
#A23 INTEGERS 15 (2015)

PROPERTIES OF A RESTRICTED BINARY PARTITION
FUNCTION A LA ANDREWS AND LEWIS

Bin Lan
Department of Mathematics, Penn State University, University Park,

Pennsylvania
bql5114@psu.edu

James A. Sellers
Department of Mathematics, Penn State University, University Park,

Pennsylvania
sellersj@psu.edu

Received: 1/20/15, Accepted: 4/29/15, Published: 5/8/15

Abstract
In 2001, Andrews and Lewis utilized an identity of F. H. Jackson to derive some
new partition generating functions as well as identities involving some of the cor-
responding partition functions. At the end of their paper, they define a family of
functions W1(S1, S2;n) to be the number of partitions of n into parts from S1 [ S2

that do not contain both aj and bj as parts (where S1 = {a1, a2, a3, . . . } and
S2 = {b1, b2, b3, . . . } and S1 \ S2 = �). This definition is motivated by the main
results of their paper; in that case, S1 and S2 contain elements in arithmetic progres-
sion with the same “skip value” k. Our goal in this note is to consider more general
examples of such partition functions where S1 and S2 satisfy the requirements men-
tioned above but do not simply contain elements in an arithmetic progression. In
particular, we consider the situation where S1 and S2 contain specific powers of 2.
We then prove a number of arithmetic properties satisfied by this function using
elementary generating function manipulations and classic results from the theory
of partitions.

1. Introduction

In 2001, Andrews and Lewis [1] utilized an identity of F. H. Jackson to derive
some new partition generating functions as well as identities involving some of
the corresponding partition functions. At the end of their paper, they define a
family of functions W1(S1, S2;n) to be the number of partitions of n into parts from
S1 [ S2 that do not contain both aj and bj as parts (where S1 = {a1, a2, a3, . . . }
and S2 = {b1, b2, b3, . . . } and S1 \ S2 = �). This definition is motivated by the
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main results of their paper; in that case, S1 and S2 contain elements in arithmetic
progression with the same “skip value” k. (An example of the kind of partition
functions that arise in the work of Andrews and Lewis can be found in [6, Sequence
A070047]. In that case, S1 = {1, 4, 7, 10, 13, . . . } and S2 = {2, 5, 8, 11, 14, . . . } .)

In this note, we consider other sets S1 and S2 that satisfy the conditions above but
do not simply consist of the values of a given arithmetic progression. In particular,
let S1 = {1, 4, 16, 64, . . . } and S2 = {2, 8, 32, 128, . . . } . That is, S1 =

�
22n�2

 
n�1

and S2 =
�
22n�1

 
n�1

. In this context, W1(S1, S2;n) counts the number of parti-
tions of n into powers of 2 such that 1 and 2 cannot both be parts of a particular
partition, and 4 and 8 cannot both be parts of a particular partition, and 16 and
32, and so on. Thus, for example, the number of such partitions of n = 10 is given
by W1(S1, S2; 10) = 8 where the partitions in question are the following:

8 + 2, 8 + 1 + 1, 4 + 4 + 2, 4 + 2 + 2 + 2,

4+4+1+1, 4+1+1+1+1+1+1, 2+2+2+2+2, 1+1+1+1+1+1+1+1+1+1

Throughout this note, we will let H1(q) denote the generating function for
W1(S1, S2;n). Moreover, with the goal of simplifying notation, we will write W (n)
in place of W1(S1, S2;n) throughout the rest of this paper.

Thanks to the comments made in the concluding remarks of Andrews and Lewis,
we have the following generating function identity:

Theorem 1. We have

H1(q) :=
X
n�0

W (n)qn =
Y
j�1

⇣
1� q22j�2+22j�1

⌘
�
1� q22j�2

� �
1� q22j�1

� =
Y
j�1

⇣
1� q3⇥22j�2

⌘
�
1� q2j�1

�

We now wish to study W (n) from two di↵erent perspectives. In Section 2, we
prove a number of elementary recurrence properties satisfied by W (n). In Section
3, we then prove a number of divisibility properties satisfied by W (n). Our primary
tool in proving these results is elementary generating function manipulations.

2. Recurrences

Our main goal in this section is to prove the following two recurrence relations
satisfied by W (n).

Theorem 2. For all n � 1, we have W (2n) = W (2n� 2) + W
�
bn

2 c
�
.

Theorem 3. For all n � 1, we have W (2n + 1) = W (2n)�W (2n� 1).
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Prior to proving these results, it is instructive to note that recurrences of a similar
form also hold for a number of other binary partition functions. See, for example,
Churchhouse’s original work [2] on the unrestricted binary partition function as
well as the work of Sloane and Sellers [10] on non–squashing partitions. Of course
this is not surprising as such recurrences follow from the corresponding generating
functions, and each of the generating functions mentioned above are, in essence,
generating functions for binary partition functions.

Proof. (of Theorem 2) We begin this proof by noting that

H1(�q) =
1 + q3

1 + q

Y
j�2

⇣
1� q3⇥22j�2

⌘
�
1� q2j�1

�

=
(1 + q3)(1� q)
(1 + q)(1� q3)

H1(q).

Thus, we know that

X
n�0

W (2n)q2n =
1
2

(H1(q) + H1(�q))

=
1
2
H1(q)

✓
1 +

(1 + q3)(1� q)
(1 + q)(1� q3)

◆

=
1
2
H1(q)

✓
2� 2q4

(1 + q)(1� q3)

◆

=
(1� q4)

(1 + q)(1� q3)
H1(q)

=
(1 + q2)(1� q)

1� q3
H1(q)

=
(1 + q2)(1� q12)(1� q48)(1� q192) . . .

(1� q2)(1� q4)(1� q8) . . .

after simplification. Therefore,

X
n�0

W (2n)qn =
(1 + q)(1� q6)(1� q24)(1� q96) . . .

(1� q)(1� q2)(1� q4) . . .
:= H2(q).

Next, note that

H2(�q) =
(1� q)(1� q6)(1� q24)(1� q96) . . .

(1 + q)(1� q2)(1� q4) . . .

=
(1� q)2

(1 + q)2
H2(q).
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Thus,
X
n�0

W (4n)q2n =
1
2

(H2(q) + H2(�q)) =
(1 + q2)(1� q6)(1� q24)(1� q96) . . .

(1� q2)2(1� q4)(1� q8) . . .

after much simplification. Hence,
X
n�0

W (4n)qn =
(1 + q)(1� q3)(1� q12)(1� q48) . . .

(1� q)2(1� q2)(1� q4) . . .
=

(1 + q)
(1� q)

H1(q)

using Theorem 1.
In a similar vein, we know
X
n�0

W (4n + 2)q2n+1 =
1
2

(H2(q)�H2(�q)) = 2q
(1� q6)(1� q24)(1� q96) . . .

(1� q2)2(1� q4)(1� q8) . . .
.

This means
X
n�0

W (4n + 2)qn = 2
(1� q3)(1� q12)(1� q48) . . .

(1� q)2(1� q2)(1� q4) . . .
=

2
(1� q)

H1(q).

Now two important comments are in order. First, from a generating function per-
spective, we see that

(1 + q)
(1� q)

H1(q) + H1(q) =
✓

(1 + q)
(1� q)

+ 1
◆

H1(q)

=
✓

1 + q + 1� q

1� q

◆
H1(q)

=
2

(1� q)
H1(q).

From the above generating function work, this means that, for all n � 1,

W (4n + 2) = W (4n) + W (n). (1)

Note also that the generating function for W (4n� 2) is given by
X
n�0

W (4n� 2)qn =
2q

(1� q)
H1(q)

by simply shifting the generating function for W (4n + 2) by one factor of q. We
then see that the sum of the generating function for W (4n� 2) and the generating
function for W (n) is

2q
(1� q)

H1(q) + H1(q) =
✓

2q
(1� q)

+ 1
◆

H1(q) =
✓

2q + 1� q

1� q

◆
H1(q)

=
✓

1 + q

1� q

◆
H1(q)
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and this is the generating function for W (4n). Thus, for all n � 1,

W (4n) = W (4n� 2) + W (n). (2)

Combining (1) and (2) yields the result.

Proof. (of Theorem 3) While proving Theorem 2, we noted that
X
n�0

W (2n)qn =
(1 + q)(1� q6)(1� q24)(1� q96) . . .

(1� q)(1� q2)(1� q4) . . .
.

It is worth noting that this is equivalent to saying that
X
n�0

W (2n)qn =
1 + q

1� q
H1(q2).

We now wish to find a similar generating function result for W (2n + 1). Using
techniques similar to those employed above, we see that
X
n�0

W (2n + 1)q2n+1 =
1
2

(H1(q)�H1(�q)) =
1
2
H1(q)

✓
1� (1 + q3)(1� q)

(1 + q)(1� q3)

◆

=
q(1� q2)

(1 + q)(1� q3)
H1(q)

=
q(1� q)
1� q3

H1(q)

=
q(1� q12)(1� q48)(1� q192) . . .

(1� q2)(1� q4)(1� q8) . . .
.

Thus, X
n�0

W (2n + 1)qn =
(1� q6)(1� q24)(1� q96) . . .

(1� q)(1� q2)(1� q4) . . .
.

This can be rewritten asX
n�0

W (2n + 1)qn =
1

1� q
H1(q2).

By shifting the above by one factor of q, we see then thatX
n�0

W (2n� 1)qn =
q

1� q
H1(q2).

Summing the generating functions for W (2n + 1) and W (2n� 1) yields
1

1� q
H1(q2) +

q

1� q
H1(q2) =

1 + q

1� q
H1(q2)

and this is the generating function for W (2n) as noted above. Therefore, for all
n � 1, we have W (2n + 1) + W (2n � 1) = W (2n) and this is equivalent to the
desired result.
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3. Divisibility Properties

Numerous authors have considered divisibility properties satisfied by various binary
partition functions. See, for example, [2], [3], [4], [5], [7], [8], and [9]. In this section,
we wish to do the same for W (n).

The first goal is to prove the following theorem that provides a characterization
of W (n) modulo 2. In order to state the theorem, we define Mj to be the jth value of
the Moser-de Bruijn sequence. This is the sequence of integers that can be written
as a sum of distinct powers of 4 [6, Sequence A000695]. The sequence includes the
values 0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, . . .

Theorem 4. For all n � 0,

W (n) ⌘
(

1 (mod 2) if n = 3Mj or n = 3Mj + 1
0 (mod 2) otherwise

where Mj is an element of the Moser-de Bruijn sequence defined above.

Proof. Thanks to Theorem 1 and elementary generating function manipulations,
we know

X
n�0

W (n)qn =
Y
j�1

⇣
1� q3⇥22j�2

⌘
�
1� q2j�1

�

⌘
Y
j�1

⇣
1� q3⇥22j�2

+ 2q3⇥22j�2
⌘

�
1 + q2j�1

� (mod 2)

=

Q
j�1

⇣
1 + q3⇥22j�2

⌘
1

1�q

since every integer has a unique representation in base 2

= (1� q)
Y
j�1

⇣
1 + q3⇥22j�2

⌘

⌘ (1 + q)
Y
j�1

⇣
1 + q3⇥22j�2

⌘
(mod 2).

The result follows.

From Theorem 4, we can easily write down specific Ramanujan–like congruences
modulo 2.

Corollary 1. Let R = {2, 5, 6, 7, 8, 9, 10, 11}. For all n � 0 and any r 2 R,

W (12n + r) ⌘ 0 (mod 2).
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Proof. Since Mj ⌘ 0, 1(mod 4) for any j � 1, we know that 3Mj ⌘ 0, 3(mod 12)
and 3Mj + 1 ⌘ 1, 4(mod 12) for any j � 1. In particular, none of the values of the
form 12n + r, r 2 R, are congruent to 0, 1, 3, 4(mod 12). The result follows from
Theorem 4.

Using similar tools and techniques, we now transition to a characterization result
modulo 4 for a subset of the values of W (n).

Theorem 5. For all n � 0,

W (4n + 2) ⌘
(

2 (mod 4) if n = 3Mj

0 (mod 4) otherwise

where Mj is an element of the Moser-de Bruijn sequence defined above.

Proof. Recall that
X
n�0

W (4n + 2)qn =
2

1� q
H1(q) =

2(1� q3)(1� q12)(1� q48) . . .

(1� q)2(1� q2)(1� q4) . . .
.

Thus,
X
n�0

1
2
W (4n + 2)qn =

(1� q3)(1� q12)(1� q48) . . .

(1� q)2(1� q2)(1� q4) . . .

⌘ (1 + q3)(1 + q12)(1 + q48) . . .

(1� q)(1 + q)(1 + q2)(1 + q4) . . .
(mod 2)

=
(1 + q3)(1 + q12)(1 + q48) . . .

(1� q) 1
1�q

= (1 + q3)(1 + q12)(1 + q48) . . .

The result follows.

With Theorem 5 in hand, it is a straightforward matter to write down specific
Ramanujan–like congruences modulo 4.

Corollary 2. For all n � 0,

W (12n + 6) ⌘ 0 (mod 4) and
W (12n + 10) ⌘ 0 (mod 4).

Proof. From Theorem 5, it is clear that, for n not divisible by 3,

W (4n + 2) ⌘ 0 (mod 4).

Thus,

W (4(3n + 1) + 2) ⌘ 0 (mod 4) and W (4(3n + 2) + 2) ⌘ 0 (mod 4).
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Corollary 3. For all n � 0,

W (16n + 6) ⌘ 0 (mod 4) and
W (16n + 10) ⌘ 0 (mod 4).

Proof. Given that the values of the form 3Mj are congruent to either 0 or 3 modulo
4, we see from Theorem 5 that congruences modulo 4 must occur when n ⌘ 1
(mod 4) and n ⌘ 2 (mod 4). Thus,

W (4(4n + 1) + 2) ⌘ 0 (mod 4) and
W (4(4n + 2) + 2) ⌘ 0 (mod 4).

Next, we look at W (n) modulo 3. It is clear from Theorem 1 that

X
n�0

W (n)qn ⌘
Y
j�1

⇣
1� q22j�2

⌘3

�
1� q2j�1

� (mod 3)

=
Y
j�1

⇣
1� q22j�2

⌘2

�
1� q22j�1

�

=
(1� q)2(1� q22

)2(1� q24
)2 . . .

(1� q2)(1� q23)(1� q25) . . .

=
(1� q)2(1� q4)2(1� q16)2 . . .

(1� q2)(1� q8)(1� q32) . . .

=
(1� q)(1� q4)(1� q16) . . .

(1 + q)(1 + q4)(1 + q16) . . .

:= F (q).

We now perform classical generating function dissections (with the goal of eventually
considering W (8n + 4) modulo 3). We have

X
n�0

W (2n)q2n ⌘ 1
2

(F (q) + F (�q)) (mod 3)

=
1
2

✓
(1� q4)(1� q16) . . .

(1 + q4)(1 + q16) . . .

◆✓
1� q

1 + q
+

1 + q

1� q

◆

=
1
2

✓
(1� q4)(1� q16) . . .

(1 + q4)(1 + q16) . . .

◆✓
(1� q)2 + (1 + q)2

1� q2

◆

=
(1 + q2)(1� q4)(1� q16) . . .

(1� q2)(1 + q4)(1 + q16) . . .
.
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So X
n�0

W (2n)qn ⌘ (1 + q)(1� q2)(1� q8)(1� q32) . . .

(1� q)(1 + q2)(1 + q8)(1 + q32) . . .
(mod 3).

We call the right–hand side of the above G(q). Then we know

X
n�0

W (4n)q2n ⌘ 1
2

(G(q) + G(�q)) (mod 3)

=
1
2

✓
(1� q2)(1� q8)(1� q32) . . .

(1 + q2)(1 + q8)(1 + q32) . . .

◆✓
1 + q

1� q
+

1� q

1 + q

◆

=
1
2

✓
(1� q2)(1� q8)(1� q32) . . .

(1 + q2)(1 + q8)(1 + q32) . . .

◆✓
(1 + q)2 + (1� q)2

1� q2

◆

=
(1 + q2)(1� q2)(1� q8)(1� q32) . . .

(1� q2)(1 + q2)(1 + q8)(1 + q32) . . .

=
(1� q8)(1� q32)(1� q128) . . .

(1 + q8)(1 + q32)(1 + q128) . . .

after some fortuitous cancellations! Therefore, we have

X
n�0

W (4n)qn ⌘ (1� q4)(1� q16)(1� q64) . . .

(1 + q4)(1 + q16)(1 + q64) . . .
(mod 3). (3)

Two very important observations can be made. First, note that the right–hand side
of (3) is a function of q4. This is extremely significant as it means that, after the
right–hand side has been written as a power series, many powers of q must have
coe�cients that are congruent to 0 modulo 3. This leads to our first Ramanujan–like
congruences modulo 3:

Theorem 6. For all n � 0,

W (16n + 4) ⌘ 0 (mod 3),
W (16n + 8) ⌘ 0 (mod 3), and

W (16n + 12) ⌘ 0 (mod 3).

Proof. In (3), replace n by 4n + 1, 4n + 2, and 4n + 3 to obtain the results in this
theorem. These congruences must follow because the right–hand side of (3) is a
function of q4.

The second observation provides us with an important “internal congruence”
modulo 3 that is satisfied by W. Namely, the right–hand side of (3) is actually
F (q4)! This then yields the following theorem:

Theorem 7. For all n � 0, W (16n) ⌘ W (n)(mod 3).
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Proof. Thanks to (3), we know thatX
n�0

W (4n)qn ⌘ F (q4) (mod 3). (4)

Since
F (q4) ⌘

X
n�0

W (n)q4n (mod 3),

(4) implies that X
n�0

W (4n)qn ⌘
X
n�0

W (n)q4n (mod 3).

Since the right–hand side of this congruence only contains powers of q of the form
q4n, we know that X

n�0

W (4(4n))q4n ⌘
X
n�0

W (n)q4n (mod 3).

Equating the corresponding coe�cients on both sides of this congruence yields the
result.

With Theorems 6 and 7 in hand, we can now prove the following infinite family
of congruences modulo 3.

Theorem 8. For all j � 0 and n � 0,

W (24j+3n + 24j+2) ⌘ 0 (mod 3) and
W (24j+4n + 24j+3) ⌘ 0 (mod 3).

Proof. The proof follows easily via induction on j. The basis step follows from
Theorem 6 and the induction step follows from Theorem 7.

4. Closing Thoughts

We close with a number of thoughts, mostly related to potential future work. First,
computational evidence indicates that additional Ramanujan–like congruences are
satisfied by W (n) modulo slightly larger moduli (including 8 and 9). This may prove
to be the subject of future work. We also note that several other natural choices
for the sets S1 and S2 exist. In particular, we could choose S1 =

�
m2n�2

 
n�1

and S2 =
�
m2n�1

 
n�1

where m is a fixed integer greater than 1. This would then
lead to a family of restricted m–ary partition functions. One could then attempt
to pursue a study similar to the one above.
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