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Abstract
Given a permutation � = �1 . . .�n in the symmetric group Sn, we say that �i

matches the marked mesh pattern MMP(a, b, c, d) in � if there are at least a points
to the right of �i in � which are greater than �i, at least b points to the left of
�i in � which are greater than �i, at least c points to the left of �i in � which
are smaller than �i, and at least d points to the right of �i in � which are smaller
than �i. This paper is continuation of the systematic study of the distributions
of quadrant marked mesh patterns in 132-avoiding permutations started by the
present authors where we mainly studied the distribution of the number of matches
of MMP(a, b, c, d) in 132-avoiding permutations where exactly one of a, b, c, d is
greater than zero and the remaining elements are zero. In this paper, we study
the distribution of the number of matches of MMP(a, b, c, d) in 132-avoiding per-
mutations where exactly two of a, b, c, d are greater than zero and the remaining
elements are zero. We provide explicit recurrence relations to enumerate our objects
which can be used to give closed forms for the generating functions associated with
such distributions. In many cases, we provide combinatorial explanations of the
coe�cients that appear in our generating functions. The case of quadrant marked
mesh patterns MMP(a, b, c, d) where three or more of a, b, c, d are constrained to be
greater than 0 will be studied in a future article by the present authors.

1. Introduction

The notion of mesh patterns was introduced by Brändén and Claesson [2] to provide
explicit expansions for certain permutation statistics as, possibly infinite, linear
combinations of (classical) permutation patterns. This notion was further studied
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in [1, 3, 5, 6, 9, 12].
Kitaev and Remmel [6] initiated the systematic study of distributions of quadrant

marked mesh patterns on permutations. The study was extended to 132-avoiding
permutations by Kitaev, Remmel and Tiefenbruck in [9], and the present paper
continues this line of research. Kitaev and Remmel also studied the distributions
of quadrant marked mesh patterns in up-down and down-up permutations [7, 8].

Let � = �1 . . .�n be a permutation written in one-line notation. Then we will
consider the graph of �, G(�), to be the set of points (i,�i) for i = 1, . . . , n. For
example, the graph of the permutation � = 471569283 is pictured in Figure 1. Then
if we draw a coordinate system centered at a point (i,�i), we will be interested
in the points that lie in the four quadrants I, II, III, and IV of that coordinate
system as pictured in Figure 1. For any a, b, c, d 2 N [ {0} = {0, 1, 2, . . .} and
any � = �1 . . .�n 2 Sn, the set of all permutations of length n, we say that �i

matches the quadrant marked mesh pattern MMP(a, b, c, d) in � if, in G(�) relative
to the coordinate system which has the point (i,�i) as its origin, there are at least
a points in quadrant I, at least b points in quadrant II, at least c points in quadrant
III, and at least d points in quadrant IV. For example, if � = 471569283, the point
�4 = 5 matches the marked mesh pattern MMP(2, 1, 2, 1) since in G(�) relative to
the coordinate system with the origin at (4, 5), there are 3 points in quadrant I, 1
point in quadrant II, 2 points in quadrant III, and 2 points in quadrant IV. Note
that if a coordinate in MMP(a, b, c, d) is 0, then there is no condition imposed on
the points in the corresponding quadrant.

In addition, we shall consider patterns MMP(a, b, c, d) where a, b, c, d 2 N[{0}[
{;}. Here when a coordinate of MMP(a, b, c, d) is the empty set, then for �i to
match MMP(a, b, c, d) in � = �1 . . .�n 2 Sn, it must be the case that there are no
points in G(�) relative to the coordinate system with the origin at (i,�i) in the
corresponding quadrant. For example, if � = 471569283, the point �3 = 1 matches
the marked mesh pattern MMP(4, 2, ;, ;) since in G(�) relative to the coordinate
system with the origin at (3, 1), there are 6 points in G(�) in quadrant I, 2 points in
G(�) in quadrant II, no points in both quadrants III and IV. We let mmp(a,b,c,d)(�)
denote the number of i such that �i matches MMP(a, b, c, d) in �.

Note how the (two-dimensional) notation of Úlfarsson [12] for marked mesh pat-
terns corresponds to our (one-line) notation for quadrant marked mesh patterns.
For example,

Given a sequence w = w1 . . . wn of distinct integers, let red(w) be the permutation
found by replacing the i-th smallest integer that appears in � by i. For example, if
� = 2754, then red(�) = 1432. Given a permutation ⌧ = ⌧1 . . . ⌧j in the symmetric
group Sj , we say that the pattern ⌧ occurs in � = �1 . . .�n 2 Sn provided there exist
1  i1 < · · · < ij  n such that red(�i1 . . .�ij ) = ⌧ . We say that a permutation
� avoids the pattern ⌧ if ⌧ does not occur in �. Let Sn(⌧) denote the set of
permutations in Sn which avoid ⌧ . In the theory of permutation patterns, ⌧ is
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Figure 1: The graph of � = 471569283.
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Figure 2: Úlfarsson notation for quadrant marked mesh patterns.

called a classical pattern. See [4] for a comprehensive introduction to the study of
patterns in permutations.

It has been a rather popular direction of research in the literature on permu-
tation patterns to study permutations avoiding a 3-letter pattern subject to extra
restrictions (see [4, Subsection 6.1.5]). In [9], we started the study of the generating
functions

Q(a,b,c,d)
132 (t, x) := 1 +

X
n�1

Q(a,b,c,d)
n,132 (x)tn

where for any a, b, c, d 2 N [ {0} [ {;},

Q(a,b,c,d)
n,132 (x) =

X
�2Sn(132)

xmmp(a,b,c,d)(�).

For any a, b, c, d, we will write Q(a,b,c,d)
n,132 (x)|xk for the coe�cient of xk in Q(a,b,c,d)

n,132 (x).
For any fixed (a, b, c, d), we know that Q(a,b,c,d)

n,132 (1) is the number of 132-avoiding
permutations in Sn which is the nth Catalan number Cn = 1

n+1

�2n
n

�
. Thus the

coe�cients in the polynomial Q(a,b,c,d)
n,132 (x) represent a refinement of the nth Catalan

number. It is then a natural question to ask whether (i) we can give explicit formulas
for the coe�cients that appear in Q(a,b,c,d)

n,132 (x) or (ii) whether such coe�cients count
other interesting classes of combinatorial objects. Of course, there is an obvious
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answer to question (ii). That is, if one has a bijection from Sn(132) to other classes
of combinatorial objects which are counted by the Catalan numbers such as Dyck
paths or binary trees, then one can use that bijection to give an interpretation of
the pattern MMP(a, b, c, d) in the other setting. We shall see that in many cases,
there are interesting connections with the coe�cients that arise in our polynomials
Q(a,b,c,d)

n,132 (x) and other sets of combinatorial objects that do not just arise by such
bijections.

In particular, it is natural to try to understand Q(a,b,c,d)
n,132 (0) which equals the

number of � 2 Sn(132) that have no occurrences of the pattern MMP(a, b, c, d) as
well as the coe�cient of the highest power of x that occurs in Q(a,b,c,d)

n,132 (x) since
that coe�cient equals the number of � 2 Sn(132) that have the maximum possible
number of occurrences of the pattern MMP(a, b, c, d). We shall see that in many
cases, Q(a,b,c,d)

n,132 (x)|x and Q(a,b,c,d)
n,132 (x)|x2 , the number of � 2 Sn(132) with exactly

one occurrence and two occurrences, respectively, of the pattern MMP(a, b, c, d) also
have interesting combinatorics associated with them. There are many more inter-
esting questions of this type that can be pursued, but due to space considerations,
we shall mostly restrict ourselves to trying to understand the four coe�cients in
Q(a,b,c,d)

n,132 (x) described above. We should note, however, that there is a uniform way
to compute generating functions of the form

F (a,b,c,d)
k (t) =

X
n�0

Q(a,b,c,d)
n,132 (x)|xktn.

That is, F (a,b,c,d)
k (t) is just the result of taking the generating function

1
k!

@k

@xk
Q(a,b,c,d)

132 (t, x)

and then setting x = 0. Due to space considerations, we will not pursue the study
of the functions F (a,b,c,d)

k (t) for k � 2 in this paper.
There is one obvious symmetry in this case which is induced by the fact that if

� 2 Sn(132), then ��1 2 Sn(132). That is, the following lemma was proved in [9].

Lemma 1. ([9]) For any a, b, c, d 2 N [ {0} [ {;},

Q(a,b,c,d)
n,132 (x) = Q(a,d,c,b)

n,132 (x).

In [9], we studied the generating functions

Q(0,k,0,0)
132 (t, x) = Q(0,0,0,k)

132 (t, x), Q(k,0,0,0)
132 (t, x), and Q(0,0,k,0)

132 (t, x),

where k can be either the empty set or a positive integer as well as the generating
functions Q(k,0,;,0)

132 (t, x) and Q(;,0,k,0)
132 (t, x). We also showed that sequences of the

form {Q(a,b,c,d)
n,132 (x)|xr}n�s count a variety of combinatorial objects that appear in
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the On-line Encyclopedia of Integer Sequences (OEIS) [11]. Thus, our results gave
new combinatorial interpretations of certain classical sequences such as the Fine
numbers and the Fibonacci numbers as well as provided certain sequences that
appear in the OEIS with a combinatorial interpretation where none had existed
before. Another particular result of our studies in [9] is enumeration of permutations
avoiding simultaneously the patterns 132 and 1234.

The main goal of this paper is to continue the study of Q(a,b,c,d)
132 (t, x) and com-

binatorial interpretations of sequences of the form {Q(a,b,c,d)
n,132 (x)|xr}n�s in the case

where a, b, c, d 2 N and exactly two of these parameters are non-zero. The case
when at least three of the parameters are non-zero will be studied in [10].

Next we list several results from [9] which we need in this paper.

Theorem 1. ([9, Theorem 3.1])

Q(0,0,0,0)
132 (t, x) = C(xt) =

1�
p

1� 4xt

2xt

and, for k � 1,

Q(k,0,0,0)
132 (t, x) =

1

1� tQ(k�1,0,0,0)
132 (t, x)

.

Hence
Q(1,0,0,0)

132 (t, 0) =
1

1� t

and, for k � 2,

Q(k,0,0,0)
132 (t, 0) =

1

1� tQ(k�1,0,0,0)
132 (t, 0)

. (1)

Theorem 2. ([9, Theorem 4.1]) For k � 1,

Q(0,0,k,0)
132 (t, x) =

1 + (tx� t)(
Pk�1

j=0 Cjtj)�
q

(1 + (tx� t)(
Pk�1

j=0 Cjtj))2 � 4tx

2tx

=
2

1 + (tx� t)(
Pk�1

j=0 Cjtj) +
q

(1 + (tx� t)(
Pk�1

j=0 Cjtj))2 � 4tx

and
Q(0,0,k,0)

132 (t, 0) =
1

1� t(C0 + C1t + · · · + Ck�1tk�1)
.

It follows from Lemma 1 that Q(0,k,0,0)
132 (t, x) = Q(0,0,0,k)

132 (t, x) for all k � 1.
Thus, our next theorem (obtained in [9]) gives an expression for Q(0,k,0,0)

132 (t, x) =
Q(0,0,0,k)

132 (t, x).

Theorem 3. ([9, Theorem 5.1])

Q(0,1,0,0)
132 (t, x) = Q(0,0,0,1)

132 (t, x) =
1

1� tC(tx)
.
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For k > 1,

Q(0,k,0,0)
132 (t, x) = Q(0,0,0,k)

132 (t, x) =
1 + t

Pk�2
j=0 Cjtj(Q

(0,k�1�j,0,0)
132 (t, x)� C(tx))

1� tC(tx)

and

Q(0,k,0,0)
132 (t, 0) = Q(0,0,0,k)

132 (t, 0) =
1 + t

Pk�2
j=0 Cjtj(Q

(0,k�1�j,0,0)
132 (t, 0)� 1)

1� t
.

As it was pointed out in [9], avoidance of a marked mesh pattern without quad-
rants containing the empty set can always be expressed in terms of multi-avoidance
of (possibly many) classical patterns. Thus, among our results we will re-derive
several known facts in permutation patterns theory. However, our main goals are
more ambitious since they are aimed at finding distributions in question.

2. Q(k,0,`,0)
n,132 (x) Where k, ` � 1

Throughout this paper, we shall classify the 132-avoiding permutations � = �1 . . .�n

by the position of n in �. That is, let S(i)
n (132) denote the set of � 2 Sn(132) such

that �i = n.
Clearly each � 2 S(i)

n (132) has the structure pictured in Figure 3. That is, in
the graph of �, the elements to the left of n, Ai(�), have the structure of a 132-
avoiding permutation, the elements to the right of n, Bi(�), have the structure of a
132-avoiding permutation, and all the elements in Ai(�) lie above all the elements
in Bi(�). It is well-known that the number of 132-avoiding permutations in Sn is
the Catalan number Cn = 1

n+1

�2n
n

�
and the generating function for the Cn’s is given

by

C(t) =
X
n�0

Cntn =
1�

p
1� 4t

2t
=

2
1 +

p
1� 4t

.

If k � 1, it is easy to compute a recursion for Q(k,0,`,0)
n,132 (x) for any fixed ` � 1.

It is clear that n can never match the pattern MMP(k, 0, `, 0) for k � 1 in any
� 2 Sn(132). For i � 1, it is easy to see that as we sum over all the permutations
� in S(i)

n (132), our choices for the structure for Ai(�) will contribute a factor of
Q(k�1,0,`,0)

i�1,132 (x) to Q(k,0,`,0)
n,132 (x) since none of the elements to the right of n have any

e↵ect on whether an element in Ai(�) matches the pattern MMP(k, 0, `, 0) and
the presence of n ensures that an element in Ai(�) matches MMP(k, 0, `, 0) in �
if and only if it matches MMP(k � 1, 0, `, 0) in Ai(�). Similarly, our choices for
the structure for Bi(�) will contribute a factor of Q(k,0,`,0)

n�i,132 (x) to Q(k,0,`,0)
n,132 (x) since

neither n nor any of the elements to the left of n have any e↵ect on whether an
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Figure 3: The structure of 132-avoiding permutations.

element in Bi(�) matches the pattern MMP(k, 0, `, 0). Thus,

Q(k,0,`,0)
n,132 (x) =

nX
i=1

Q(k�1,0,`,0)
i�1,132 (x) Q(k,0,`,0)

n�i,132 (x). (2)

Multiplying both sides of (2) by tn and summing over all n � 1, we obtain that

�1 + Q(k,0,`,0)
132 (t, x) = tQ(k�1,0,`,0)

132 (t, x) Q(k,0,`,0)
132 (t, x)

so that we have the following theorem.

Theorem 4. For all k, ` � 1,

Q(k,0,`,0)
132 (t, x) =

1

1� tQ(k�1,0,`,0)
132 (t, x)

. (3)

Note that by Theorem 2, we have an explicit formula for Q(0,0,`,0)
132 (t, x) for all

` � 1 so that we can then use the recursion (3) to compute Q(k,0,`,0)
132 (t, x) for all

k � 1.

2.1. Explicit Formulas for Q(k,0,`,0)
n,132 (x)|xr

Note that
Q(k,0,`,0)

132 (t, 0) =
1

1� tQ(k�1,0,`,0)
132 (t, 0)

. (4)

Since Q(1,0,0,0)
132 (t, 0) = Q(0,0,1,0)

132 (t, 0) = 1
1�t , it follows from the recursions (1) and

(4) that for all k � 2, Q(k,0,0,0)
132 (t, 0) = Q(k�1,0,1,0)

132 (t, 0). This is easy to see directly.
That is, it is clear that if in � 2 Sn(132), �j matches MMP(k � 1, 0, 1, 0), then
there is an i < j such that �i < �j so that �i matches MMP(k, 0, 0, 0). Vice versa,
suppose that in � 2 Sn(132), �j matches MMP(k, 0, 0, 0) where k � 2. Because
� is 132-avoiding this means the elements in the first quadrant relative to the
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coordinate system with (j,�j) as the origin must be increasing. Thus, there exist
j < j1 < · · · < jk  n such that �j < �j1 < · · · < �jk and, hence, �j1 matches
MMP(k� 1, 0, 1, 0). Thus, the number of � 2 Sn(132) where mmp(k,0,0,0)(�) = 0 is
equal to the number of � 2 Sn(132) where mmp(k�1,0,1,0)(�) = 0 for k � 2.

In [9], we computed the generating function Q(k,0,0,0)
132 (t, 0) for small k. Thus, we

have that

Q(2,0,0,0)
132 (t, 0) = Q(1,0,1,0)

132 (t, 0) =
1� t

1� 2t
;

Q(3,0,0,0)
132 (t, 0) = Q(2,0,1,0)

132 (t, 0) =
1� 2t

1� 3t + t2
;

Q(4,0,0,0)
132 (t, 0) = Q(3,0,1,0)

132 (t, 0) =
1� 3t + t2

1� 4t + 3t2
;

Q(5,0,0,0)
132 (t, 0) = Q(4,0,1,0)

132 (t, 0) =
1� 4t + 3t2

1� 5t + 6t2 � t3
;

Q(6,0,0,0)
132 (t, 0) = Q(5,0,1,0)

132 (t, 0) =
1� 5t + 6t2 � t3

1� 6t + 10t2 � 4t3
, and

Q(7,0,0,0)
132 (t, 0) = Q(6,0,1,0)

132 (t, 0) =
1� 6t + 10t3 � 4t3

1� 7t + 15t2 � 10t3 + t4
.

Note that Q(0,0,2,0)
132 (t, 0) = 1

1�t�t2 by Theorem 2. Thus, by (4), we can compute
that

Q(1,0,2,0)
132 (t, 0) =

1� t� t2

1� 2t� t2
;

Q(2,0,2,0)
132 (t, 0) =

1� 2t� t2

1� 3t + t3
;

Q(3,0,2,0)
132 (t, 0) =

1� 3t + t3

1� 4t + 2t2 + 2t3
, and

Q(4,0,2,0)
132 (t, 0) =

1� 4t + 2t2 + 2t3

1� 5t + 5t2 + 2t3 � t4
.

We note that {Q(1,0,2,0)
n,132 (0)}n�1 is the sequence of the Pell numbers which is A000129

in the OEIS. This result should be compared with a known fact [4, page 250]
that the avoidance of 123, 2143 and 3214 simultaneously gives the Pell numbers
(the avoidance of MMP(1, 0, 2, 0) is equivalent to avoiding simultaneously 2134 and
1234).

Problem 1. Find a combinatorial explanation of the fact that the number of per-
mutations of Sn which are (132,2134,1234)-avoiding equals the number of permu-
taions of Sn which are (123,2143,3214)-avoiding. Can any of the known bijections
between 132-avoiding permutations and 123-avoiding permutations (see [4, Chapter
4]) be of help here?
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The sequence {Q(2,0,2,0)
n,132 (0)}n�1 is sequence A052963 in the OEIS which has the

generating function 1�t�t2

1�3t+t3 . That is, 1�2t�t2

1�3t+t3 � 1 = t 1�t�t2

1�3t+t3 . This sequence had
no listed combinatorial interpretation so that we have now given a combinatorial
interpretation to this sequence.

Similarly, Q(0,0,3,0)
132 (t, 0) = 1

1�t�t2�2t3 . Thus, by (4), we can compute that

Q(1,0,3,0)
132 (t, 0) =

1� t� t2 � 2t3

1� 2t� t2 � 2t3
,

Q(2,0,3,0)
132 (t, 0) =

1� 2t� t2 � 2t3

1� 3t� t3 + 2t4
,

Q(3,0,3,0)
132 (t, 0) =

1� 3t� t3 + 2t4

1� 4t + 2t2 + 4t4
, and

Q(4,0,3,0)
132 (t, 0) =

1� 4t + 2t2 + 4t4

1� 5t + 5t2 + 5t4 � 2t5
.

In this case, the sequence {Q(1,0,3,0)
n,132 (0)}n�1 is sequence A077938 in the OEIS

which has the generating function 1
1�2t�t2�2t3 . That is, 1�t�t2�2t3

1�2t�t2�2t3�1 = t 1
1�2t�t2�2t3 .

This sequence had no listed combinatorial interpretation so that we have now given
a combinatorial interpretation to this sequence.

We can also find the coe�cient of the highest power of x that occurs in Q(k,0,`,0)
n,132 (x)

for any k, ` � 1. That is, it is easy to see that the maximum possible number of
matches of MMP(k, 0, `, 0) for a � = �1 . . .�n 2 Sn(132) occurs when �1 . . .�` is a
132-avoiding permutation in S` and �`+1 . . .�n is an increasing sequence. Thus, we
have the following theorem.

Theorem 5. For any k, ` � 1 and n � k + `+1, the highest power of x that occurs
in Q(k,0,`,0)

n,132 (x) is xn�k�` which appears with a coe�cient of C`.

We can compute the generating functions Q(0,0,`,0)
132 (t, x) via Theorem 2. For

example, one can compute that

Q(0,0,1,0)
132 (t, x) =

1 + t(�1 + x)�
p

(1 + t(�1 + x))2 � 4tx

2tx
,

Q(0,0,2,0)
132 (t, x) =

1 + t(1 + t)(�1 + x)�
p

(1 + t(1 + t)(�1 + x))2 � 4tx

2tx
, and

Q(0,0,3,0)
132 (t, x) =

1 + t
�
1 + t + 2t2

�
(�1 + x)�

q
(1 + t (1 + t + 2t2) (�1 + x))2 � 4tx

2tx
.

We can then use (3) to compute the functions of the form Q(k,0,`,0)
132 (t, x) for small

k and `. The formulas for these functions get more and more complicated so we
will not in general give explicit formulas. However, one can easily use any computer
algebra system such as Mathematica or Maple to compute the following.
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Q(1,0,1,0)
132 (t, x) = 1 + t + 2t2 + (4 + x)t3 +

�
8 + 5x + x2� t4 +

�
16 + 17x + 8x2 + x3� t5

+
�
32 + 49x + 38x2 + 12x3 + x4� t6 +

�
64 + 129x + 141x2 + 77x3 + 17x4 + x5� t7

+
�
128 + 321x + 453x2 + 361x3 + 143x4 + 23x5 + x6� t8

+
�
256 + 769x + 1326x2 + 1399x3 + 834x4 + 247x5 + 30x6 + x7� t9 + · · · .

Q(2,0,1,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (13 + x)t4 +

�
34 + 7x + x2� t5

+
�
89 + 32x + 10x2 + x3� t6 +

�
233 + 122x + 59x2 + 14x3 + x4� t7+

+
�
610 + 422x + 272x2 + 106x3 + 19x4 + x5� t8

+
�
1597 + 1376x + 1090x2 + 591x3 + 182x4 + 25x5 + x6� t9 + · · · .

Q(3,0,1,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (41 + x)t5 +

�
122 + 9x + x2� t6

+
�
365 + 51x + 12x2 + x3� t7 +

�
1094 + 235x + 84x2 + 16x3 + x4� t8

+
�
3281 + 966x + 454x2 + 139x3 + 21x4 + x5� t9 + · · · .

We can explain several of the coe�cients that appear in the polynomials
Q(k,0,1,0)

n,132 (x) for various k.

Theorem 6. Q(1,0,1,0)
n,132 (0) = 2n�1 for n � 1.

Proof. This follows immediately from the fact that Q(1,0,1,0)
132 (t, 0) = 1�t

1�2t . We can
also give a simple inductive proof of this fact.

Clearly Q(1,0,1,0)
1,132 (0) = 1. Assume that Q(1,0,1,0)

k,132 (0) = 2k�1 for k < n. Then
suppose that mmp(1,0,1,0)(�) = 0 and �i = n. Then it must be the case that the
elements to the left of �i are decreasing so that �1 . . .�i�1 = (n�1)(n�2) . . . (n�(i�
1)). But then the elements to the right of �i must form a 132-avoiding permutation
of Sn�1 which has no occurrence of the pattern MMP(1, 0, 1, 0). Thus, if i = n,
we only have one such � and if i < n, we have 2n�i�1 choices for �i+1 . . .�n by
induction. It follows that

Q(1,0,1,0)
n,132 (0) = 1 +

n�1X
i=1

2i�1 = 2n�1.

The sequence {Q(1,0,1,0)
n,132 (x)|x}n�3 is the sequence A000337 in the OEIS which

has the formula a(n) = (n� 1)2n + 1, and the following theorem confirms this fact.

Theorem 7. For n � 3,

Q(1,0,1,0)
n,132 (x)|x = (n� 3)2n�2 + 1. (5)
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Proof. To prove (5), we classify the � = �1 . . .�n 2 Sn(132) such that
mmp(1,0,1,0)(�) = 1 according to whether the �i which matches MMP(1, 0, 1, 0)
occurs to the left or right of position of n in �.

First, suppose that �i = n and the �s matching MMP(1, 0, 1, 0) in � is such
that s < i. It follows that red(�1 . . .�i�1) is an element of Si�1(132) such that
mmp(0,0,1,0) = 1. We proved in [9, Theorem 4.3] that Q(0,0,1,0)

n,132 (x)|x =
�n
2

�
so that we

have
�i�1

2

�
choices for �1 . . .�i�1. It must be the case that mmp(1,0,1,0)(�i+1 . . .�n) =

0 so that we have 2n�i�1 choices for �i+1 . . .�n by Theorem 6. It follows that there
are

�n�1
2

�
+
Pn�1

i=3

�i�1
2

�
2n�i�1 permutations � 2 Sn(132) where the unique element

which matches MMP(1, 0, 1, 0) occurs to the left of the position of n in �.
Next suppose that � = �1 . . .�n 2 Sn(132), mmp(1,0,1,0)(�) = 1, �i = n and the

�s matching MMP(1, 0, 1, 0) is such that s > i. Then the elements to the left of
�i in � must be decreasing and the elements to the right of �i in � must be such
that mmp(1,0,1,0)(�i+1 . . .�n) = 1. Thus, we have 1 + (n� i� 3)2n�i�2 choices for
�i+1 . . .�n by induction. It follows that there are

n�3X
i=1

(1 + (n� i� 3)2n�i�2) = (n� 3) +
n�4X
j=1

j2j+1

permutations � 2 Sn(132) where the unique element which matches MMP(1, 0, 1, 0)
occurs to the right of the position of n in �. Thus,

Q(1,0,1,0)
n,132 (x)|x = (n� 3) +

n�4X
j=1

j2j+1 +
✓

n� 1
2

◆
+

n�1X
i=3

✓
i� 1

2

◆
2n�i�1

= (n� 3)2n�2 + 1.

Here the last equality can easily be proved by induction or be verified by Mathe-
matica.

We also can find explicit formulas for the second highest coe�cient of x in
Q(k,0,1,0)

n (x) for k � 1.

Theorem 8. We have

Q(k,0,1,0)
n,132 (x)|xn�2�k = 2k +

✓
n� k

2

◆
(6)

for all n � k + 3.

Proof. We proceed by induction on k.
First we shall prove that Q(1,0,1,0)

n,132 (x)|xn�3 = 2+
�n�1

2

�
for n � 4. That is, suppose

that � = �1 . . .�n 2 Sn(132) and mmp(1,0,1,0)(�) = n� 3. If �1 = n, then �2 . . .�n

must be strictly increasing. Similarly, if �n�1 = n so that �n = 1, then �1 . . .�n�1

must be strictly increasing. It cannot be that �i = n where 1 < i < n� 1 because
in that case the most MMP(1, 0, 1, 0)-matches that we can have in � occurs when
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�1 . . .�i is an increasing sequence and �i+1 . . .�n is an increasing sequence which
would give us a total of i�2+n�i�2 = n�4 matches of MMP(1, 0, 1, 0). Thus, the
only other possibility is if �n = n in which case mmp(0,0,1,0)(�1 . . .�n�1) = n � 3.
We proved in [9, Theorem 4.3] that Q(0,0,1,0)

n,132 (x)|xn�2 =
�n
2

�
. Thus, if �n = n, we

have
�n�1

2

�
choices for �1 . . .�n�1. It follows that Q(1,0,1,0)

n,132 (x)|xn�3 = 2 +
�n�1

2

�
for

n � 4.
Assume that k � 2 we have established (6) for k � 1. We know that the highest

power of x that occurs in Q(k,0,1,0)
n,132 (x) is xn�1�k which occurs with a coe�cient of

1 for n � k + 2. Now

Q(k,0,1,0)
n,132 (x)|xn�2�k =

nX
i=1

(Q(k�1,0,1,0)
i�1,132 (x)Q(k,0,1,0)

n�i,132 (x))|xn�2�k .

Since the highest power of x that occurs in Q(k�1,0,1,0)
i�1,132 (x) is xmax{i�1�k,0} and the

highest power of x that occurs in Q(k,0,1,0)
n�i,132 (x) is xmax{n�i�1�k,0},

(Q(k�1,0,1,0)
i�1,132 (x)Q(k,0,1,0)

n�i,132 (x))|xn�2�k = 0

unless i 2 {1, n� 1, n}. Thus, we have 3 cases.

Case 1. i = 1. In this case,

(Q(k�1,0,1,0)
i�1,132 (x)Q(k,0,1,0)

n�i,132 (x))|xn�2�k = Q(k,0,1,0)
n�1,132(x)|xn�2�k = 1.

Case 2. i = n � 1. In this case, we are considering permutations of the form
� = �1 . . .�n�2n1. Then we must have mmp(k�1,0,1,0)(red(�1 . . .�n�2)) = n� k �
2 = (n� 2)� 1� (k � 1) so that there is only one choice for �1 . . .�n�2. Thus, in
this case,

(Q(k�1,0,1,0)
i�1,132 (x)Q(k,0,1,0)

n�i,132 (x))|xn�2�k = Q(k�1,0,1,0)
n�2,132 (x))|xn�2�k = 1.

Case 3. i = n. In this case,

(Q(k�1,0,1,0)
i�1,132 (x)Q(k,0,1,0)

n�i,132 (x))|xn�2�k = Q(k�1,0,1,0)
n�1,132 (x))|xn�2�k

= 2(k � 1) +
✓

n� 1� (k � 1)
2

◆

= 2(k � 1) +
✓

n� k

2

◆

for n� 1 � k � 1 + 3.

Thus, it follows that Q(k,0,1,0)
n,132 (x)|xn�2�k = 2k +

�n�k
2

�
for n � k + 3.

Similarly, we have computed the following.



INTEGERS: 15 (2015) 13

Q(1,0,2,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (12 + 2x)t4 +

�
29 + 11x + 2x2

�
t5

+
�
70 + 45x + 15x2 + 2x3

�
t6 +

�
169 + 158x + 81x2 + 19x3 + 2x4

�
t7

+
�
408 + 509x + 359x2 + 129x3 + 23x4 + 2x5

�
t8

+
�
985 + 1550x + 1409x2 + 700x3 + 189x4 + 27x5 + 2x6

�
t9 + · · · .

Q(2,0,2,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (40 + 2x)t5 +

�
115 + 15x + 2x2

�
t6

+
�
331 + 77x + 19x2 + 2x3

�
t7 +

�
953 + 331x + 121x2 + 23x3 + 2x4

�
t8

+
�
2744 + 1288x + 624x2 + 177x3 + 27x4 + 2x5

�
t9 + · · · .

In this case, the sequence (Q(2,0,2,0)
n,132 (0))n�1 is A052963 in the OEIS which satisfies

the recursion a(n) = 3a(n � 1) � a(n � 3) with a(0) = 1, a(1) = 2 and a(2) = 5,
and has the generating function 1�t�t2

1�3t+t3 .

Q(3,0,2,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + (130 + 2x)t6

+
�
408 + 19x + 2x2

�
t7 +

�
1288 + 117x + 23x2 + 2x3

�
t8

+
�
4076 + 588x + 169x2 + 27x3 + 2x4

�
t9 + · · · .

We have also computed the following.

Q(1,0,3,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (37 + 5x)t5 +

�
98 + 29x + 5x2

�
t6

+
�
261 + 124x + 39x2 + 5x3

�
t7 +

�
694 + 475x + 207x2 + 49x3 + 5x4

�
t8

+
�
1845 + 1680x + 963x2 + 310x3 + 59x4 + 5x5

�
t9

+
�
4906 + 5635x + 4056x2 + 1692x3 + 433x4 + 69x5 + 5x6

�
t10 + · · · .

Q(2,0,3,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + (127 + 5x)t6

+
�
385 + 39x + 5x2

�
t7 +

�
1169 + 207x + 49x2 + 5x3

�
t8

+
�
3550 + 938x + 310x2 + 59x3 + 5x4

�
t9

+
�
10781 + 3866x + 1642x2 + 433x3 + 69x4 + 5x5

�
t10 + · · · .

Q(3,0,3,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + (424 + 5x)t7

+
�
1376 + 49x + 5x2

�
t8 +

�
4488 + 310x + 59x2 + 5x3

�
t9

+
�
14672 + 1617x + 433x2 + 69x3 + 5x4

�
t10 + · · · .
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We can also find a formula for the second highest coe�cient in Q(k,0,m,0)
n,132 (x) for

m � 2.

Theorem 9. For all k � 1, m � 2 and n � m + k + 2,

Q(k,0,m,0)
n,132 (x)|xn�m�k�1 = Cm+1 + (2k + 1)Cm + 2Cm(n� k �m� 2).

Proof. First we establish the base case which is when k = 1 and m � 2. In this
case,

Q(1,0,m,0)
n,132 (x) =

nX
i=1

Q(0,0,m,0)
i�1,132 (x)Q(1,0,m,0)

n�i,132 (x).

Since the highest power of x that can appear in Q(0,0,m,0)
n,132 (x) is xn�m for n > m

and the highest power of x that can appear in Q(1,0,m,0)
n,132 (x) is xn�m�1 for n > m+1,

it follows that the highest power of x that appears in Q(0,0,m,0)
i�1,132 (x)Q(1,0,m,0)

n�i,132 (x) will
be less than xn�m�2 for i = 2, . . . , n� 2. Thus, we have three cases to consider.

Case 1. i = 1. In this case, Q(0,0,m,0)
i�1,132 (x)Q(1,0,m,0)

n�i,132 (x) = Q(1,0,m,0)
n�1,132 (x) and we

know by Theorem 5 that

Q(1,0,m,0)
n�1,132 (x)|xn�m�2 = Cm for n � m + 2.

Case 2. i = n � 1. In this case, Q(0,0,m,0)
i�1,132 (x)Q(1,0,m,0)

n�i,132 (x) = Q(0,0,m,0)
n�2,132 (x) and it

was proved in [9, Theorem 4.2] that

Q(0,0,m,0)
n�2,132 (x)|xn�m�2 = Cm for n � m + 2.

Case 3. i = n. In this case, Q(0,0,m,0)
i�1,132 (x)Q(1,0,m,0)

n�i,132 (x) = Q(0,0,m,0)
n�1,132 (x) and it was

proved in [9, Theorem 4.2] that

Q(0,0,m,0)
n�1,132 (x)|xn�m�2 = Cm+1 � Cm + 2Cm(n� 2�m) for n � m + 3.

Thus, it follows that

Q(1,0,m,0)
n,132 (x)|xn�m�2 = Cm+1 + Cm + 2Cm(n� 2�m)

= Cm+1 + 3Cm + 2Cm(n� 3�m) for n � m + 3.

For example, for m = 2, we get that

Q(1,0,2,0)
n,132 (x)|xn�4 = 11 + 4(n� 5) for n � 5

and, for m = 3, we get that

Q(1,0,3,0)
n,132 (x)|xn�5 = 29 + 10(n� 6) for n � 6,
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which agrees with the series that we computed.
Now assume that k > 1 and we have proved the theorem for k�1 and all m � 2.

Then

Q(k,0,m,0)
n,132 (x) =

nX
i=1

Q(k�1,0,m,0)
i�1,132 (x)Q(k,0,m,0)

n�i,132 (x).

Since the highest power of x that can appear in Q(k�1,0,m,0)
n,132 (x) is xn�m�(k�1)

for n � m + k and the highest power of x that can appear in Q(k,0,m,0)
n,132 (x) is

xn�m�k for n > m + k, it follows that the highest power of x that appears in
Q(k�1,0,m,0)

i�1,132 (x)Q(k,0,m,0)
n�i,132 (x) will be less than xn�m�k�1 for i = 2, . . . , n� 2. Thus,

we have three cases to consider.

Case 1. i = 1. In this case, Q(k�1,0,m,0)
i�1,132 (x)Q(k,0,m,0)

n�i,132 (x) = Q(k,0,m,0)
n�1,132 (x) and we

know by Theorem 5 that

Q(k,0,m,0)
n�1,132 (x)|xn�m�k�1 = Cm for n � m + k + 2.

Case 2. i = n� 1. In this case, Q(k�1,0,m,0)
i�1,132 (x)Q(k,0,m,0)

n�i,132 (x) = Q(k�1,0,m,0)
n�2,132 (x) and

we know by Theorem 5 that

Q(k�1,0,m,0)
n�2,132 (x)|xn�m�k�1 = Cm for n � m + k + 2.

Case 3. i = n. In this case, Q(k�1,0,m,0)
i�1,132 (x)Q(k,0,m,0)

n�i,132 (x) = Q(k�1,0,m,0)
n�1,132 (x) and we

know by induction that

Q(k�1,0,m,0)
n�1,132 (x)|xn�m�k�1 = Cm+1 + (2(k � 1) + 1)Cm + 2Cm(n�m� (k � 1)� 1)

for n � m + k + 2. Thus, it follows that

Q(k,0,m,0)
n,132 (x)|xn�m�k�1 = Cm+1+(2k+1)Cm+2Cm(n�m�k�2) for n � m+k+2.

3. Q(k,0,0,`)
n,132 (x) = Q(k,`,0,0)

n,132 (x) Where k, ` � 1

By Lemma 1, we know that Q(k,0,0,`)
n,132 (x) = Q(k,`,0,0)

n,132 (x). Thus, we will only consider
Q(k,0,0,`)

n,132 (x) in this section.
Suppose that n � ` + 1. It is clear that, for k � 1, n can never match the

pattern MMP(k, 0, 0, `) in any � 2 Sn(132). For i  n � `, it is easy to see that
as we sum over all the permutations � in S(i)

n (132), our choices for the structure
for Ai(�) will contribute a factor of Q(k�1,0,0,0)

i�1,132 (x) to Q(k,0,0,`)
n,132 (x). That is, all the
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elements of Ai(�) have the elements in Bi(�) in their fourth quadrant, and Bi(�)
consists of at least ` elements, so that the presence of n ensures that an element in
Ai(�) matches MMP(k, 0, 0, `) in � if and only if it matches MMP(k � 1, 0, 0, 0) in
Ai(�). Similarly, our choices for the structure for Bi(�) will contribute a factor of
Q(k,0,0,`)

n�i,132 (x) to Q(k,0,0,`)
n,132 (x) since neither n nor any of the elements to the left of n

have any e↵ect on whether an element in Bi(�) matches MMP(k, 0, 0, `).
Now suppose i > n� ` and j = n� i. In this case, Bi(�) consists of j elements.

In this situation, an element of Ai(�) matches MMP(k, 0, 0, `) in � if and only if it
matches MMP(k � 1, 0, 0, `� j) in Ai(�). Thus, our choices for Ai(�) contribute a
factor of Q(k�1,0,0,`�j)

i�1,132 (x) = Q(k�1,0,0,`�j)
n�j�1,132 (x) to Q(k,0,0,`)

n,132 (x). Similarly, our choices
for the structure for Bi(�) will contribute a factor of Q(k,0,0,`)

n�i,132 (x) to Q(k,0,0,`)
n,132 (x)

since neither n nor any of the elements to the left of n have any e↵ect on whether
an element in Bi(�) matches the pattern MMP(k, 0, 0, `). Note that since j < `, we
know that Q(k,0,0,`)

n�i,132 (x) = Cj .
It follows that for n � ` + 1,

Q(k,0,0,`)
n,132 (x) =

n�X̀
i=1

Q(k�1,0,0,0)
i�1,132 (x)Q(k,0,0,`)

n�i,132 (x) +

`�1X
j=0

CjQ
(k�1,0,0,`�j)
n�j�1,132 (x). (7)

Multiplying both sides of (7) by tn, summing for n � ` + 1 and observing that
Q(k,0,0,`)

j,132 (x) = Cj for j  `, we see that for k, ` � 1,

Q(k,0,0,`)
132 (t, x)�

X̀
j=0

Cjt
j = tQ(k�1,0,0,0)

132 (t, x)

0
@Q(k,0,0,`)

132 (t, x)�
`�1X
j=0

Cjt
j

1
A+

t
`�1X
j=0

Cjt
j

 
Q(k�1,0,0,`�j)

132 (t, x)�
`�j�1X

s=0

Cst
s

!
.

Thus, we have the following theorem.

Theorem 10. For all k, ` � 1,

Q(k,0,0,`)
132 (t, x) =

C`t` +
P`�1

j=0 Cjtj(1� tQ(k�1,0,0,0)
132 (t, x) + t(Q(k�1,0,0,`�j)

132 (t, x)�
P`�j�1

s=0 Csts))

1� tQ(k�1,0,0,0)
132 (t, x)

.

(8)

Note that we can compute generating functions of the form Q(k,0,0,0)
132 (t, x) by

Theorem 1 and generating functions of the form Q(0,0,0,`)
132 (t, x) by Theorem 3 so

that we can use (8) to compute Q(k,0,0,`)
132 (t, x) for any k, ` � 0.
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3.1. Explicit Formulas for Q(k,0,0,`)
n,132 (x)|xr

By Theorem 10, we have that

Q(k,0,0,1)
132 (t, x) =

t + (1� tQ(k�1,0,0,0)
132 (t, x)) + t(Q(k�1,0,0,1)

132 (t, x)� 1)

1� tQ(k�1,0,0,0)
132 (t, x)

=
1� tQ(k�1,0,0,0)

132 (t, x) + tQ(k�1,0,0,1)
132 (t, x)

1� tQ(k�1,0,0,0)
132 (t, x)

. (9)

We note that Q(0,0,0,0)
132 (t, x) = C(tx) so that Q(0,0,0,0)

132 (t, 0) = 1. As described in
the previous section, we have computed Q(k,0,0,0)

132 (t, 0) for small values of k in [9].
Plugging those generating functions into (9), one can compute that

Q(1,0,0,1)
132 (t, 0) =

1� t + t2

(1� t)2
,

Q(2,0,0,1)
132 (t, 0) =

1� 2t + t2 + t3

1� 3t + 2t2
,

Q(3,0,0,1)
132 (t, 0) =

1� 3t + 2t2 + t4

1� 4t + 4t2 � t3
,

Q(4,0,0,1)
132 (t, 0) =

1� 4t + 4t2 � t3 + t5

1� 5t + 7t2 � 3t3
, and

Q(5,0,0,1)
132 (t, 0) =

1� 5t + 7t2 � 3t3 + t6

1� 6t + 11t2 � 7t3 + t4
.

It is easy to see that the maximum number of MMP(1, 0, 0, 1)-matches occurs
when either � ends with 1n or n1. It follows that for n � 3, the highest power of x

in Q(1,0,0,1)
n,132 (x) is xn�2 and its coe�cient is 2Cn�2. More generally, it is easy to see

that the maximum number of MMP(k, 0, 0, 1)-matches occurs when � 2 Sn(132)
ends with a shu✏e of 1 with (n� k + 1)(n� k) . . . n. Thus, we have the following
theorem.

Theorem 11. For n � k +1, the highest power of x in Q(k,0,0,1)
n,132 (x) is xn�k�1 and

its coe�cient is (k + 1)Cn�k�1.

In general, the formulas for Q(k,0,0,`)
132 (x, t) become increasingly complex as ` in-

creases. For ` = 1, the formulas are reasonable. For example, using (9) and Theo-
rem 3, we have computed that

Q(1,0,0,1)
132 (x, t) =

1� t + 2t2 � 2tx� 2t2x + (1� t)
p

1� 4tx

1� 2t + 2t2 � 2tx + (1� 2t)
p

1� 4tx
,

Q(2,0,0,1)
132 (x, t) =

1� 2t + 2t2 + 2t3 � 2tx� 2t3x + (1� 2t)
p

1� 4tx

1� 3t + 3t2 � 2tx + 2t2x + (1� 3t + t2)
p

1� 4tx
, and

Q(3,0,0,1)
132 (x, t) =

1� 3t + 3t2 + 2t4 � 2tx + 2t2x� 2t4x + (1� 3t + t2)
p

1� 4tx

1� 4t + 5t2 � 2t3 � 2tx + 4t2x + (1� 4t + 3t2)
p

1� 4tx
.
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We have also computed that

Q(1,0,0,1)
132 (t, x) = 1 + t + 2t2 + (3 + 2x)t3 + (4 + 6x + 4x2)t4

+(5 + 12x + 15x2 + 10x3)t5 + (6 + 20x + 36x2 + 42x3 + 28x4)t6

+(7 + 30x + 70x2 + 112x3 + 126x4 + 84x5)t7

+(8 + 42x + 120x2 + 240x3 + 360x4 + 396x5 + 264x6)t8

+(9 + 56x + 189x2 + 450x3 + 825x4 + 1188x5 + 1287x6 + 858x7)t9 + · · · .

It is easy to explain some of these coe�cients. That is, we have the following
theorem.

Theorem 12. We have

(i) Q(1,0,0,1)
n,132 (0) = n for all n � 1,

(ii) Q(1,0,0,1)
n,132 (x)|x = (n� 1)(n� 2) for all n � 3, and

(iii) Q(1,0,0,1)
n,132 (x)|xn�3 = 3Cn�2 for all n � 3.

Proof. To see that Q(1,0,0,1)
n,132 (0) = n for n � 1 note that the only permutations

� 2 Sn(132) that have no MMP(1, 0, 0, 1)-matches are the identity 12 . . . n plus the
permutations of the form n(n� 1) . . . (n� k)12 . . . (n� k � 1) for k = 0, . . . , n� 1.

For n � 3, we claim that

a(n) = Q(1,0,0,1)
n,132 (x)|x = (n� 1)(n� 2).

This is easy to see by induction. That is, there are three ways to have a � 2 Sn(132)
with mmp(1,0,0,1)(�) = 1. That is, � can start with n in which case we have
a(n� 1) = (n� 2)(n� 3) ways to arrange �2 . . .�n or � can start with (n� 1)n in
which case there can be no MMP(1, 0, 0, 1) matches in �3 . . .�n which means that we
have (n�2) choices to arrange �3 . . .�n or � can end with n in which case �1 . . .�n�1

must have exactly one MMP(0, 0, 0, 1)-match so that [9, Theorems 3.1, 3.3, and 5.1],
we have n� 2 ways to arrange �1 . . .�n. Thus, a(n) = (n� 2)(n� 3) + 2(n� 2) =
(n� 1)(n� 2).

For Q(1,0,0,1)
n,132 (x)|xn�3 , we note that

Q(1,0,0,1)
n,132 (x) = Q(0,0,0,1)

n�1,132(x) +
n�1X
i=1

Q(0,0,0,0)
i�1,132 (x)Q(1,0,0,1)

n�i,132 (x)

= Q(0,0,0,1)
n�1,132(x) +

n�1X
i=1

Ci�1x
i�1Q(1,0,0,1)

n�i,132 (x).

Thus,

Q(1,0,0,1)
n,132 (x)|xn�3 = Q(0,0,0,1)

n�1,132(x)|xn�3 +
n�2X
i=1

Ci�1Q
(1,0,0,1)
n�i,132 (x)|xn�i�2 .
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It was proved in [9, Theorem 5.2] that Q(0,0,0,1)
n,132 (x)|xn�2 = Cn�1 for n � 2 and,

by Theorem 11,
Q(1,0,0,1)

n,132 (x)|xn�2 = 2Cn�2 for n � 2. Thus, for n � 3,

Q(1,0,0,1)
n,132 (x)|xn�3 = Cn�2 +

n�2X
i=1

Ci�12Cn�i�2

= Cn�2 + 2
n�2X
i=1

Ci�1Cn�i�2 = Cn�2 + 2Cn�2 = 3Cn�2.

One can also compute that

Q(2,0,0,1)
132 (t, x) = 1 + t + 2t2 + 5t3 + (11 + 3x)t4 + (23 + 13x + 6x2)t5

+ (47 + 40x + 30x2 + 15x3)t6 + (95 + 107x + 104x2 + 81x3 + 42x4)t7

+ (191 + 266x + 308x2 + 301x3 + 238x4 + 126x5)t8

+ (383 + 633x + 837x2 + 949x3 + 926x4 + 738x5 + 396x6)t9 + · · ·

and

Q(3,0,0,1)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (38 + 4x)t5 + (101 + 23x + 8x2)t6

+ (266 + 92x + 51x2 + 20x3)t7 + (698 + 320x + 221x2 + 135x3 + 56x4)t8

+ (1829 + 1038x + 821x2 + 614x3 + 392x4 + 168x5)t9 + · · · .

Here the sequence (Q(2,0,0,1)
n,132 (0))n�1 which starts out 1, 2, 5, 11, 23, 47, 95, 191, . . .

is the sequence A083329 from the OEIS which counts the number of set partitions ⇡
of {1, . . . , n}, which when written in increasing form, is such that the permutation
flatten(⇡) avoids the permutations 213 and 312. For the increasing form of a set
partition ⇡, one write the parts in increasing order separated by backslashes where
the parts are written so that minimal elements in the parts increase. Then flatten(⇡)
is just the permutation that results by removing the backslashes. For example,
⇡ = 13/257/468 is written in increasing form and flatten(⇡) = 13257468.

Problem 2. Find a bijection between the � 2 Sn(132) such that mmp(2,0,0,1)(�) =
0 and the set partitions ⇡ of n such that flatten(⇡) avoid 231 and 312.

None of the sequences {Q(k,0,0,1)
n,132 (0)}n�1 for k = 3, 4, 5 appear in the OEIS.

Similarly, one can compute that

Q(k,0,0,2)
132 (t, x) =

1� (t + t2)Q(k�1,0,0,0)
132 (t, x) + tQ(k�1,0,0,2)

132 (t, x) + t2Q(k�1,0,0,1)
132 (t, x)

1� tQ(k�1,0,0,0)
132 (t, x)

.

Then one can use this formula to compute that
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Q(1,0,0,2)
132 (t, x) = 1 + t + 2t2 + 5t3 + (9 + 5x)t4 + (14 + 18x + 10x2)t5

+ (20 + 42x + 45x2 + 25x3)t6 + (27 + 80x + 126x2 + 126x3 + 70x4)t7

+ (35 + 135x + 280x2 + 392x3 + 378x4 + 210x5)t8

+ (44 + 210x + 540x2 + 960x3 + 1260x4 + 1088x5 + 660x6)t9 + · · · .

It is easy to see that permutations � 2 Sn(132) which have the maximum number
of MMP(1, 0, 0, 2)-matches in � are those permutations that end in n12, n12, 21n,
2n1 or n21. Thus, the highest power of x that occurs in Q(1,0,0,2)

n,132 (x) is xn�3, which
has a coe�cient of 5Cn�3.

Also,

Q(2,0,0,2)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (33 + 9x)t5 + (72 + 42x + 18x2)t6

+ (151 + 135x + 98x2 + 45x3)t7 + (310 + 370x + 358x2 + 266x3 + 126x4)t8

+ (629 + 931x + 1093x2 + 1047x3 + 784x4 + 378x5)t9 + · · · .

It is easy to see that permutations � 2 Sn(132) which have the maximum number
of MMP(2, 0, 0, 2)-matches in � are those permutations that end in either a shu✏e
of 21 and (n � 1)n or (n � 1)n12, (n � 1)12n, and 12(n � 1)n. Thus, the highest
power of x that occurs in Q(2,0,0,2)

n,132 (x) is xn�4 for n � 5, which has a coe�cient of
9Cn�4.

We also have

Q(3,0,0,2)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + (118 + 14x)t6

+ (319 + 82x + 28x2)t7 + (847 + 329x + 184x2 + 70x3)t8

+ (2231 + 1138x + 807x2 + 490x3 + 196x4)t9 + · · · .

It is easy to see that permutations � 2 Sn(132) which have the maximum number
of MMP(3, 0, 0, 2)-matches in � are those permutations that end in either a shu✏e
of 21 and (n�2)(n�1)n or (n�2)(n�1)n12, (n�2)(n�1)12n, (n�2)12(n�1)n,
and 12(n� 2)(n� 1)n. Thus, the highest power of x that occurs in Q(3,0,0,2)

n,132 (x) is
xn�5 for n � 6, which has a coe�cient of 14Cn�5. More generally, the maximum
number of MMP(k, 0, 0, 2)-matches in � are those permutations that end in either
a shu✏e of 21 and (n� k + 1) . . . (n� 1)n or

(n� k + 1) . . . (n� 1)n12, (n� k + 1) . . . (n� 1)12n, . . . , 12(n� k + 1) . . . (n� 1)n.

Thus, the highest power of x that occurs in Q(k,0,0,2)
n,132 (x) is xn�k�2 for n � k + 3,

which has a coe�cient of
⇣�k+2

2

�
+ k + 1

⌘
Cn�k�2 = 1

2 (k + 4)(k + 1)Cn�k�2. None

of the series {Q(k,0,0,2)
n,132 (0)}n�1 for k = 1, 2, 3 appear in the OEIS.
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4. Q(0,k,`,0)
n,132 (x) = Q(0,0,`,k)

n,132 (x) Where k, ` � 1

By Lemma 1, we know that Q(0,k,`,0)
n,132 (x) = Q(0,0,`,k)

n,132 (x). Thus, we will only consider
Q(0,k,`,0)

n,132 (x) in this section.
Suppose that n � k. It is clear that n can never match the pattern MMP(0, k, `, 0)

for k � 1 in any � 2 Sn(132). For i � k, it is easy to see that as we sum over all the
permutations � in S(i)

n (132), our choices for the structure for Ai(�) will contribute
a factor of Q(0,k,`,0)

i�1,132 (x) to Q(0,k,`,0)
n,132 (x) since none of the elements to the right of

Ai(�) have any e↵ect on whether an element of Ai(�) matches MMP(0, k, `, 0). The
presence of n and the elements of Ai(�) ensures that an element in Bi(�) matches
MMP(0, k, `, 0) in � if and only if it matches MMP(0, 0, `, 0) in Bi(�). Thus, our
choices for Bi(�) contribute a factor of Q(0,0,`,0)

n�i,132(x) to Q(0,k,`,0)
n,132 (x).

Now suppose i < k and j = n� i. In this case, Ai(�) consists of i� 1 elements.
In this situation, an element of Bi(�) matches MMP(0, k, `, 0) in � if and only if
it matches MMP(0, k � i, `, 0) in Bi(�). Thus, our choices for Bi(�) contribute a
factor of Q(0,k�i,`,0)

n�i,132 (x) to Q(0,k,`,0)
n,132 (x). As before, our choices for the structure for

Ai(�) will contribute a factor of Q(0,k,`,0)
i�1,132 (x) to Q(0,k,`,0)

n,132 (x) but in such a situation
Q(0,k,`,0)

i�1,132 (x) = Ci�1.
It follows that for n � k,

Q(0,k,`,0)
n,132 (x) =

nX
i=k

Q(0,k,`,0)
i�1,132 (x)Q(0,0,`,0)

n�i,132(x) +
k�1X
j=1

Cj�1Q
(0,k�j,`,0)
n�j,132 (x). (10)

Multiplying both sides of (10) by tn, summing for n � k and observing that
Q(0,k,`,0)

j,132 (x) = Cj for j  k + `, we see that for k, ` � 1,

Q(0,k,`,0)
132 (t, x)�

k�1X
j=0

Cjt
j = tQ(0,0,`,0)

132 (t, x)

 
Q(0,k,`,0)

132 (t, x)�
k�2X
s=0

Cst
s

!

+t
k�2X
i=0

Cit
i

 
Q(0,k�i�1,`,0)

132 (t, x)�
k�i�2X

s=0

Cst
s

!
.

It follows that we have the following theorem.
Theorem 13. For all k, ` � 1,

Q(0,k,`,0)
132 (t, x) =

Ck�1t
k�1 +

k�2X
j=0

Cjt
j

 
1� tQ(0,0,`,0)

132 (t, x) + t

 
Q(0,k�j�1,`,0)

132 (t, x)�
k�j�2X

s=0

Cst
s

!!

1� tQ(0,0,`,0)
132 (t, x)

.

(11)

Since we can compute Q(0,0,`,0)
132 (t, x) by Theorem 2, we can use (11) to compute

Q(0,k,`,0)
132 (t, x) for all k, ` � 1.
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4.1. Explicit Formulas for Q(0,k,`,0)
n,132 (x)|xr

Our first observation is that we have the following theorem.
Theorem 14. For all ` � 0,

Q(1,0,`,0)
132 (t, x) = Q(0,1,`,0)

132 (t, x). (12)

Proof. By Theorems 1 and 3, Q(1,0,0,0)
132 (t, x) = Q(0,1,0,0)

132 (t, x) = 1
1�tC(xt) . By (2),

we have that

Q(1,0,`,0)
n,132 (x) =

nX
i=1

Q(0,0,`,0)
i�1,132 (x) Q(1,0,`,0)

n�i,132(x). (13)

On the other hand, by (10), we have that

Q(0,1,`,0)
n,132 (x) =

nX
i=1

Q(0,1,`,0)
i�1,132 (x)Q(0,0,`,0)

n�i,132(x) (14)

or, equivalently,

Q(0,1,`,0)
n,132 (x) =

nX
i=1

Q(0,0,`,0)
i�1,132 (x)Q(0,1,`,0)

n�i,132(x). (15)

Comparing (13) and (15), we see that we can easily prove by induction that
Q(0,1,`,0)

n,132 (x) = Q(1,0,`,0)
n,132 (x) for all n � 0 for any ` � 1.

In fact, one can recursively construct a bijection ⇥n : Sn(132) ! Sn(132) such
that for all � 2 Sn(132),

mmp(1,0,`,0)(�) = mmp(0,1,`,0)(⇥n(�)).

For n  1 + `, we simply let ⇥n be the identity map. Then if n > 1 + `, we
inductively define ⇥n as follows. First, for any permutation � = �1 . . .�n 2 Sn

and i � 1, we let "i (�) = (�1 + i) . . . (�n + i). Similarly, if � = �1 . . . �n is some
rearrangement of {i + 1, . . . , i + n}, then we let #i (�) = (�1 � i) . . . (�n � i).

Then if � 2 S(i)
n (132), we can write � = Ai(�)nBi(�) as in Figure 2. Thus

Bi(�) 2 Sn�i(132) and Ai(�) is a rearrangement of {n� i + 1, . . . , n� 1} such that
red(Ai(�)) 2 Si�1(132). Then we let

⇥n(�) ="n�i (⇥n�i(Bi(�))) n #n�i (Ai(�)). (16)

It is then easy to check from our proofs of (13) and (14) that ⇥n is the desired
bijection.

We note that it is not true that Q(2,0,`,0)
132 (t, x) = Q(0,2,`,0)

132 (t, x). For example, we
have computed that

Q(2,0,1,0)
132 (t, x) =

1� t + 2x + tx�
p

1 + (1� x)2t� 4xt

1� t� 2x + 3tx�
p

1 + (1� x)2t� 4xt
and

Q(0,2,1,0)
132 (t, x) = 1 +

4tx2⇣
1� t + 2x + tx�

p
1 + (1� x)2t� 4xt

⌘2 .
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It follows from Theorem 13 and Theorem 2 that

Q(0,1,`,0)
132 (t, 0) =

1

1� tQ(0,0,`,0)
132 (t, 0)

=
1

1� t 1
1�t(C0+C1t+···+C`�1t`�1)

=
1� t(C0 + C1t + · · · + C`�1t`�1)

1� t(1 + C0 + C1t + · · · + C`�1t`�1)
.

Thus, one can compute that

Q(0,1,1,0)
132 (t, 0) =

1� t

1� 2t
;

Q(0,1,2,0)
132 (t, 0) =

1� t� t2

1� 2t� t2
;

Q(0,1,3,0)
132 (t, 0) =

1� t� t2 � 2t3

1� 2t� t2 � 2t3
, and

Q(0,1,4,0)
132 (t, 0) =

1� t� t2 � 2t3 � 5t4

1� 2t� t2 � 2t3 � 5t4
.

Similarly, one can compute

Q(0,2,`,0)
132 (t, x) =

1� tQ(0,0,`,0)
132 (t, x) + tQ(0,1,`,0)

132 (t, x)

1� tQ(0,0,`,0)
132 (t, x)

= 1 +
tQ(0,1,`,0)

132 (t, x)

1� tQ(0,0,`,0)
132 (t, x)

.

Note that

Q(0,2,`,0)
132 (t, 0) = 1 +

t 1�t(C0+C1t+···+C`�1t`�1)
1�t(1+C0+C1t+···+C`�1t`�1)

1� t 1
1�t(C0+C1t+···+C`�1t`�1)

= 1 +
t(1� t(C0 + C1t + · · · + C`�1t`�1))2

(1� t(1 + C0 + C1t + · · · + C`�1t`�1))2
.

Thus, it follows that

Q(0,2,1,0)
132 (t, 0) = 1 + t

✓
1� t

1� 2t

◆2

;

Q(0,2,2,0)
132 (t, 0) = 1 + t

✓
1� t� t2

1� 2t� t2

◆2

;

Q(0,2,3,0)
132 (t, 0) = 1 + t

✓
1� t� t2 � 2t3

1� 2t� t2 � 2t3

◆2

, and

Q(0,2,4,0)
132 (t, 0) = 1 + t

✓
1� t� t2 � 2t3 � 5t4

1� 2t� t2 � 2t3 � 5t4

◆2

.
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We can use our previous computations of Q(0,0,`,0)
132 (t, x) and (11) to compute

Q(0,2,`,0)
132 (t, x) for all ` � 1. For example, we have computed

Q(0,2,1,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + (12 + 2x)t4 + (28 + 12x + 2x2)t5+

+ (64 + 48x + 18x2 + 2x3)t6 + (144 + 160x + 97x2 + 26x3 + 2x4)t7

+ (320 + 480x + 408x2 + 184x3 + 36x4 + 2x5)t8

+ (704 + 1344x + 1479x2 + 958x3 + 327x4 + 48x5 + 2x6)t9 + · · · .

Q(0,2,2,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (38 + 4x)t5 + (102 + 26x + 4x2)t6

+ (271 + 120x + 34x2 + 4x3)t7 + (714 + 470x + 200x2 + 42x3 + 4x4)t8

+ (1868 + 1672x + 964x2 + 304x3 + 50x4 + 4x5)t9 + · · · .

Q(0,2,3,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + (122 + 10x)t6

+ (351 + 68x + 10x2)t7 + (1006 + 326x + 88x2 + 10x3)t8

+ (2168 + 1364x + 512x2 + 108x3 + 10x4)t9 + · · · .

Q(0,2,4,0)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + 42t5 + 132t6

+ (401 + 28x)t7 + (1206 + 196x + 28x2)t8 + (3618 + 964x + 252x2 + 28x3)t9 + · · · .

We note that the sequence (Q(0,2,1,0)
n,132 (0))n�1 is sequence A045623 in the OEIS.

The nth term of this series counts the number of 1s in all compositions of n + 1.
Moreover, using the fact that 1

(1�2t)2 =
P

n�0(n + 1)2ntn, it follows that for n � 3,

Q(0,2,1,0)
n,132 (0) =

1� 2t� t2

(1� 2t)2
|tn�1

= n2n�1 � 2((n� 1)2n�2 + (n� 2)2n�3

= 2n�3(4n� 4(n� 1) + n� 2)) = (n + 2)2n�3.

Since 2 = (2 + 2)22�3, we see that we have the following theorem.

Theorem 15. For all n � 2, Q(0,2,1,0)
n,132 (0) = (n + 2)2n�3.

In this case, we can explicitly calculate the highest and second highest coe�cients
that appear in Q(0,2,`,0)

n,132 (x) for su�ciently large n. That is, we have the following
theorem.
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Theorem 16. The following hold.

(i) For all ` � 1 and n � 3+`, the highest power of x that appears in Q(0,2,`,0)
n,132 (x)

is xn�2�` which appears with a coe�cient of 2C`.

(ii) For all n � 5, Q(0,2,1,0)
n,132 (x)|xn�4 = 6 + 2

✓
n� 2

2

◆
.

(iii) For all ` � 2 and n � 4+`, Q(0,2,`,0)
n,132 (x)|xn�3�` = 2C`+1+8C`+4C`(n�4�`).

Proof. For (i), it is easy to see that the maximum number of MMP(0, 2, `, 0)-matches
occurs for a � 2 Sn(132) if � starts with (n � 1)n or n(n � 1) followed by any
permutation of S`(132) followed by ` + 1, ` + 2, . . . , n� 2 in increasing order. Thus,
the highest power of x in Q(0,2,`,0)

132 (t, x) is xn�`�2 and its coe�cient is 2C`.
For parts (ii) and (iii), we use the fact that

Q(0,2,`,0)
n,132 (x) = Q(0,1,`,0)

n�1,132(x) +
nX

i=2

Q(0,2,`,0)
i�1,132 (x)Q(0,0,`,0)

n�i,132(x).

It was proved in [9, Theorem 4.2] that for n > `, the highest power of x that
occurs in Q(0,0,`,0)

n,132 (x) is xn�` and its coe�cient is C`. Moreover, it was proved in
[9, Theorem 4.3] that

Q(0,0,1,0)
n,132 (x)|xn�2 =

✓
n

2

◆
for n � 2

and in [9, Theorem 4.2] that, for ` � 2,

Q(0,0,`,0)
n,132 (x)|xn�1�` = C`+1 � C` + 2C`(n� 1� `) for n � 1 + `.

It follows that for 4  i  n� 1, the highest power of x that appears in
Q(0,2,`,0)

i�1,132 (x)Q(0,0,`,0)
n�i,132(x) is less than n� `� 3. Thus, we have four cases to consider

when computing Q(0,2,1,0)
n,132 (x)|xn�4 .

Case 1. Q(0,1,1,0)
n�1,132(x)|xn�4 . In this case, by Theorems 6 and 14, we have that,

Q(0,1,1,0)
n�1,132(x)|xn�4 = 2 +

✓
n� 2

2

◆
for n � 5.

Case 2. i = 2. In this case Q(0,2,1,0)
i�1,132 (x)Q(0,0,1,0)

n�i,132 (x) = Q(0,0,1,0)
n�2,132(x) and

Q(0,0,1,0)
n�2,132(x)|xn�4 =

✓
n� 2

2

◆
for n � 4.

Case 3. i = 3. In this case Q(0,2,1,0)
i�1,132 (x)Q(0,0,1,0)

n�i,132 (x) = 2Q(0,0,1,0)
n�3,132(x) so that we

obtain a contribution with 2Q(0,0,1,0)
n�3,132(x)|xn�4 = 2C1 = 2 for n � 5.
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Case 4. i = n. In this case Q(0,2,1,0)
i�1,132 (x)Q(0,0,1,0)

n�i,132 (x) = Q(0,2,1,0)
n�1,132(x) so that we

obtain a contribution with Q(0,2,1,0)
n�1,132(x)|xn�4 = 2C1 = 2 for n � 5.

Thus, it follows that

Q(0,2,1,0)
n,132 (x)|xn�4 = 6 + 2

✓
n� 2

2

◆
for n � 5.

Similarly, we have four cases to consider when computing Q(0,2,`,0)
n,132 (x)|xn�3�` for

` � 2.

Case 1. Q(0,1,`,0)
n�1,132(x)|xn�3�` . In this case, by Theorems 6 and 14, we have that

Q(0,1,`,0)
n�1,132(x)|xn�3�` = C`+1 + 3C` + 2C`(n� 4� `) for n � 4 + `.

Case 2. i = 2. In this case Q(0,2,`,0)
i�1,132 (x)Q(0,0,`,0)

n�i,132(x) = Q(0,0,`,0)
n�2,132(x) and

Q(0,0,`,0)
n�2,132(x)|xn�3�` = C`+1 � C` + 2C`(n� 3� `) for n � 3 + `.

Case 3. i = 3. In this case Q(0,2,`,0)
i�1,132 (x)Q(0,0,`,0)

n�i,132(x) = 2Q(0,0,`,0)
n�3,132(x) so that we

obtain a contribution with 2Q(0,0,`,0)
n�3,132(x)|xn�3�` = 2C` for n � 4 + `.

Case 4. i = n. In this case Q(0,2,`,0)
i�1,132 (x)Q(0,0,`,0)

n�i,132(x) = Q(0,2,`,0)
n�1,132(x) so that we

obtain a contribution with Q(0,2,1,0)
n�1,132(x)|xn�3�` = 2C` for n � 4 + `.

Thus, it follows that for n � 4 + `,

Q(0,2,`,0)
n,132 (x)|xn�3�` = 2C`+1 + 4C` + 4C`(n� 3� `)

= 2C`+1 + 8C` + 4C`(n� 4� `).

For example, when ` = 2, we obtain that

Q(0,2,2,0)
n,132 (x)|xn�5 = 26 + 8(n� 6) for n � 6

and, when ` = 3, we obtain that

Q(0,2,3,0)
n,132 (x)|xn�6 = 68 + 20(n� 7) for n � 7

which agrees with the series that we computed.
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5. Q(0,k,0,`)
n,132 (x) Where k, ` � 1

Suppose that n � k+`. It is clear that n can never match the pattern MMP(0, k, 0, `)
for k � 1 in any � 2 Sn(132). There are three cases that we have to consider when
dealing with the contribution of the permutations of S(i)

n (132) to Q(0,k,0,`)
n,132 (x).

Case 1. i  k � 1. It is easy to see that as we sum over all the permutations
� in S(i)

n (132), our choices for the structure for Ai(�) will contribute a factor of
Ci�1 to Q(0,k,0,`)

n,132 (x) since no element in Ai(�) can match MMP(0, k, 0, `). The
presence of n plus the elements in Ai(�) ensure that an element in Bi(�) matches
MMP(0, k, 0, `) in � if and only if it matches MMP(0, k � i, 0, `) in Bi(�). Hence
our choices for Bi(�) contribute a factor of Q(0,k�i,0,`)

n�i,132 (x) to Q(0,k,0,`)
n,132 (x). Thus, in

this case, the elements of S(i)
n (132) contribute Ci�1Q

(0,k�i,0,`)
n�i,132 (x) to Q(0,k,0,`)

n,132 (x).

Case 2. k  i  n � `. Note that in this case, there are at least k elements
in Ai(�) [ {n} and at least ` elements in Bi(�). The presence of the elements in
Bi(�) ensures that an element in Ai(�) matches MMP(0, k, 0, `) in � if and only if it
matches MMP(0, k, 0, 0) in Ai(�). Hence our choices for Ai(�) contribute a factor
of Q(0,k,0,0)

i�1,132 (x) to Q(0,k,0,`)
n,132 (x).

The presence of n plus the elements in Ai(�) ensures that an element in Bi(�)
matches MMP(0, k, 0, `) in � if and only if it matches MMP(0, 0, 0, `) in Bi(�). Thus,
our choices for Bi(�) contribute a factor of Q(0,0,0,`)

n�i,132(x) to Q(0,k,0,`)
n,132 (x). Thus, in this

case, the elements of S(i)
n (132) contribute Q(0,k,0,0)

i�1,132 (x)Q(0,0,0,`)
n�i,132(x) to Q(0,k,0,`)

n,132 (x).

Case 3. i > n � `. Let j = n � i so that j < `. It is easy to see that
as we sum over all the permutations � in S(i)

n (132), our choices for the struc-
ture for Bi(�) will contribute a factor of Cj to Q(0,k,0,`)

n,132 (x) since no element in
Bi(�) can match MMP(0, k, 0, `). The presence of the elements in Bi(�) ensures
that an element in Ai(�) matches MMP(0, k, 0, `) in � if and only if it matches
MMP(0, k, 0, ` � j) in Ai(�). Hence our choices for Ai(�) contribute a factor of
Q(0,k,0,`�j)

n�j�1,132(x) to Q(0,k,0,`)
n,132 (x). Thus, in this case, the elements of S(i)

n (132) con-
tribute CjQ

(0,k,0,`�j)
n�j�1,132(x) to Q(0,k,0,`)

n,132 (x).

It follows that for n � k + `,

Q(0,k,0,`)
n,132 (x) =

k�1X
i=1

Ci�1Q
(0,k�i,0,`)
n�i,132 (x) +

n�X̀
i=k

Q(0,k,0,0)
i�1,132 (x)Q(0,0,0,`)

n�i,132(x) +
`�1X
j=0

CjQ
(0,k,0,`�j)
n�j�1,132(x). (17)

Multiplying both sides of (17) by tn and summing, we see that
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Q(0,k,0,`)
132 (t, x)�

k+`�1X
j=0

Cjt
j = t

0
@k�2X

j=0

Cjt
j

 
Q(0,k�j�1,0,`)

132 (t, x)�
k+`�j�2X

s=0

Cst
s

!1
A

+ t

 
Q(0,k,0,0)

132 (t, x)�
k�2X
u=0

Cutu
! 

Q(0,0,0,`)
132 (t, x)�

`�1X
v=0

Cvt
v

!

+ t

0
@`�1X

j=0

Cjt
j

 
Q(0,k,0,`�j)

132 (t, x)�
k+`�j�2X

s=0

Cst
s

!1
A .

Thus

Q(0,k,0,`)
132 (t, x) =

k+`�1X
j=0

Cjt
j + t

0
@k�2X

j=0

Cjt
j

 
Q(0,k�j�1,0,`)

132 (t, x)�
k+`�j�2X

s=0

Cst
s

!1
A

+ t

 
Q(0,k,0,0)

132 (t, x)�
k�2X
u=0

Cutu
! 

Q(0,0,0,`)
132 (t, x)�

`�1X
v=0

Cvt
v

!

+ t

0
@`�1X

j=0

Cjt
j

 
Q(0,k,0,`�j)

132 (t, x)�
k+`�j�2X

w=0

Cwtw
!1
A . (18)

Note the first term of the last term on the right-hand side of (18) is t(Q(0,k,0,`)
132 (t, x)�Pk+`�2

w=0 Cwtw) so that we can bring the term tQ(0,k,0,`)
132 (t, x) to the other side and

solve Q(0,k,0,`)
132 (t, x) to obtain the following theorem.

Theorem 17. For all k, ` � 1,

Q(0,k,0,`)
132 (t, x) =

�k,`(t, x)
1� t

(19)

where

�k,`(t, x) =
k+`�1X

j=0

Cjt
j �

k+`�2X
j=0

Cjt
j+1

+ t

0
@k�2X

j=0

Cjt
j

 
Q(0,k�j�1,0,`)

132 (t, x)�
k�`�j�2X

s=0

Cst
s

!1
A

+ t

 
Q(0,k,0,0)

132 (t, x)�
k�2X
u=0

Cutu
! 

Q(0,0,0,`)
132 (t, x)�

`�1X
v=0

Cvt
v

!

+ t

0
@`�1X

j=1

Cjt
j

 
Q(0,k,0,`�j)

132 (t, x)�
k+`�j�2X

w=0

Cwtw
!1
A.

Note that we can compute Q(0,k,0,0)
132 (t, x) and Q(0,0,0,`)

132 (t, x) by Theorem 3 so
that we can use (19) to compute Q(0,k,0,`)

132 (t, x) for all k, ` � 1.
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5.1. Explicit Formulas for Q(0,k,0,`)
n,132 (x)|xr

It follows from Theorem 17 that

Q(0,1,0,1)
132 (t, x) =

1 + tQ(0,1,0,0)
132 (t, x)(Q(0,0,0,1)

132 (t, x)� 1)
1� t

,

and

Q(0,2,0,1)
132 (t, x) =

1 + tQ(0,1,0,1)
132 (t, x) + tQ(0,2,0,0)

132 (t, x)Q(0,0,0,1)
132 (t, x)� tQ(0,2,0,0)

132 (t, x)� tQ(0,0,0,1)
132 (t, x)

1� t
.

(20)

Similarly, using the fact that

Q(0,2,0,0)
132 (t, x) = Q(0,0,0,2)

132 (t, x) and Q(0,2,0,1)
132 (t, x) = Q(0,1,0,2)

132 (t, x),

one can show that

Q(0,2,0,2)
132 (t, x) =

1 + (t + t2)Q(0,2,0,1)
132 (t, x) + t(Q(0,2,0,0)

132 (t, x))2 � (2t + t2)Q(0,2,0,0)
132 (t, x)

1� t
. (21)

One can then compute that

Q(0,1,0,1)
132 (t, x) =

R(0,1,0,1)(t, x) + S(0,1,0,1)(t, x)
p

1� 4tx
(1� t)(1� 2t +

p
1� 4tx)2

,

Q(0,2,0,1)
132 (t, x) =

R(0,2,0,1)(t, x) + S(0,2,0,1)(t, x)
p

1� 4tx
(1� t)2(1� 2t +

p
1� 4tx)3

, and

Q(0,2,0,2)
132 (t, x) =

R(0,2,0,2)(t, x) + S(0,2,0,2)(t, x)
p

1� 4tx
(1� t)3(1� 2t +

p
1� 4tx)4

.

where

R(0,1,0,1)(t, x) = 2� 4t + 6t2,
S(0,1,0,1)(t, x) = 2� 4t + 2t2,
R(0,2,0,1)(t, x) = 4� 16t + 28t2 � 24t3 + 12t4 � 8t5 � 12tx + 36t2x� 36t3x

+8t4x + 8t5x
S(0,2,0,1)(t, x) = 4� 16t + 28t2 � 16t3 + 4t4 � 4tx + 4t2x� 4t3x,

R(0,2,0,2)(t, x) = 8� 48t + 128t2 � 184t3 + 176t4 � 104t5 + 16t6 + 24t7

�32tx + 160t2x� 352t3x + 352t4x� 192t5x + 40t6x
�24t7x + 16t2x2 � 32t3x2 + 32t4x2 + 16t5x2,

S(0,2,0,2)(t, x) = 8� 48t + 128t2 � 184t3 + 160t4 � 72t5

�16t6 + 8t7 � 16tx + 64t2x� 96t3x + 48t4x + 24t6x� 8t7x.
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Here are the first few terms of these series.

Q(0,1,0,1)
132 (t, x) = 1 + t + 2t2 + (4 + x)t3 + (7 + 5x + 2x2)t4 + (11 + 14x + 12x2 + 5x3)t5

+ (16 + 30x + 39x2 + 33x3 + 14x4)t6 + (22 + 55x + 95x2 + 117x3 + 98x4 + 42x5)t7

+ (29 + 91x + 195x2 + 309x3 + 36x4 + 306x5 + 132x6)t8

+ (37 + 140x + 357x2 + 684x3 + 1028x4 + 1197x5 + 990x6 + 429x7)t9 + · · · .

Q(0,2,0,1)
132 (t, x) = 1 + t + 2t2 + 5t3 + (12 + 2x)t4 + (25 + 13x + 4x2)t5

+ (46 + 45x + 31x2 + 10x3)t6 + (77 + 115x + 124x2 + 85x3 + 28x4)t7

+ (120 + 245x + 359x2 + 370x3 + 252x4 + 84x5)t8

+ (177 + 462x + 854x2 + 1159x3 + 1160x4 + 786x5 + 264x6)t9 + · · · .

Q(0,2,0,2)
132 (t, x) = 1 + t + 2t2 + 5t3 + 14t4 + (38 + 4x)t5 + (91 + 33x + 8x2)t6

+ (192 + 139x + 78x2 + 20x3)t7 + (365 + 419x + 377x2 + 213x3 + 56x4)t8

+ (639 + 1029x + 1280x2 + 1116x3 + 630x4 + 168x5)t9 + · · · .

It is easy to find the coe�cients of the highest power of x in Q(0,k,0,`)
n,132 (x). That

is, we have the following theorem.

Theorem 18. For n � k + `+1, the highest power of x that occurs in Q(0,k,0,`)
n,132 (x)

is xn�k�` which occurs with a coe�cient of CkC`Cn�k�`.

Proof. It is easy to see that the maximum number of MMP(0, k, 0, `)-matches occurs
for a � 2 Sn(132) if � starts with some 132-avoiding rearrangement of n, n �
1, . . . , n � k + 1 and ends with some 132-avoiding rearrangement of 1, 2, . . . , `. In
the middle of such a permutation, we can choose any 132-avoiding permutation of
` + 1, . . . , n� k. It follows that the highest power of x which occurs in Q(0,k,0,`)

n,132 (x)
is xn�k�` which occurs with a coe�cient of CkC`Cn�k�`.

We can also find an explicit formula for a coe�cient of the second highest power
of x that occurs in Q(0,1,0,1)

n,132 (x).

Theorem 19. For n � 4,

Q(0,1,0,1)
n,132 (x)|n�3 = 2Cn�2 + Cn�3.

Proof. In this case, for n � 3,

Q(0,1,0,1)
n,132 (x) = Q(0,1,0,1)

n�1,132(x) +
n�1X
i=1

Q(0,1,0,0)
i�1,132 (x)Q(0,0,0,1)

n�i,132 (x). (22)

We have already observed that Q(1,0,0,0)
n,132 (x) = Q(0,1,0,0)

n,132 (x) so that for all n � 0,
Q(1,0,0,0)

n,132 (x) = Q(0,1,0,0)
n,132 (x) = Q(0,0,0,1)

n,132 (x). In addition, we proved in [9, Theorem
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3.3] that for n � 1, the highest power of x that occurs in Q(1,0,0,0)
n,132 (x) is xn�1 and

Q(1,0,0,0)
n,132 (x)|xn�1 = Cn�1 and that for n � 2, Q(1,0,0,0)

n,132 (x)|xn�2 = Cn�1. It follows
that for n � 4,

Q(0,1,0,1)
n,132 (x)|xn�3 = Q(0,1,0,1)

n�1,132(x)|xn�3 + Q(0,0,0,1)
n�2,132(x)|xn�3 +

n�1X
i=2

Q(0,1,0,0)
i�1,132 (x)|xi�2Q(0,0,0,1)

n�i,132 (x)|xn�i�1

= Cn�3 + Cn�2 +
n�1X
i�2

Ci�2Cn�i�1

= Cn�3 + Cn�2 + Cn�2 = 2Cn�2 + Cn�3.

We can also get explicit formulas for Q(0,1,0,1)
132 (t, 0), Q(0,2,0,1)

132 (t, 0), and
Q(0,2,0,2)

132 (t, 0) based on the fact that we know that

Q(0,1,0,0)
132 (t, 0) = Q(0,0,0,1)

132 (t, 0) =
1

1� t
and

Q(0,2,0,0)
132 (t, 0) = Q(0,0,0,2)

132 (t, 0) =
1� t + t2

(1� t)2
.

Then one can use the above formulas to compute that

Q(0,1,0,1)
132 (t, 0) =

1� 2t + 2t2

(1� t)3
;

Q(0,2,0,1)
132 (t, 0) =

1� 3t + 4t2 � t3 + t4

(1� t)4
, and

Q(0,2,0,2)
132 (t, 0) =

1� 4t + 7t2 � 5t3 + 4t4 + 2t5

(1� t)5
.

These generating functions allows us to prove the following results.

Theorem 20.

Q(0,1,0,1)
n,132 (0) = 1 +

✓
n

2

◆
for n � 2,

Q(0,2,0,1)
n,132 (0) =

n2 � 3n + 5
3

for n � 3, and

Q(0,2,0,2)
n,132 (0) =

5n4 � 34n4 + 103n2 � 122n + 72
24

for n � 4.

Proof. Note that for any k � 1,
1

(1� t)k
=
X
n�0

✓
n + k � 1

k � 1

◆
tn by Newton’s bino-

mial theorem. Thus for n � 2,

Q(0,1,0,1)
n,132 (0) =

✓
n + 2

2

◆
� 2
✓

n + 1
2

◆
+ 2
✓

n

2

◆
.
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For n � 3,

Q(0,2,0,1)
n,132 (0) =

✓
n + 3

3

◆
� 3
✓

n + 2
3

◆
+ 4
✓

n + 1
3

◆
�
✓

n

3

◆
+
✓

n� 1
3

◆
.

For n � 4,

Q(0,2,0,2)
n,132 (0) =

✓
n + 4

4

◆
� 4
✓

n + 3
4

◆
+ 7
✓

n + 2
4

◆
� 5
✓

n + 1
4

◆
+ 4
✓

n

4

◆
+ 2
✓

n� 1
4

◆
.

One can then use Mathematica to simplify these formulas to obtain the results
stated in theorem.

The fact that Q(0,1,0,1)
n,132 (0) = 1+

�n
2

�
for n � 2 is a known fact [4, Table 6.1] since

avoidance of the pattern MMP(0, 1, 0, 1) is equivalent to avoiding the (classical)
pattern 321 so that we are dealing with avoidance of 132 and 321.

The sequence {Q(0,2,0,1)
n,132 (0)}n�1 is A116731 in the OEIS counting the number of

permutations of length n which avoid the patterns 321, 2143, and 3142. Thus we
get an alternative combinatorial interpretation of this sequence which is number of
permutations that avoid 132, 3421, 4321.

Problem 3. Find a combinatorial explanation of the fact that in Sn, the number of
(132, 4321, 3421)-avoiding permutations is the same as the number of (321, 2143, 3142)-
avoiding permutations.

Similarly, the sequence {Q(0,2,0,2)
n,132 (0)}n�1 is the number of permutations of length

n which avoid the patterns 132, 54312, 45312, 45321, and 54321.

Acknowledgment The authors are very grateful to the anonymous referee for
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