod 211) for all n � 1. Hence, k is a trivial 2-composite
sandwich number.

Remark 3.3. We caution the reader that if gcd(9k + d, 10`(k) + 1) = 1, then it
does not follow that k is a nontrivial d-composite sandwich number, since not all
integers are composite sandwich numbers. However, this condition can be used to
detect if a known d-composite sandwich number is trivial or not. We apply this
condition in Section 4.

3.1. Theorem 1.1

To prove Theorem 1.1, we first need some preliminary results. The first result,
which we state without proof, is a well-known version of the prime number theorem
for arithmetic progressions [27]. We use the standard Landau little-o notation.

Theorem 3.4. Let gcd(a,m) = 1 and let ⇡(x;m,a) be the number of primes p  x
such that p ⌘ a (mod m). Then

⇡(x;m,a) =
x (1 + o(1))
�(m) log x

.

The following corollary is immediate from Theorem 3.4.

Corollary 3.5. Let f(z) > 1 and g(z) > 1 be strictly increasing functions with
f(z) < g(z) for all su�ciently large z. Then the number of primes p with f(z) <
p  g(z) such that p ⌘ a (mod m) is

⇡ (g(z);m,a)� ⇡ (f(z);m,a) =
(1 + o(1))

�(m)

✓
g(z)

log g(z)
� f(z)

log f(z)

◆
.

We need the following lemma.

Lemma 3.6. Let x be a positive integer and let p be a prime such that 10x + 1 ⌘ 0
(mod p). If y is an integer with 1  y  p�1, then there exist nonnegative integers
N and z such that k = pN + y is odd with `(k) = (2z + 1)x.

Proof. Note that `(p)  x + 1. Let z � p and let w = (2z + 1)x � `(p). Then
w > `(p). If y is odd, let N = 10w, and if y is even, let N = 10w + 1. Let
k = pN + y. Then k is odd and

`(k) = `(pN + y) = `(p) + w = (2z + 1)x.



INTEGERS: 15A (2015) 6

3.1.1. Proof of Theorem 1.1

Let p � 7 be a prime such that ordp(10) ⌘ 0 (mod 2). For the sake of brevity of
notation, we let x = ordp(10)/2. Then

10x + 1 ⌘ 0 (mod p).

Let y  p � 1 be a positive integer such that y ⌘ �d/9 (mod p). By Lemma
3.6, there exists a nonnegative integer z and an odd positive integer k such that
k ⌘ y (mod p) and `(k) = (2z + 1)x. Apply Corollary 3.5 with a = y, m = p,
f(z) = 10(2z+1)x�1 and g(z) = 10(2z+1)x to get that

lim
z!1

(⇡ (g(z); p, y)� ⇡ (f(z); p, y)) =1.

Thus, for any su�ciently large integer z, there is a prime q such that q ⌘ y ⌘ �d/9
(mod p) and `(q) = (2z +1)x. Then gcd(9q +d, 10`(q) +1) ⌘ 0 (mod p), and hence,
by Theorem 3.1, it follows that q is a trivial d-composite sandwich number, and the
proof of Theorem 1.1 is complete.

For each d 2 D, we use Theorem 3.1 to give in Table 1 the smallest prime q
that is a trivial d-composite number with gcd(q, 10d) = 1. The primes p such that
sn(q, d) ⌘ 0 (mod p) for all n � 1 are also given.

d q p
1 101 7, 13
2 11 101
3 7 11
4 101 11
5 107 11
6 109 7
7 89 101
8 101 7
9 103 13

Table 1: Smallest Trivial d-Composite Sandwich Primes q with gcd(q, 10d) = 1

3.2. Proof of Theorem 1.2

Suppose that m is a positive integer such that 10m +1 has at least 9 distinct prime
factors p1, p2, . . . , p9. Using the Chinese remainder theorem, we solve the system of
congruences

k ⌘ �d/9 (mod pd).

Thus, for su�ciently large such m, by Lemma 3.6 and Corollary 3.5 (as in the proof
of Theorem 1.1), there is a prime q in the resulting arithmetic progression such that
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`(q) = m. Since gcd(q, 10d) = 1 and gcd
�
9q + d, 10`(q) + 1

�
= pd, it follows from

Theorem 3.1 that q is a trivial d-composite sandwich prime for all d 2 D.
We illustrate the techniques with an example.

Example 3.7. The smallest value of m such that 10m + 1 has at least 9 distinct
prime factors is m = 39. These distinct primes are

P = [1058313049, 859, 7, 6397, 157, 388847808493, 13, 11, 216451]. (3.2)

Using the Chinese remainder theorem, we solve the system of congruences

k ⌘ �d/9 (mod P [d]), d 2 D,

to get

k ⌘ 23095145832174487336140994425364380822 (mod
Y
d

P [d]).

The smallest prime in this arithmetic progression with 39 digits is

q = 100018222755251410413064071348441303899.

Since gcd(q, 10d) = 1 and gcd
�
9q + d, 10`(q) + 1

�
= P [d], it follows from Theorem

3.1 that q is a trivial d-composite sandwich number for all d 2 D.

Remark 3.8. The particular order of the primes in the list (3.2) gives the smallest
prime q that is simultaneously a trivial d-composite sandwich number for all d 2 D.

4. Nontrivial Situations

Recall that nontrivial d-composite sandwich numbers are positive integers k such
sn(k, d) is composite for all n � 1, but not every term sn(k, d) is divisible by the
same prime. We use a covering to find such numbers. Given d 2 D, we want to
construct a covering C = C(d), such that for each triple (ai,mi, pi) 2 C, we have
that sn(k, d) ⌘ 0 (mod pi) whenever n ⌘ ai (mod mi). Here the primes pi, with
the exception of pi = 3, are chosen to be primitive divisors of 10mi � 1 (but we
still assume that 3 is a divisor of (10mi � 1) /9 if pi = 3). To find a number k that
satisfies these conditions, we first set sn(k, d) congruent to 0 modulo pi and solve
(2.1) for k modulo pi for each i, noting that 10n ⌘ 10ai (mod pi). Then we use the
Chinese remainder theorem to piece together this information and get an infinite
arithmetic progression of such values of k that simultaneously solve all congruences
sn(k, d) ⌘ 0 (mod pi). Two additional congruences

k ⌘ 1 (mod 2) and k ⌘ z (mod 5), where z 6⌘ 0 (mod 5), (4.1)
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can be added to the system, if necessary, to ensure that gcd(k, 10) = 1. Note that
these two new congruences do not conflict with any congruences in C since 2 and 5
are never primitive divisors of numbers of the form 10z � 1. Also, it is usually easy
to guarantee that gcd(k, d) = 1 by adding additional congruences for k if necessary,
or by choosing appropriate residues associated with the primes 3 and 7, if they
appear in C. Once k is found, we can easily check that gcd(k, 10d) = 1, and then
use Theorem 3.1 to determine if k is nontrivial.

Certain criteria must be satisfied to accomplish this task. To begin, we set
sn(k, d) = 0 and formally solve for k in (2.1) to get

k = �d · 10`(k) (10n � 1)
9 ·

�
10`(k)+n + 1

� . (4.2)

However, modulo pi there are two di�culties here: (4.2) makes no sense if pi = 3
or if 10`(k)+n + 1 ⌘ 0 (mod pi).

The first di�culty is easily overcome with a modest price. If pi = 3, then we can
expand (10n � 1) /9 to get

10n � 1
9

= 10n�1 + 10n�2 + · · ·+ 10 + 1 ⌘ n (mod 3).

We would like to replace n here with ai since n ⌘ ai (mod mi) in C. To do this, we
must have that mi ⌘ 0 (mod 3) to guarantee that 3 is a divisor of (10mi � 1) /9. In
other words, if pi = 3 in C, then mi ⌘ 0 (mod 3). Hence, since 10`(k)+ai +1 ⌘ 2 6⌘ 0
(mod 3), we can rewrite (4.2) modulo pi, when pi = 3, as

k ⌘ � d · 10`(k)ai

10`(k)+ai + 1
⌘ dai (mod 3). (4.3)

The second di�culty is slightly more annoying. Here we have pi 6= 3 and we can
reduce (4.2) modulo pi to

k ⌘ �d · 10`(k) (10ai � 1)
9 ·

�
10`(k)+ai + 1

� (mod pi), (4.4)

which makes sense provided 10`(k)+ai + 1 6⌘ 0 (mod pi). Since we are looking for
k, we obviously do not know the value of `(k). But, using a suitable specific value
x in place of `(k), we can construct a corresponding value of k. A “suitable” x is a
number that satisfies two conditions. The first condition is that 10x+ai +1 must be
invertible modulo pi for each i. The second condition we require is that x � `(P),
where P = 10

Qt
i=1 pi and t is the total number of elements in C. The factor of

10 here arises from the fact that we have added the two additional congruences for
k modulo 2 and 5. This second condition can be achieved since if one value of x
exists that satisfies the first condition, then there exist infinitely many values of x
satisfying the first condition. This follows from the fact that

10x+ai + 1 ⌘ 10x+sM+ai + 1 (mod pi),
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for any positive integer s. Then, since x � `(P), we can “jack-up” the value of k
in the arithmetic progression we get from solving the system of congruences for k
using the Chinese remainder theorem by adding multiples of P, and hence produce a
value of k with exactly `(k) = x. Moreover, if k ⌘ z (mod P), where 0  z  P�1,
and we choose x � 2`(P), then we can choose k = 10x�`(P)P + z. Observe then
that `(k) = x. Hence, we have

k = 10`(k)�`(P)P + z. (4.5)

In many situations in this article, it is convenient to restrict our attention to values
of k in the form of (4.5). Note that, in practice, it is not always necessary to choose
a value of x � 2`(P) to achieve the form (4.5).

Finally, in order to verify that we have not created a trivial situation, we use
Theorem 3.1 and check that gcd(9k + d, 10`(k) + 1) = 1. We illustrate this method
with an example.

Example 4.1. Let d = 1 and let C = {(2, 3, 3), (1, 3, 37), (0, 6, 7), (3, 6, 13)}. Let
x = 7. Then x � `(P) = ` (10

Q
i pi) = `(101010) = 6, and it is straightforward to

check that 10x+ai +1 6⌘ 0 (mod pi), for all i. Using (4.3) and (4.4), we get that the
resulting system of congruences for k is:

k ⌘ 2 (mod 3)
k ⌘ 1 (mod 37)
k ⌘ 0 (mod 7)
k ⌘ 2 (mod 13)
k ⌘ 1 (mod 2)
k ⌘ 1 (mod 5).

(4.6)

Using the Chinese remainder theorem to solve (4.6) gives k ⌘ 85841 (mod 101010).
Then k = 10 · 101010 + 85841 = 1095941 is in this arithmetic progression and
`(k) = 7. Clearly, gcd(k, 10) = 1, and using a computer we verify that gcd(9k +
1, 10`(k) + 1) = 1. Hence, by Theorem 3.1, we conclude that k is a nontrivial
1-composite sandwich number.

While it is true that the infinitely many values of x described in the discussion
prior to Example 4.1 give rise to infinitely many d-composite sandwich numbers k,
it is not true that k is necessarily nontrivial. In Example 4.1, we chose to let x = 7.
Since M = 6, every value of x ⌘ 1 (mod 6), with x � 7, will generate 1-composite
sandwich numbers k, although k may be trivial. For example, if x = 13 and k =
10000371 · 101010 + 85841 = 1010137560551, then `(k) = 13 and k is a 1-composite
sandwich number. However, k is trivial by Theorem 3.1 since gcd(k, 10) = 1 and
gcd(9k + 1, 10`(k) + 1) = 859. Note that this particular value of k is not in the
form (4.5); and indeed every value of k in the form (4.5) with `(k) ⌘ 1 (mod 6) is
nontrivial. To see this, we let k = 10`(k)�6 ·101010+85841 and we suppose that q is



INTEGERS: 15A (2015) 10

a prime divisor of gcd(9k+1, 10`(k) +1). Since 10`(k) ⌘ �1 (mod q) and 9k+1 ⌘ 0
(mod q), we deduce that q is a prime divisor of

9 · 106 · 85841 + 106 � 9 · 101010 = 772569090910 = 2 · 5 · 77256909091.

Clearly, q 62 {2, 5}, and so q = 77256909091. But then 2`(k) = ordq(10) =
77256909090 implies that

`(k) = 77256909090/2 = 38628454545 ⌘ 0 (mod 3),

which contradicts the fact that `(k) ⌘ 1 (mod 6).
The question still remains as to whether a suitable value of x can always be

found to generate d-composite sandwich numbers using the method described in
this section. We provide conditions on C to guarantee the existence of such an x,
but first we need a lemma.

Lemma 4.2. Let x, a and m be positive integers with m ⌘ 0 (mod 2). Let bm =
m/2, and let p be a primitive divisor of 10m � 1. Then

10x+a + 1 ⌘ 0 (mod p)() x ⌘ bm� a (mod m).

Proof. Suppose first that 10x+a + 1 ⌘ 0 (mod p). Then 102(x+a) ⌘ 1 (mod p) so
that m = ordp(10) divides 2(x + a). Thus, x + a ⌘ 0 (mod bm). Note that if
x + a ⌘ 0 (mod m), then 0 ⌘ 10x+a + 1 ⌘ 2 (mod p), which is impossible since p
is odd. Hence, x + a 6⌘ 0 (mod m). Therefore, there is an integer b such that

x + a =
(2b + 1)m

2
= bm + bm ⌘ bm (mod m).

Conversely, suppose that x ⌘ bm � a (mod m). Then 2(x + a) ⌘ 0 (mod m),
which implies that (10x+a � 1) (10x+a + 1) = 102(x+a) � 1 ⌘ 0 (mod p). Hence,
10x+a + 1 ⌘ 0 (mod p) since x + a 6⌘ 0 (mod m).

Proposition 4.3. Let C = {(ai,mi, pi)} be a covering with exactly t congruences
such that pi is a primitive divisor of 10mi � 1 for each pi 6= 3. Relabel, if necessary,
so that m1, . . . ,ms are even, where s  t. Let bmi = mi/2 for each i with 1  i  s.
If there exists y 2 Z such that

bmi � ai 6⌘ y (mod mi) for all i with 1  i  s, (4.7)

then there exist infinitely many values of x such that 10x+ai + 1 6⌘ 0 (mod pi) for
all i.

Proof. We first claim that 10x+ai +1 6⌘ 0 (mod pi) for each i with mi odd. If pi = 3,
then this fact is obvious, so assume that pi 6= 3. If 10x+ai + 1 ⌘ 0 (mod pi), then
102(x+ai) ⌘ 1 (mod pi). Hence, 2(x + ai) ⌘ 0 (mod mi), since by the construction
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of C we have that ordpi(10) = mi. Thus x + ai ⌘ 0 (mod mi) since mi is odd. But
then, 0 ⌘ 10x+ai +1 ⌘ 2 (mod pi), which is impossible since clearly pi 6= 2. Hence,
if mi is odd, any value of x will su�ce to ensure that 10x+ai + 1 6⌘ 0 (mod pi), and
the claim is established. This also proves the proposition if s = 0.

Suppose now that s � 1 and consider the list of congruences

x ⌘ bm1 � a1 (mod m1)
x ⌘ bm2 � a2 (mod m2)

...
x ⌘ bms � as (mod ms).

(4.8)

It follows from (4.7) that (4.8) is not a covering, and therefore there exist infinitely
many positive integers x that do not satisfy any of the congruences in (4.8). Hence,
for any such value of x, we have by Lemma 4.2 that 10x+ai + 1 6⌘ 0 (mod pi) for
all i, which completes the proof of the proposition.

4.1. Proof of Theorem 1.3

We first show that if there exists a covering C that can be used to generate a
nontrivial d-composite sandwich number k (as in Example 4.1) with gcd(`(k),M) =
1, then there exist infinitely many nontrivial d-composite sandwich numbers. To
complete the proof, we then find a covering C to construct a nontrivial d-composite
sandwich number k with gcd(`(k),M) = 1 for each value of d.

Assume that k is a nontrivial d-composite sandwich number in the form (4.5)
that has been constructed from C = {(ai,mi, pi)} using the method described at
the beginning of Section 4. Suppose also that gcd(`(k),M) = 1 and k ⌘ z (mod P)
with 1  z  P � 1, where P = 10

Q
i pi or P =

Q
i pi, depending on whether the

two additional congruences (4.1) have been added. Then k = 10`(k)�`(P)P + z, and
gcd

�
9k + d, 10`(k) + 1

�
= 1, by Theorem 3.1. Let P be the largest prime divisor of

Z = 9
⇣
z · 10`(P) � P

⌘
+ d · 10`(P).

Since gcd(`(k),M) = 1, by Dirichlet’s theorem on primes in an arithmetic progres-
sion, there exist infinitely many positive integers j such that `(k) + jM is a prime
with `(k) + jM > P . We claim that

kj := 10`(k)�`(P)+jMP + z

is a nontrivial d-composite sandwich number for each such value of j. Note that kj

is indeed a d-composite sandwich number since

sn (kj , d) ⌘ sn(k, d) ⌘ 0 (mod pi),

when n ⌘ ai (mod mi). Also note that `(kj) = `(k) + jM. Let

A = 9kj + d and B = 10`(k)+jM + 1,
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and assume that kj is trivial. Then, by Theorem 3.1, we have that gcd(A,B) ⌘ 0
(mod p) for some prime p. Since B ⌘ 0 (mod p), we get that 10`(k)�`(P)+jM ⌘
�10�`(P) (mod p). Then, since A ⌘ 0 (mod p), we have

A ⌘ 9
⇣
�10�`(P)P + z

⌘
+ d ⌘ 0 (mod p),

which implies that Z ⌘ 0 (mod p). In other words, if kj is trivial, then sn(kj , d) ⌘ 0
(mod p) for all n � 1, for some prime divisor p of the fixed positive integer Z.
However, since 10`(k)+jM+ 1 ⌘ 0 (mod p), and `(k) + jM is prime, it follows that
2 (`(k) + jM) = ordp(10) divides p � 1, which is impossible since `(k) + jM � p.
This contradiction proves the existence of infinitely many nontrivial d-composite
sandwich numbers k if one is known to exist with gcd(`(k),M) = 1. To complete
the proof of the theorem, we construct such a nontrivial d-composite sandwich
number for each value of d. We use the following covering for each d:

C ={(0, 3, 37), (3, 4, 101), (2, 5, 41), (0, 5, 271), (2, 6, 13), (4, 10, 9091),
(5, 12, 9901), (1, 15, 31), (28, 30, 211), (19, 30, 241), (13, 30, 2161)}.

Here M = 60, and `(k) = 29 for each d, so that gcd(`(k),M) = 1. Also, it is easily
verified using a computer that gcd(9k + d, 10`(k) + 1) = 1 in each case. We add the
two congruences k ⌘ 1 (mod 2) and k ⌘ 1 (mod 5) for k. We omit the details and
simply provide in Table 2 the value of k for each d.

d k
1 17447080826852847307281356871
2 18177573287783379196675646521
3 17252957989711701638754384961
4 17983450450642233528148674611
5 17058835152570555970227413051
6 17789327613501087859621702701
7 16864712315429410301700441141
8 17595204776359942191094730791
9 16670589478288264633173469231

Table 2: Nontrivial d-Composite Sandwich Numbers k with gcd(`(k),M) = 1

5. Proof of Theorem 1.4

In order to prove the existence of infinitely many positive integers that are simulta-
neously nontrivial d-composite sandwich numbers for all d 2 D ⇢ D, where |D| = 4
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and D 6= {3, 6, 7, 9}, we use an argument similar to the one used in the proof of
Theorem 1.3. In this situation, however, we must construct four separate coverings
C1, C2, C3 and C4 corresponding to the four digits. As before, in each of these cov-
erings, with the exception of pi = 3, pi is a primitive divisor of 10mi � 1, where mi

is a modulus in the covering. The tricky part is that if we use the same prime pi in
more than one covering, the resulting congruences for k must be the same. For this
reason, we have avoided using any prime more than once. The price we pay for this
avoidance is that the coverings are more di�cult to construct. The four coverings
we use are as follows:

C1 ={(1, 4, 101), (0, 6, 13), (3, 8, 73), (7, 8, 137), (8, 12, 9901), (10, 16, 17), (2, 16, 5882353)

(16, 18, 19), (14, 24, 99990001), (28, 36, 999999000001), (22, 48, 9999999900000001)

(4, 72, 3169), (40, 72, 98641), (46, 72, 3199044596370769), (94, 144, 8929)},

C2 ={(1, 3, 3), (0, 3, 37), (5, 6, 7), (2, 18, 52579), (26, 27, 757), (14, 27, 440334654777631),

(44, 54, 70541929), (32, 54, 14175966169), (35, 81, 163), (77, 81, 9397), (50, 81, 2462401),

(62, 81, 676421558270641), (23, 81, 130654897808007778425046117),

(8, 162, 456502382570032651)},

C3 ={(1, 5, 41), (4, 5, 271), (7, 10, 9091), (13, 15, 31), (8, 15, 2906161), (15, 20, 3541),

(2, 20, 27961), (20, 25, 21401), (0, 25, 25601), (5, 25, 182521213001), (3, 30, 211),

(18, 30, 241), (22, 30, 2161), (40, 50, 251), (10, 50, 5051), (15, 50, 78875943472201),

(32, 60, 61), (12, 60, 4188901), (45, 60, 39526741), (35, 75, 151), (10, 75, 4201)},

C4 ={(1, 7, 239), (6, 7, 4649), (7, 9, 333667), (0, 14, 909091), (5, 21, 43), (17, 21, 1933),

(9, 21, 10838689), (11, 28, 29), (18, 28, 281), (7, 28, 121499449),

(17, 32, 353), (9, 32, 449), (1, 32, 641), (25, 32, 1409), (2, 42, 127),

(24, 42, 2689), (12, 42, 459691), (4, 56, 7841), (32, 56, 127522001020150503761),

(31, 63, 10837), (37, 63, 23311), (40, 63, 45613), (19, 63, 45121231),

(10, 63, 1921436048294281), (23, 84, 226549), (3, 84, 4458192223320340849),

(93, 96, 97), (69, 96, 206209), (45, 96, 66554101249), (21, 96, 75118313082913),

(53, 112, 113), (109, 112, 73765755896403138401),

(21, 112, 119968369144846370226083377), (58, 126, 5274739),

(121, 126, 189772422673235585874485732659), (149, 168, 603812429055411913),

(243, 252, 22906246896437231227899575633620139766044690040039603689929),

(75, 252, 43266855241), (159, 252, 1009),

(77, 336, 1433319827159466789806966856379479179916136529424792832495021393),

(301, 336, 2070270028985341766616009080161)}.

Let C = C1[C2[C3[C4, and let P be the product of all the primes in C multiplied
by 10 (adding the primes 2 and 5). Then `(P) = 741. We give details only for the
case of D = {1, 2, 3, 4} since the other cases are similar. Here, Ci corresponds to the
digit i. We create a system of congruences for k using (4.3) and (4.4), together with
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the two added congruences k ⌘ 1 (mod 2) and k ⌘ 1 (mod 5). Then we search
over values of x � 741 (in place of `(k)) to find a solution to the system (via the
Chinese remainder theorem), in accordance with (4.5), that simultaneously satisfies
the criteria from Proposition 4.3 and Theorem 1.3. The smallest value of x that
satisfies these conditions is x = 779, and a solution with `(k) = 779 is

k =3544029195368912316666174784482258650911694860681098307631700188746035217

6407222366102321143987082440414733816824588900746485360827171938317666194

1962697722999233244836274692059265000444349545898458405127628855138731166

7148130944698360348586790802593012202168051368277728925506156403451950936

5780984731537231402963019726914499525385017784735089846291975875191298265

1913308322351447448556852926964902686932331389498620135407404152771923058

4123751445781205058216540960465709674609765053940878499898580013583705525

8947379236808321956781785581251473983275672044111717060569043689583610615

9678355083536441937227174321720691339534757036108747356654837948550243646

5471117811031822098052647767973565747345134645161034457609214662167122526

6391841423913444597795160981393953097819656099201.

Indeed, it is straightforward to check that

gcd(9k + d, 10`(k) + 1) = gcd(k, 10d) = 1,

for each digit d 2 {1, 2, 3, 4}. In addition, M = 453600 so that gcd(`(k),M) = 1,
which completes the proof of the theorem.

Remark 5.1. Note that there are 4! possible ways the coverings C1, C2, C3 and
C4 can be “assigned” to the digits in a set D ⇢ D with |D| = 4. For a particular
D, some of these correspondences do not yield a solution that satisfies all of the
necessary criteria. However, with the exception of D = {3, 6, 7, 9}, at least one
correspondence produces a desired solution using these four coverings. The excep-
tional case D = {3, 6, 7, 9} in Theorem 1.4 is a result of the fact that, regardless of
how we assign these four coverings to the digits in D, the congruences arising from
the covering C2 force either k ⌘ 0 (mod 3) or k ⌘ 0 (mod 7). Although k is still a
composite sandwich number in this case, it is trivial.

6. Proof of Theorem 1.5

Given any d 2 D, to prove that there are infinitely many sets of 13 consecutive
positive integers that are all d-composite sandwich numbers, we utilize the method
and coverings that were used in the proof of Theorem 1.4. However, here we use the
same d for all four coverings C1, C2, C3 and C4. In addition, we substitute k + 2 for
k in the congruences generated from C2, k + 4 for k in the congruences for k in the
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congruences generated from C3, and k + 6 for k in the congruences generated from
C4. We also add the congruences k ⌘ 1 (mod 2) and k ⌘ 2 (mod 5) to the system
for k. Since the techniques are similar, we give details only in the case of d = 1.
The smallest value of x � 741 here, in accordance with (4.5), that simultaneously
satisfies the criteria from Proposition 4.3 and Theorem 1.3 is x = 811. Using the
Chinese remainder theorem, a solution to the system of congruences for k, with
`(k) = 841, is

k =3544029195368912316666174784482258650908326838647239060200876864650079431

1711630812697324230525538611838646043882766742346069163764391075438928881

3699789159029469059047678298092672792216574482270249499003001497798585976

5344308183364637135810236440486282392927159604420693600828207861578411170

6681186262615978434167536949357633418075684192054467217185023166944874737

1689757054755673346721553522756962087212178947796157521768786309652796994

4685765718557579581798061572469898685785778779323768087150735721199826790

4782770253370103767597480428692295437780589986448693949970580537837368249

5758123653025610979354753176939604748433221775845235692325886596409193285

7213743007630396022221086807104788683968673543948689532792465149164194750

8378705604021354244189937489028854509228736851403542592414929979630436913

87637597.

Note that k + z ⌘ 0 (mod 2) for all odd integers z with �3  z  9. Also,
k + z ⌘ 0 (mod 5) for z 2 {�2, 3, 8}. Hence, in these cases, the integers k + z
are trivial 1-composite sandwich numbers. For the values of z with z 2 {0, 2, 4, 6},
we have used the respective coverings C1, C2, C3 and C4, to ensure that k + z is a
1-composite sandwich number. It is again easy to check that

gcd(9k + 1, 10`(k) + 1) = gcd(k, 10) = 1

and gcd(`(k),M) = 1. Thus, we can construct infinitely many nontrivial 1-composite
sandwich numbers k such that k � 3, k � 2, . . . , k + 9 are all 1-composite (not nec-
essarily nontrivial) sandwich numbers. As mentioned, the methods are similar for
the other digits.

7. Theorem 1.6

Definition 7.1. A Sierpiński number k is an odd positive integer such that k ·2n+1
is composite for all integers n � 1.

Definition 7.2. A Riesel number k is an odd positive integer such that k · 2n � 1
is composite for all integers n � 1.
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In 1956, Riesel [26] proved that there are infinitely many Riesel numbers, and
in 1960, Sierpiński [28] proved that there are infinitely many Sierpiński numbers.
Since then, other authors have examined extensions and variations of these ideas
[2, 4, 5, 6, 7, 8, 10, 12, 11, 12, 14, 15, 18, 19, 20, 21, 22, 23, 24]. Coverings are used
quite extensively in these investigations.

7.1. Proof of Theorem 1.6

We provide details only for d = 2 since the procedure is identical for other values
of d 2 D.

The approach we use is similar to one used in [23]. We build three coverings C1,
C2 and C3 with the following properties:

• C1 is used to generate infinitely many 2-composite sandwich numbers that are
also perfect squares. The corresponding primes here are primitive divisors of
numbers of the form 10m � 1, where m is a modulus in C1.

• C2 is used to generate infinitely many squares that are also Sierpiński numbers.
The corresponding primes here are primitive divisors of numbers of the form
2m � 1, where m is a modulus in C2.

• C3 is used to generate infinitely many squares that are also Riesel numbers.
The corresponding primes here are primitive divisors of numbers of the form
2m � 1, where m is a modulus in C3.

• The only corresponding prime that appears in more than one covering is p = 3.

Even though we use the prime pi = 3 in all three coverings, the resulting congruence
for k2 is the same in all cases. Thus, we can piece together all three coverings and use
the Chinese remainder theorem to get squares that are simultaneously 2-composite
sandwich, Sierpiński and Riesel.

The first covering is: C1 = {(2, 3, 3), (1, 3, 37), (3, 6, 7), (0, 6, 13)}. Here, we have
`
⇣Q4

i=1 pi

⌘
= `(10101) = 5, and so we need to choose x with x � 5. In addition, by

Proposition 4.3, we need to choose x such that x 6⌘ 0 (mod 3). We choose x = 5.
Replacing k with k2 in (4.3) and (4.4), we get the following set of congruences for
k2:

k2 ⌘ 1 (mod 3)
k2 ⌘ 11 (mod 37)
k2 ⌘ 1 (mod 7)
k2 ⌘ 0 (mod 13).

(7.1)

Note that each of the residues in (7.1) is a square modulo the corresponding prime.
The second covering is:

C2 ={(1, 2, 3), (2, 4, 5), (4, 8, 17), (8, 16, 257), (16, 32, 65537), (32, 64, 641), (0, 64, 6700417)}.
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We use C2 and solve for k2 in each congruence k2 · 2n + 1 ⌘ 0 (mod pi). The
resulting system of congruences is:

k2 ⌘ 1 (mod 3) k2 ⌘ 1 (mod 65537)
k2 ⌘ 1 (mod 5) k2 ⌘ 1 (mod 641)
k2 ⌘ 1 (mod 17) k2 ⌘ �1 (mod 6700417).
k2 ⌘ 1 (mod 257).

(7.2)

Again, each of the residues in (7.2) is a square modulo the corresponding prime.
The third covering is:

C3 ={(0, 2, 3), (3, 5, 31), (6, 7, 127), (8, 9, 73), (4, 15, 151), (7, 20, 41), (12, 21, 337),

(9, 24, 241), (11, 25, 601), (21, 25, 1801), (11, 27, 262657), (17, 28, 113), (0, 35, 71),

(15, 35, 122921), (37, 40, 61681), (14, 45, 631), (29, 45, 23311), (37, 56, 15790321),

(39, 60, 1321), (5, 63, 92737), (25, 70, 281), (49, 72, 433), (25, 72, 38737),

(16, 75, 10567201), (1, 75, 100801), (3, 84, 14449), (41, 90, 18837001),

(40, 105, 152041), (100, 105, 29191), (10, 105, 106681), (29, 108, 279073),

(101, 108, 246241), (69, 120, 4562284561), (23, 126, 77158673929), (56, 135, 271),

(101, 135, 49971617830801), (135, 140, 7416361), (31, 150, 1133836730401),

(143, 168, 88959882481), (59, 168, 3361), (116, 175, 39551), (37, 180, 54001),

(110, 189, 207617485544258392970753527), (47, 189, 1560007), (31, 200, 401),

(91, 200, 3173389601), (131, 200, 2787601), (141, 210, 664441), (21, 210, 1564921),

(41, 216, 138991501037953), (185, 216, 33975937), (51, 225, 13861369826299351),

(201, 225, 1348206751), (126, 225, 617401), (167, 270, 15121),

(191, 280, 84179842077657862011867889681), (81, 300, 1201)}.

Here we solve the congruence k2 · 2n � 1 ⌘ 0 (mod pi) for k2 in each case to get:

k2 ⌘ 1 (mod 3) k2 ⌘ 65738 (mod 106681)
k2 ⌘ 4 (mod 31) k2 ⌘ 213401 (mod 279073)
k2 ⌘ 2 (mod 127) k2 ⌘ 128 (mod 246241)
k2 ⌘ 2 (mod 73) k2 ⌘ 2147481600 (mod 4562284561)
k2 ⌘ 85 (mod 151) k2 ⌘ 57868481159 (mod 77158673929)
k2 ⌘ 33 (mod 41) k2 ⌘ 138 (mod 271)
k2 ⌘ 175 (mod 337) k2 ⌘ 17179869184 (mod 49971617830801)
k2 ⌘ 233 (mod 241) k2 ⌘ 32 (mod 7416361)
k2 ⌘ 157 (mod 601) k2 ⌘ 549201642000 (mod 1133836730401)
k2 ⌘ 16 (mod 1801) k2 ⌘ 33554432 (mod 88959882481)
k2 ⌘ 65536 (mod 262657) k2 ⌘ 1792 (mod 3361)
k2 ⌘ 14 (mod 113) k2 ⌘ 15631 (mod 39551)
k2 ⌘ 1 (mod 71) k2 ⌘ 28376 (mod 54001)
k2 ⌘ 65208 (mod 122921) k2 ⌘ 604462909807314587353088
k2 ⌘ 8 (mod 61681) (mod 207617485544258392970753527)
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k2 ⌘ 86 (mod 631) k2 ⌘ 1283744 (mod 1560007)
k2 ⌘ 18914 (mod 23311) k2 ⌘ 390 (mod 401)
k2 ⌘ 524288 (mod 15790321) k2 ⌘ 3173389089 (mod 3173389601)
k2 ⌘ 725 (mod 1321) k2 ⌘ 1194865 (mod 2787601)
k2 ⌘ 89839 (mod 92737) k2 ⌘ 414908 (mod 664441)
k2 ⌘ 100 (mod 281) k2 ⌘ 1228462 (mod 1564921)
k2 ⌘ 99 (mod 433) k2 ⌘ 134645869146869 (mod 138991501037953)
k2 ⌘ 36689 (mod 38737) k2 ⌘ 6999617 (mod 33975937)
k2 ⌘ 2399130 (mod 10567201) k2 ⌘ 1244027990477916 (mod 13861369826299351)
k2 ⌘ 50401 (mod 100801) k2 ⌘ 16777216 (mod 1348206751)
k2 ⌘ 12643 (mod 14449) k2 ⌘ 503159 (mod 617401)
k2 ⌘ 18836985 (mod 18837001) k2 ⌘ 13936 (mod 15121)
k2 ⌘ 90500 (mod 152041) k2 ⌘ 618970019642690137449562112
k2 ⌘ 32 (mod 29191) (mod 84179842077657862011867889681)

k2 ⌘ 18 (mod 1201)
(7.3)

Adding the congruence k2 ⌘ 1 (mod 2) to the total system comprised of the
congruences from C1, C2 and C3, and choosing a square root in each congruence, we
solve for k. Denote the smallest positive solution arising from this choice of square
roots as ks. Then `

�
k2

s

�
⌘ 0 (mod 6). To get a desired value of k with `(k2) ⌘ 5

(mod 6), we simply choose an appropriate value in the arithmetic progression. The
smallest such value is

 = ks + 100 · 2

0
@ Y

pi2C1[C2[C3

pi

1
A ,

where `
�
2

�
= 755 ⌘ 5 (mod 6). Then

2 =10190477368057640819849474558065396072470509397203727838645536786
38142454585827043519020410130464180579866064397962252087699283422
44926208918865114738410931496217285274113004623675936166102414532
88335031474568807643223345477551037588779177594977927000285137096
53958463097776585171728242780882009635406861719490631462356043344
53554713693505769091074734126666326169209493105114952132826287819
46450436597977898812671503038105142619408620244266209983512079649
02702573864246544934381849990614732027662942914035791594676896536
16888717719317050738539768537653566067446726452080221478290577620
31771790038966916282261877462005855073963044528428373940918889306
54643038648628277723975722234454521723228403577353586765723156863
7833737869781777339143234199470291788881

is a 2-composite sandwich square that is also a Sierpiński and Riesel number. Since
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there are infinitely many such values of k in the arithmetic progression, the theorem
is established.

Remark 7.3. Since gcd(92 +2, 10`(2) +1) = 1, it follows from Theorem 3.1 that
2 is nontrivial. This is not the case for all such values of k2 produced from the

arithmetic progression. For example, the number
⇣
ks + 102 · 2

Q
pi2C1[C2[C3 pi

⌘2
is

a trivial 2-composite sandwich square that is a Sierpiński and Riesel number.

We give in Table 3 a list of coverings to generate d-composite sandwich squares.
These coverings can be used in conjunction with C2 and C3, as in the given case of
d = 2, to generate d-composite sandwich squares that are also Sierpiński and Riesel.
The number of digits modulo M for these squares is also given in each case.

d Covering `
�
k2

�
(mod M)

1 {(1, 3, 3), (2, 3, 37), (3, 6, 7), (0, 6, 13)} 5
2 C1 5
3 {(0, 2, 11), (2, 3, 37), (1, 4, 101), (3, 6, 13), (7, 12, 9901)} 8
4 {(1, 3, 3), (2, 3, 37), (3, 6, 7), (0, 6, 13)} 5
5 {(2, 3, 3), (1, 3, 37), (0, 6, 7), (3, 6, 13)} 5
6 {(0, 2, 11), (0, 3, 37), (1, 6, 13),

(5, 9, 333667), (17, 18, 19), (11, 18, 52579)} 4
7 {(0, 2, 11), (0, 3, 37), (3, 4, 101), (5, 6, 13), (1, 12, 9901)} 8
8 C1 5
9 {(0, 2, 11), (1, 3, 37), (3, 6, 13),

(5, 9, 333667), (17, 18, 19), (11, 18, 52579)} 4

Table 3: Coverings Used to Generate d-Composite Sandwich Squares

8. Final Comments

In Theorem 1.1 and Theorem 1.2, we found infinitely many primes that are trivial
d-composite sandwich numbers. However, in Theorem 1.3, all the nontrivial d-
composite numbers are composite. The reason for this is that using a covering
argument to produce such numbers inherently produces composite numbers. To
see this, note that any covering C must have at least one zero residue. Suppose
that (0,mi, pi) 2 C. Then, by (4.3) and (4.4), we have that k ⌘ 0 (mod pi) so
that k is composite. Thus, a covering argument cannot be used to find nontrivial
d-composite sandwich primes. Of course, this raises two natural questions: Do
any such primes exist; and if so, how do we find them? A computer search has
found candidates for such primes. For example, 7 “seems” to be a 1-composite
sandwich number, but there is no apparent obstruction to encountering a prime in
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the sequence {sn(7, 1)}1n=1. A partial covering

{(1, 3, 3), (2, 6, 11), (5, 6, 13), (0, 6, 7)}

shows that there is indeed a pattern to the prime divisors of sn(7, 1) for these
congruence classes modulo n. However, the uncovered class of n ⌘ 3 (mod 6)
remains somewhat of a mystery; and if a prime occurs in {sn(7, 1)}1n=1, it must
occur in this class. Further splitting of this class reveals that there are still patterns
to the prime divisors, but ultimately no covering has been found to explain the
entire situation. Similar phenomena have been observed before in [11, 18, 22] where
the sequence in question defies a covering argument; but, in fact, the sequence
is composite. In these situations, the “bad” class yields to a factorization rather
than the same prime divisor. It is conjectured that the smallest prime divisor
of these “bad” terms in the sequence is unbounded as n approaches infinity. It
appears, however, in the case of nontrivial d-composite sandwich numbers, that
such a factorization is unlikely, although we have not been able to confirm this
belief.

Recently, Bob Hough [17] has given a negative answer to a famous question in
covering systems known as the minimum modulus problem. This problem, originally
posed by Erdős [9], asks if the minimum modulus in a covering with distinct moduli
can be arbitrarily large. Previously, the best known result was due to Nielsen
[25], who constructed a covering with distinct moduli and minimum modulus 40.
To prove Theorem 1.4 and Theorem 1.5, we constructed four coverings with no
repeated associated prime. Admittedly, our situation is not as restrictive as the
minimum modulus problem since we can use repeated moduli. So, it is conceivable
that we might be able to extend our results somewhat by constructing more than
four coverings with no repeated corresponding prime, but it seems computationally
infeasible, and perhaps impossible, in light of Hough’s theorem, to extend this
process to nine coverings.
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