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Abstract
Fix an integer g � 2. A natural number n is called a palindrome in base g if its base
g expansion reads the same forwards and backwards. Let s(n) =

P
d|n, d<n d be the

sum-of-proper-divisors function. We show that for almost all (that is, asymptoti-
cally 100% of) natural numbers n, s(n) is not a palindrome in base g. We also show
how to reach the same conclusion for several other commonly occurring arithmetic
functions.

1. Introduction

Fix an integer g � 2. We say that a natural number n is a palindrome in base g (or
g-palindromic) if its base g expansion reads the same forwards and backwards. In
other words, if we write

n = a0 + a1g + · · · + atg
t, where each ai 2 {0, 1, . . . , g � 1} and at > 0,

then ai = at�i for i = 0, 1, 2, . . . , t. A simple counting argument shows that the
number of integers in [1, x] that are palindromic in base g has order of magnitude
x1/2 for all x � 1.

Given a naturally occurring integer sequence, one might ask about the frequency
with which this sequence intersects the set of palindromes. This has been studied for
the sequence of primes [1, 5], linear recurrence sequences [11, 4], and the sequences
of kth powers for fixed k = 2, 3, . . . [3]. Here we investigate this problem for
the sequence {s(n)}1n=1, where s(n) :=

P
d|n, d<n d is the sum-of-proper-divisors

function. Our main theorem is that s(n) is g-palindromic only for a density zero
set of natural numbers n. In fact, we prove a bit more.

Definition. Let k be a positive integer. We say that the positive integer n is k-
nearly-palindromic in base g if either n < g2k, or n � g2k and the first k digits of n
coincide with the reversal of the last k digits of n.

It is clear that every palindrome is k-nearly-palindromic for each k = 1, 2, 3, . . . .
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Theorem 1. Fix g � 2. Let k be an integer with k � 2. The upper density of those
n for which s(n) is k-nearly-palindromic is Og(1/ log k).

In the opposite direction from Theorem 1, palindromic values of s(n) are at least
as frequent as the primes, for the trivial reason that s(n) = 1 for all prime values
of n. However, we do not know how to prove that in each base g, the function s(n)
assumes infinitely many distinct palindromic values; for instance, we do not know
how to do this when g = 10. (This question is uninteresting if, e.g., g is prime,
since then s(gk) is always palindromic.) This would follow from the conjecture that
all large even n can be written as a sum p + q, with p and q distinct primes (a
slight strengthening of Goldbach), since we can then arrange for s(pq) = p + q + 1
to coincide with any large odd number. But the existing results on the Goldbach
conjecture seem, even under the Generalized Riemann Hypothesis, to be too weak
to say anything about our problem.

One might wonder why we concentrate on the particular function s(n). It turns
out that for most of the other commonly occurring arithmetic functions, the situ-
ation is much simpler. In §3, we show that for each function f 2 {�,',�, d,!,⌦},
the set of n for which f(n) is palindromic is a set of density zero.

Notation and Conventions

We continue to use �(n) =
P

d|n d for the usual sum-of-divisors function, '(n) =
#(Z/nZ)⇥ for the Euler function, �(n) for the Carmichael �-function giving the
exponent of (Z/nZ)⇥, d(n) =

P
d|n 1 for the number-of-divisors function, and ⌦

and ! for the functions counting the number of prime divisors, with and without
multiplicities, respectively. We use O and o-notation, as well as the symbols ⌧, �,
and ⇣, with their usual meanings. Dependence of implied constants is indicated
with subscripts. For x > 0, we let log1 x = max{1, log x}, and we let logk denote
the kth iterate of log1. Note that with this convention, logk x � 1 for every x > 0.

2. Palindromic Values of the Sum-of-proper-divisors Function

For each real u, let D(u)={n 2 N : s(n)  un}. In 1933, Davenport showed that the
sets D(u) possess an asymptotic density for every real u [6]. Calling this density
D(u) he proved that D(u) is continuous everywhere and that limu!1D(u) = 1. The
following result is an analogue of Davenport’s theorem for arithmetic progressions.

Lemma 2. Let a and q be integers with q > 0. For each real u, let Da,q(u) = {n ⌘
a mod q : s(n)  un}. Then for all u,

Da,q(u) := lim
x!1

#(Da,q \ [1, x])
x/q

exists, and Da,q is a continuous function of u with limu!1Da,q(u) = 1.
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Proof. While the discussion so far has been phrased in terms of s(n)/n, everything
is easily translated to be about the function �(n)/n, since �(n)/n = 1 + s(n)/n.
In particular, Davenport’s theorem may be read as asserting the existence of a
continuous limiting distribution for �(n)/n, while Lemma 2 amounts to the claim
that �(n)/n has a continuous distribution function when n is restricted to the
progression a (mod q).

For a wide class of arithmetic functions, H. N. Shapiro showed that the existence
of a distribution function relative to N implies the existence of a distribution function
relative to each arithmetic progression a (mod q) [14, Theorem 5.2]. Shapiro’s result
applies in particular to �(n)/n. The continuity of the resulting distribution function
follows immediately from the continuity of Davenport’s function D(u).

A priori, one might expect q distinct distribution functions Da,q corresponding
to the q di↵erent choices for a (mod q). In fact, there is quite a bit of redundancy.

Lemma 3. Let a, b, and q be integers with q > 0. If gcd(a, q) = gcd(b, q), then
Da,q = Db,q.

Essential to the proof of Lemma 3 is the following result from probability, which is
one concrete embodiment of the method of moments. See, for example, the textbook
of Billingsley [2, Theorems 30.1 and 30.2, pp. 406–408].

Lemma 4. Let F1, F2, F3, . . . be a sequence of distribution functions. Suppose that
each Fi corresponds to a probability measure on the real line concentrated on [0, 1].
For each k = 1, 2, 3, . . . , assume that

µk := lim
j!1

Z
uk dFj(u)

exists. Then there is a unique distribution function F possessing the µk as its
moments, and Fn converges weakly to F as n!1.

Proof of Lemma 3. Rather than s(n)/n or �(n)/n, it is convenient in this proof to
work instead with the function n/�(n), which is universally bounded between 0 and
1. Thus, for each a and q, we define

D̃a,q(u) = lim
x!1

1
x/q

#{n  x : n ⌘ a (mod q) and
n

�(n)
 u}.

A quick calculation shows that for u � 0, Da,q(u) = 1 � D̃a,q((u + 1)�1). So to
prove the lemma, it su�ces to show that D̃a,q = D̃b,q if gcd(a, q) = gcd(b, q).

By Lemma 4, it is enough to prove that for every k 2 N, the kth moments of
Da,q and Db,q agree. Equivalently, it su�ces to show that for each such k,

lim
x!1

1
x

0
BB@

X
nx

n⌘a (mod q)

✓
n

�(n)

◆k

�
X
nx

n⌘b (mod q)

✓
n

�(n)

◆k

1
CCA = 0.
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Define an arithmetic function h so that (n/�(n))k =
P

d|n h(d) for each n. Then

X
nx

n⌘a (mod q)

✓
n

�(n)

◆k

�
X
nx

n⌘b (mod q)

✓
n

�(n)

◆k

=
X
dx

h(d)

0
BBBBB@

X
nx

n⌘a (mod q)
d|n

1�
X
nx

n⌘b (mod q)
d|n

1

1
CCCCCA

.

(1)
We are assuming that gcd(a, q) = gcd(b, q), so that a and b share the same set of
common divisors with q. Hence, gcd(d, q) divides a if and only if gcd(d, q) divides
b. It follows that the parenthesized di↵erence of sums in (1) is either a di↵erence
of empty sums, or is a di↵erence of two sums both of which count numbers in [1, x]
belonging to a prescribed congruence class modulo lcm[q, d]. Hence, this di↵erence
of sums is always bounded by 1 in absolute value. Thus, the proof of the lemma
will be completed if can show thatX

dx

|h(d)| = o(x),

as x!1. For primes p and positive integers e, we have

h(pe) = (pe/�(pe))k � (pe�1/�(pe�1))k,

which makes clear that |h(pe)|  1. Moreover, h(p) =
⇣
1� 1

p+1

⌘k
� 1; from the

mean value theorem applied to t 7! (1� t)k, we deduce that

|h(p)|  k

p + 1
<

k

p

for each prime p. Since every d can be decomposed as the product of a squarefree
number d1 and a coprime squarefull number d2,

X
dx

|h(d)| 
✓ X

d1x
d1 squarefree

|h(d1)|
◆✓ X

d2x
d2 squarefull

|h(d2)|
◆


✓ X

d1x
d1 squarefree

k!(d1)

d1

◆✓ X
d2x

d2 squarefull

1
◆

⌧ x1/2
Y
px

✓
1 +

k

p

◆
⌧k x1/2(log x)k.

This is certainly o(x), and so the proof is complete.

Lemma 5. Let W be a fixed positive integer. Then W | �(n) for all n outside of a
set of asymptotic density zero.
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Proof. Watson, investigating unpublished claims of Ramanujan, showed that the
number of n  x for which W - �(n) is O(x/(log x)1/'(W )) for x � 2 [15, Hauptsatz
2]. The implied constant in Watson’s result may depend on W . Watson’s theorem
is enough for our present purposes, but we note that from [13, Theorem 2], one can
deduce that the same O-estimate holds uniformly in W .

If I is a bounded interval of the real line and F is a continuous distribution
function, we let F (I) = F (b)�F (a), where a < b are the endpoints of I. The next
lemma is a weak form of a theorem of Erdős [9, Theorem, p. 60].

Lemma 6. Let I be a bounded interval of the real line of length |I| > 0. Then for
Davenport’s distribution function D, we have D(I)⌧ 1/ log(2 + |I|�1).

We can now prove our main result.

Proof of Theorem 1. Let Dk be the set of positive integers n for which s(n) is k-
nearly-palindromic and let Dk(x) := Dk \ [1, x). To prove the theorem, it su�ces
to show that

lim sup
m!1

#Dk(gm)
gm

⌧g
1

log k
.

We proceed to estimate the cardinality of Dk(gm) for large m. When counting
elements n 2 Dk(gm), we may assume all of the following:

(i) s(n)/n > 1/k,

(ii) s(n)/n < k,

(iii) n > gm/ log k,

(iv) �(n) ⌘ 0 (mod gk).

(v) gcd(n, gk)  (g log (2k))2!(g).

Indeed, taking I = [0, 1/k] in Lemma 6 shows that the number of n  gm violating
(i) is O(gm/ log k) for large m. (Throughout the proof, the notion of ‘large’ may de-
pend on both g and k.) Since

P
ngm s(n)/n 

P
ngm �(n)/n  gm

P
dgm 1/d2 <

2gm, there are only O(gm/k) values of n  gm violating (ii). That we can assume
(iii) is trivial, and that we can assume (iv) is immediate from Lemma 5. Now we
turn to (v). If (v) fails for n, then

Y
pekn
p|g

pe � gcd(n, gk) > (g log (2k))2!(g),

and so n is divisible by some prime power pe > (g log (2k))2, where p | g. Clearly,
e > 1. In particular, n has a squarefull divisor exceeding (g log (2k))2; but the
number of such n  gm is Og(gm/ log k). Thus, (v) is safe to assume.



INTEGERS: 15A (2015) 6

For later use, we record that (i) and (iii) imply

s(n) >
n

k
>

gm

k log k
� gm�`, where ` :=

⇠
2
log k

log g

⇡
.

Now let

A = the integer formed by the first k digits of n,

B = the integer formed by the last k digits of s(n).

Observe that since

n = �(n)� s(n) ⌘ �s(n) ⌘ �B (mod gk),

the last k digits of n are determined by B.
For large enough values of m, all n under consideration have s(n) > gm�` > g2k.

Since s(n) is k-nearly-palindromic, the first k digits of s(n) are formed by reversing
the digits of B. (In particular, the last digit of B is not zero.) Let B̃ be the integer
formed by reversing the digits of B. Then

A · ga  n < (A + 1)ga, B̃ · ga+b  s(n) < (B̃ + 1) · ga+b

for certain integers a and b, and

B̃

A
gb

✓
1� 1

A + 1

◆
 s(n)

n
 B̃

A
gb

✓
1 +

1
B̃

◆
.

Since both B̃ and A have k digits in base g, we see that B̃/A ⇣g 1. Now from (i)
and (ii), b = Og(log k). Thus,

s(n)
n
2

"
B̃

A
gb � C1kg�k,

B̃

A
gb + C2kg�k

#
(2)

for certain constants C1 and C2 depending only on g. Note that n has a + k digits,
and so a  m � k, since n < gm. Since n > gm/ log k � gm�`, we also have
a > m� k � `.

For fixed A, B, a, and b, we estimate the number of n 2 [A ·ga, (A+1)ga) having
n ⌘ �B (mod gk) and satisfying (2). Let I denote the interval appearing on the
right-hand side of (2). Then the number of these n is at most

(A + 1) · ga D�B,gk(I)
gk

�A · ga D�B,gk(I)
gk

+ o(gr) = D�B,gk(I)ga�k + o(gr), (3)

where the o-estimates are valid as m!1. Since n ⌘ �B (mod gk), we have

d : = gcd(�B, gk)

= gcd(n, gk)  (g log (2k))2!(g), (4)
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by (v). From Lemma 3,

D�B,gk(I) · #{M mod gk : gcd(M,gk) = d} =
X

M mod gk

gcd(M,gk)=d

DM,gk(I)

= gk · lim
x!1

1
x

#{n  x : gcd(n, gk) = d and s(n)/n 2 I}  gkD(I).

Thus,

D�B,gk(I)  gk

#{M mod gk : gcd(M,gk) = d}D(I)

=
gk

'(gk/d)
D(I).

Now '( gk

d ) = gk

d

Q
p|gk/d(1� 1/p)�g

gk

d ; using this and our upper bound (4) on d,
we obtain that

D�B,gk(I)⌧g (g log (2k))2!(g)D(I)⌧g (log (2k))2!(g)D(I).

Since |I|⌧g kg�k, Lemma 6 gives that D(I)⌧g k�1. Hence,

D�B,gk(I)⌧g
(log (2k))2!(g)

k
.

Using this estimate in (3), and summing over a 2 {m � k � ` + 1,m � k � ` +
2, . . . ,m � k}, we see that the number of n that arise from fixed choices of A,B,
and b is

⌧g gm�2k (log (2k))2!(g)

k
,

up to an error term that is o(gm) as m!1.
Finally, we sum over the O(gk) possibilities for A, the O(gk) possibilities for B,

and the Og(log k) possibilities for b. We conclude that

lim sup
m!1

#Dk(gm)
gm

⌧g
1

log k
+

(log (2k))2!(g)+1

k
⌧g

1
log k

,

as desired.

3. Other Arithmetic Functions

3.1. The Functions !, ⌦, and d

We need two results concerning the distribution of the number of prime factors of
n for typical values of n.
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Lemma 7. Let K � 1 and let x � 1. The number of n  x for which |!(n) �
log2 x| > K

p
log2 x is O(x/K2). The same estimate holds with ! replaced by ⌦.

Proof. This follows immediately from the theorem of Turán that for each of f = !
and f = ⌦, we have

P
nx(f(n)� log2 x)2 = O(x log2 x). See, for example, [7, pp.

94–97].

Lemma 8. Let x � 1. Then

max
t

#{n  x : !(n) = t}⌧ xp
log2 x

,

where the maximum is taken over all nonnegative integers t. The same theorem
holds with ! replaced by ⌦.

Proof. When t = 0, there is precisely one integer n  x with !(n) = t, namely
n = 1. Suppose now that t � 1. According to a theorem of Hardy and Ramanujan
[10, Lemma A],

#{n  x : !(n) = t}⌧ x

(log x)
(log2 x + c)t�1

(t� 1)!
, (5)

for a certain absolute positive constant c. The right-hand side assumes its maximum
value at t = log2 x+O(1), and a straightforward computation with Stirling’s formula
shows that its value there is O(x/

p
log2 x). This handles the case of !.

Hardy and Ramanujan also proved the inequality (5) with ⌦ in place of ! under
the restriction that t  1.9 log2 x (see [10, Lemma C]). The above argument shows
that #{n  x : ⌦(n) = t} ⌧ x/

p
log2 x for these t. Finally, for t > 1.9 log2 x, the

sharper bound #{n  x : ⌦(n) = t}⌧ x/ log2 x follows from Lemma 7.

It is easy to deduce from Lemmas 7 and 8 that ! and ⌦ are palindromic only
on a set of n of density zero. It is only necessary to observe that the number
of palindromes within (log log x)0.51 of log log x is o(

p
log2 x) and then to apply

Lemma 8. We leave the details to the reader.
Establishing a corresponding result for the number-of-divisors function d(n) re-

quires somewhat more intricate arguments.

Theorem 9. Fix an integer g � 2, and assume that g is not a power of 2. For each
k, the set of n for which d(n) is k-nearly-palindromic has upper density Og(g�2k/3).

Remark. If g is a power of 2, then the last k digits of d(n) are 0 in base g for
almost all n. So the conclusion of Theorem 9 remains true, but for uninteresting
reasons.
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We introduce one more piece of notation before embarking on the proof of The-
orem 9. For each natural number n, we let `(n) denote the multiplicative order of 2
modulo n0, where n0 is the largest odd divisor of n. Note that for integers h at least
as large as the exponent of 2 dividing n, the residue class of 2h modulo n depends
only on the residue class of h modulo `(n).

Proof. The proof borrows some ideas from [4]. Write n = n1n2, where n1 is the
largest squarefull divisor of n. Then n2 is squarefree and gcd(n2, n1) = 1. We may
assume both of the following conditions:

(i) n1  g4k/3,

(ii) |!(n2)� log2
x
n1
|  gk/3

q
log2

x
n1

.

Indeed, the number of n  x for which (i) fails is O(g�2k/3x). Now assume that (i)
holds. Then Lemma 7 shows that the number of n2  x/n1 for which (ii) fails is
O(g�2k/3 x

n1
) for large x. (The notion of large here is allowed to depend on both g

and k.) Summing on n1 bounds the total number of n  x arising in this way by
O(g�2k/3x). So the combined exceptions to (i) or (ii) make up a set contributing
only O(g�2k/3) to our upper density bound.

We partition the remaining n into finitely many classes based on the value of the
ordered pair (n1,!(n2) mod `(gk)). We will show that for each fixed pair of this
type, the number of corresponding n  x is, for large x,

⌧g
x

n1g2k/3`(gk)
. (6)

Summing over the `(gk) possibilities for !(n2) mod `(gk) and then over squarefull
n1  g4k/3 completes the proof of the theorem.

Given a pair of this type, write the second component of the pair as R mod
`(gk), where 0  R < `(gk). Once x is large, (i) and (ii) show that !(n2) is
also large. Hence, 2!(n2) is determined modulo gk by R, and the last k digits of
d(n) = d(n1)2!(n2) are determined by n1 and R. Let B denote these last k digits.

Since d(n) � 2!(n2), we see that d(n) > g2k once x is large. We are assuming
that d(n) is k-nearly-palindromic. So if B̃ is the integer obtained by reversing the
digits of B, then B̃ is also a k-digit integer (i.e., B does not end in zero) and B̃ gives
the first k digits of d(n). Choosing the integer s so that B̃ ·gs  d(n) < (B̃ +1) ·gs,
we find that

0 <
log d(n)

log g
� s� log B̃

log g
=

log(1 + 1/B̃)
log g

⌧g g�k.

We now look mod 1. Then these inequalities show that log d(n)
log g belongs to an arc

An1,R of the circle R/Z with length Og(g�k).
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Write !(n2) = R + t · `(gk), where t is a nonnegative integer. From (ii), we have
t = t0 + t1, where

0  t1  2gk/3`(gk)�1

r
log2

x

n1
, and t0 :=

2
666

log2
x
n1
� gk/3

q
log2

x
n1
�R

`(gk)

3
777 .

Since d(n) = d(n1)2!(n2), the condition that log d(n)
log g belongs to An1,R modulo 1

amounts to the requirement on t1 that
✓

log d(n1)
log g

+ R
log 2
log g

+ t0`(gk)
log 2
log g

◆
+ t1

✓
`(gk)

log 2
log g

◆
2 An1,R.

Since g is not a power of 2, the number `(gk) · log 2
log g is irrational, and a classical

result of Weyl yields the uniform distribution of the sequence {t1 · `(gk) log 2
log g}1t1=0

modulo 1. As a consequence, the discrepancy of the sequence {t1 · `(gk) log 2
log g mod

1}m
t1=0 tends to 0 as m!1. It follows that the number of possibilities for t1, and

hence also for !(n2) = R + (t0 + t1) · `(gk), is

⌧g

✓
gk/3`(gk)�1

r
log2

x

n1

◆
· 1
gk

= g�2k/3`(gk)�1

r
log2

x

n1
,

for large x. Lemma 8 shows that the number of values of n2  x/n1 corresponding
to these possibilities for !(n2) is

⌧g g�2k/3`(gk)�1

r
log2

x

n1
· x/n1q

log2
x
n1

=
x

n1g2k/3`(gk)
,

in exact agreement with (6). This completes the proof.

3.2. The Functions ', �, and �, and Their Compositions

For these functions, we can establish strong results using nothing about palindromes
other than the fact that they are relatively infrequent. Call a set S of natural
numbers thin if for all large x, the number of elements in S not exceeding x is
bounded above by x/ exp((log x)c) for some constant c = c(S) > 0. The following
theorem was recently established by Vandehey and the author [12, Theorem 2]:

Proposition 10. Let f be any function of the form f1 � f2 � f3 � · · · � fj, where j is
a natural number, and each fi 2 {',�,�}. Then f has the property that the inverse
image of each thin set is also thin.

This has the following consequence.
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Corollary 11. Let f be any of the functions considered in Proposition 10. Then
the set of n for which f(n) is a palindrome, or is a palindrome after all trailing
zeros have been deleted, is a thin set.

The corollary is immediate from Proposition 10, since the set of integers that are
palindromic in base g after trailing zeros have been removed has counting function
Og(x1/2).

4. A Concluding Remark

Perhaps Theorem 1 can also be established using nothing but the sparsity of the
set of palindromes. Indeed, Erdős, Granville, Pomerance, and Spiro conjectured
[8, Conjecture 4] that if A is any set of asymptotic density zero, then s�1(A) also
has asymptotic density zero. Unfortunately, up to now nothing nontrivial in this
direction has been shown without making further structural assumptions on A.
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