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Abstract
Using tools of the theory of orthogonal polynomials we obtain the generating func-
tion of the generalized Fibonacci sequence established by Petronilho for a sequence
of real or complex numbers {Q, }22, defined by Qo =0, Q1 =1, Qm = a;Qm—1+
bjQm—2, m = j(mod k), where k > 3 is a fixed integer, and ag,a1,...,ar_1,
bo,b1,...,br—1 are 2k given real or complex numbers, with b; # 0 for 0 < j < k—1.
For this sequence some convergence proprieties are obtained.

1. Introduction

Fibonacci numbers and their generalizations have many interesting properties and
applications in almost every field of science and art (see e.g. [6]). The Fibonacci
sequence {F,}52 , is a well-known sequence of integers. It is defined recursively by
the relation
Fn = Fn—l + Fn_g, n Z 2 (1)

with initial conditions Fy = 0 and F; = 1.

The Fibonacci number Fj,;1 can be expressed as a determinant of a tridiagonal
Toeplitz matrix of order n (see e.g. [10])

1 1
-1 1 1

=I'n+1, 7120 (2)
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Furthermore it is well-known (and easy to check) that the generating function
for the Fibonacci sequence (1) is given by

ZFCE 171’7#. (3)

There are many generalizations of the Fibonacci sequence [1, 2, 3,9, 11, 12]. One
of them was given in [9] by J.Petronilho as follows:

QO = 07 Ql = 17 Qm = anmfl + ijmf% m = .7 (mOd k)a (4)

where k > 2 is a fixed integer, and ag, a1,...,ax_1, bg, b1, ...,bx_1 are 2k given real
or complex numbers, with b; # 0 for 0 < j < k—1. In [9] a Binet’s-type formula was
established for @), using an appropriate polynomial mapping in the framework of
the theory of orthogonal polynomials. His approach was based on results obtained
in [4, 5, 7, 8]. In this paper we present the generating function for {Q,}52 .
Throughout this paper we denote by {U,(z)}°2, the sequence of the Chebyshev
polynomials of second kind, which are defined by the three-term recurrence relation

Upi1(z) = 22U, () = Up—1(x), n>0,

with initial conditions U_1(z) =0 and Up(z) = 1
The generating function of the {U,(z)}22, is given by

[ee] N 1
2 Un@)" = 5 )
and for z € C\[-1, 1]
) Un-1(2) 1/2
dm T —r (©)

where
. —Vz2—1 if ze (—o0,—1]
(2271)/ =4 iWl—22 if ze[-1,1]
22—-1 if ze€[l,+00).

The present paper is organized as follows. In Section 2 we present the relation,
obtained in [9], between generalized Fibonacci sequences {Q,,}52, and a sequence
of orthogonal polynomials { R, (z)}22,. We also generalize the main theorem in [11]
and [1, Theorem 11]. In Section 3 we present the generation function for { R, (z)}22,
and {@n}22,. In Section 4 we discuss the convergence of the ratios of the terms
of these sequences. In Section 5, with three application examples, we recover some
well-known results.
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2. Generalized Fibonacci Sequence Via Orthogonal Polynomials

In what follows, the conventions

ag ‘= ap , bk Izbo,

will apply.
Then we set
z+ay, 1
—but1 T+ aup 1
A E R if 0<pu<v<k.
—~by_1 T+a,—1 1
—b, T+ a,

If > v, this tridiagonal matrix determinant has the following value

0, it p>v+1
Ayy(x) = 1, if pu=v+1
z+a,, if p=v.

We also define

T+ as 1 1
71)3 T+ as 1
or(r) = ' '
b1 x+ag 1
7b0 T + ag 1
_b2 —bl xr + ay

(in this determinant, the involved matrix is of order k, all the entries that do not
appear are zero and the matrix associated with the principal minor of order k — 1
is tridiagonal).

Let {R,,(2)}52, be the sequence of polynomials defined by the three-term recur-
rence relation

Ryi1(z) = (2 — Bp)Ra(z) — mBRp-1(z), n =0,
with initial conditions R_;(x) =0 and Ry(z) =1, where
Brk+j = —Gj12, Tnk+j = —bjp2, 0<ij<k—-1, n>0.

Obviously,
Qn =Ry 1(0), n>0. (7)

According to [5, Theorem 5.1], if we set

Un(z) :=d" Uy, (52), n>0, (8)
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where d satisfies d> = b := (—1)’“]_[2:01 b; and ¢ := (=1)* (by +b/by), we can
deduce

Rok5(2) = 8a,511(2) (@) + (171 (T3 1) Agp() T (n(2)
9)

for0<j<k—1andn>0.
Throughout this paper we use the following notation

A,y i=2A7,,0) and Ay :=pk(0).
The following results are immediate consequences of (9) and (7).
Lemma 1. Fork >3 and 0 < j <k —1 we have
(a) Rj(z) = Dgji1(x);
(b) Riys(@) = (pr(@) = OR;(2) = (~1)7* (TF25 0:) Ajysn(e);
(¢) Qj+1 = D241,
(d) Qurjsr — (Ak — ) Qjs1 = (=1)7F1 (Hgi’f bi) AVIEYS
Proof. To prove (a) and (b) we consider in (9) n = 0 and n = 1 respectively. By
(a) and (b) and (7) we obtain (c¢) and (d). O
Theorem 1. Letn > 2 and k be positive integers. Then for 0 < j < k—1 we have
Rugrj(2) = (pr(x) — €) Rin—1)prj () — d*Rin—2yi4(z) . (10)
Proof. Tt is easy to prove that for n > 0 and k > 3,
Unt1 (pr(@) = (or(2) = €) Un (pr(2)) = d*Un—1 (pr()) -
Then, using (9), we obtain for 0 < j <k —1 and n > 2,
Rnprj(z) = Az () {(%(ﬂﬁ) — ) Un—1 (pr(@)) = d?Up s (%(@"))} + (=17 x
(TE2301) Ajssnle) {(oule) =€) Tuz (o4(2)) = 2003 (p4(x)) }
= (@) =€) Rn—1ypr§ (@) — d*Rin—2)145(2) -

The case k = 2 can be proved using the same reasoning and the results in [9, Section
2]. If k = 1 the result is trivial. O

Corollary 1. Letn > 2 and k be positive integers. Then for 0 < j <k —1
Quitj = (Bk =€) Qu-1)i+j — T Qen-2)kj - (11)
Remark 1. We note that by [5, equality (5.2)] we have
k() — ¢ = Ag pr1(w) + b2Az p(7) = Ay () + b1 Ao 1 (2)

Thus we can conclude that the Corollary 1 generalizes the main theorem in [11] and
[1, Theorem 11].
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3. Generating Function of the Generalized Fibonacci Sequences

The generating function of the generalized Fibonacci sequence {@Q,}52, defined
by (4), has been found in [12] for the case k = 2 and in [1] and [11] for the case
bg = by = ... = by_1 = 1. In this section we give the generating function of the
generalized Fibonacci sequences {Q,,}52, for the case k > 3.

We consider the formal power series representation of the generating function for

{Bn(2)}720,

F(x,t) = Ro(x) + Ry(z)t + Ra(2)t* + ...+ Rp(2)t" + ... = i Ry, (z)t

m=0

We rewrite F(x,t) as

k—1

F(z,t)=Y" (Z Rokij(z t”k+]> : (12)

j=0

Using (9) we obtain

Fa,t) = ki:l (i {A2,j+1($) Un (o () +
j=0 \n=0
+ (=17 (T2 00) Ajran(@) U (pn()) J i)
k—1 0o
+ (—1)7*! (H]+2 l) Ajisn(@) U, <%> }tnk+j>
k—1

Ag ()t ZU < ) (tkd) +
= S (@) -
+Z(_ )it (HJ+2 Z) Ajys i) thti ZUn71 <%dc> (dtk)n_l

<.

7=0 n=1
e Az jy1(2) ¥ + kil - )]H (HHQ Z) Ajis (@) thH
o = 1— (pr(x) — )tk + d2t2k = — (pr(x) — )tk + d2t2k
1 A ia(a) + (<17 (TEZS b)) Ajpan(a)

=0

— (pr(z) — o)tk + d2t2k
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Theorem 2. For k > 3, the generating function of the generalized Fibonacci se-
quence {Qn 15> defined by (4) is given by

0 (A2 + (17 (T3 00) Ajiant®)

t) = 1
G(t) ‘ 1— (Ag — o)tk + d?t2k ’ (13)
7=0
with d> = b= (=1)FTT¥20 b; and ¢ := (=1)% (by +b/by).
Proof. We note that
Qo + Qut + Qat® + Z Ry (0)t™ 1 = tF(0,t)
k—1 ‘ A2,j+1 +( )j-‘rl (HJ+2 Z) itk tk
- Ztﬁl k1 242k
= 1— (Ag — o)tk 4 d?t
B (1 (THE b) Aot
B ]z_:l 1— (A — o)tk + d2t2k
1 Agy ot (<1 (TEE b) Ajsatt
N jgot 1— (A — o)tk + a2tk '
O

Remark 2. From the previous theorem and from Lemma 1 we have that

(1= 3 Q@ = (A= Q)
1 — (Ag — o)tk + d2¢2k ’

7=0

with d? = b := (—1)" H::Ol b; and ¢ := (—1)* (by + b/by ), is an equivalent expres-

sion for the generating function of {Q,}5%,.

Remark 3. If Oé(x) — o (w)—c— V (pr(x)—c)2—4b and 6(x) —_ P (®)—cty/ (‘;k’(x)_c)2_4b

2
are the roots of the quadratic equation

24 (c—gp(x))z+b=0, (14)

with
bi= (~D)FILS biv c= (<18 (b +b/ba) (15)

then

{ afz)B(z) =b . (16)
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Furthermore, for 0 < j < k — 1 the generating function for the subsequence
{Rnk+j(z)} 2, is given by

I (Ag,j+1(1’) + (=17t (Hiii bi) Ajisp(z)th )

Fj(z,t) = . 1— (¢r(z) — o)tk + d2t2k
_ &’ = ) ant2kn (11
= o @ X, (Basra@n e (B"“(w) )
. . 1 1
_§ 2an@) (@) ) £ C1 (I220) Arsn@) @@ =" @)
= a(z) — B(x) '
Thus

As i1 (@) (0" (@)= B (2) ) H(—1)I 1 (H{ii bi) Ajrok(@)(a (@)—B" (@)
Bty (7) = O
for 0 < j <k —1and n > 0. Therefore, we obtain
Ry (@) = i@al@TBi@) " @)=tk @de)+Bi@) 8" @) | (< j < p—1 >0

afz)—pB(x) ’

where

Aj(x) = Do jya(z), Bj(x):= (=1)7H (Hi:zz bi) Ajyzp(r), 0<j<k-1.
(17)
Ifm=nk+jwithO0<j<k—-1landn >0,thenn =[] andj=m—k|[7],
that is, if m = j (mod k)
Aj(@) = Apg ) (2) = Do pmr 2 ) (%) = Akm(T)
m 24+m—k| 12
Bj(2) = B (@) = (1) (TEZ T 0) Aapinonp (@) 1= Bim (@)

and we obtain

(A (@)a(@) + Bun(2)) alt)(@) — (An(2)8(x) + Bra(x)) LH ()
a(z) — (=) ‘
(18)

Denoting « := «(0), 8 := 3(0), setting = 0 in (18) and taking into account (7)
we recover Theorem 3.1 in [9].

Rn(x) =

4. Convergence Properties

For the classical Fibonacci sequence, it is well-known (and easy to check) that

F,
fim Pl g 1HV5
n—-+4oo Fn 2

Now, we study the convergence of ratios on the terms of the subsequence
{Rnk+j(x)}02, and consequently on the subsequence {Qnitj+1}no-

From now on ag,ay,...,ax—1, bo,b1,...,bx—1 are 2k given real numbers, with
bi 20 (i =0,...,k—1) and, for any real number y, sgn(y) denotes the sign of y.
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Theorem 3. If |or(x) —¢| > 2|d| then for 0 < j<k-—1

Ry () (0u(@) = 0) + sgn (pula) — &) y/ (oi(e) — o) — 4d2

li = 19
n—to0  Rppig () 2 (19)
and
Ryt (z)—B(z)R;(x) :
iy Pekri(@) Rk+f+igzgiﬁgx%?zl)@) if - pr(x) —c < =2/d] (20)
n—+too Rppij_1(x) Rk+f+1(x) a(x)Rj T i ek(e) —e>2[d].

Proof. Indeed using (9) we obtain

R .
lim (n+1)k+j (33)
n—too  Rppyj(z) .
, 1yt (T2 > , _Un(pr(z))
— lim U~ 1((,Dk(x)) A27]+1(x) + ( 1) (Hz:Q bl A]+37k('r) Uni1(or(z))

notee Un(en(®) Agjpa(z) + (—1)i+ (HZI§ bi) Ajis k() %

Using (6) and (8) we can conclude

- .
lim Uﬁ+1(%0k(33)) _ B%g:) if pp(x) —c < -2|d|
n—+oo [ (pp(x)) a‘fx) if pr(x) —c>2/d| (21)
| alz) i pr(x) —c< —2/d]
L Blx) i p(x) —e>2[d].
This completes the proof of (19).
By (9) we obtain
j +2 Un—1(¢k(x))
lim M — lim A (@) + (-7 (HJ: bi) Aj+s.k(2) 177L(1¢S:2z))
n e Rk a )0 A )+ (1)1 (T2 0) Agrai(e) Do)

o(@)8a 5410) +(-17* (T3 b1 ) Ajian(a)
a(@)aa; @)+~ (TT123 bi) Asane)

B()Aa. i1 (@) +(~1) J“(HJ-+2 bi) Ajsan(a)
p@) 80 5@+ (-1 (T2 i) Asianto)

Using Lemma 1 and (16) we obtain (20). O

if prp(z) —c< =2/

it p(x) —ec>2/d .

Corollary 2. If |[Ax — c| > 2|d| then for0 <j <k —1

i QDR+ (Ag —¢) +sgn (Mg — ) \/(A), — ¢)® — 4d2
1m e )
n—+oo  Qnitjtl 2
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Furthermore, for0 <j <k -1

Qr+5;—BQ;

Qryjt1—alQjtr _
Qa0 if Ap—c>2|d|.

lim

Quititr Qrrinn =01 3¢ AL — ¢ < —2|d|
n—to0 Qnitj

5. Some Examples

5.1. The Generating Function of the Generalized Fibonacci Sequence for
the Case k =3

In this case we obtain A270 = O7 A271 = A473 = 1, A272 = az, A273 = agaz + bo,
A3’3 = ag, Az = apaias + agbs + a1bg + asby + bgby — by, b = d? = —bgb1by and
¢ = —by + bob1 . Then, by (13), we have

G(t) o bobgts — a062t4 —+ (a0a2 —+ bo)t?) —+ a2t2 —+ t
1-— (aoalag + agby + a1bg + Cl2b1)t3 — bobybatb ’

By setting by = by = by = 1, we obtain the generating function deduced in [11,
Example 1].
5.2. The Generating Function for the k—periodic Fibonacci Sequence

Ifbg =b =+ =bg_1 =1, then, using (4), the sequence {Q,}5>, becomes the
k—periodic Fibonacci sequence {gy, }52, defined in [1].
In this case, using Remark 2 we deduce that the generating function is given by

YN0 ta; + 30 (arss — (Dk — €)g;) tEH
1— (Ap — o)tk + (—1)k¢2k ’

G(t) =

recovering Theorem 13 in [1]. Indeed, by Remark 1, we have Ay —c = Ay +
Ag j—1 = ¢ 1 + qe—1 := A, where the sequence {q) }72 is defined in [1]. Thus,
if |A| > 2 then, by Corollary 2, we have

i Dk A+ sgn(A) /A2 —4(=1)k
n—=+00  (pk4j+1 2

and

lim ———— =
oty TP .
(RIS T B

Qetj+1—Bgr1 - .
Ank+j+1 o —Ba if A< -2
n—-+oo qnk+j Qhtg—g;

recovering Theorem 17 in [1].
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5.3. The Generating Function for the Fibonacci Numbers

If in (4) we take a9 = a3 = -+ = ag—1 = bp = by = -+ = by—1 = 1, then
the sequence {Q,}°, becomes the Fibonacci sequence {F,}°2 . In this situation,
taking into account (2), we deduce

b=(-DF, c=14(-1)",
Ap=Frpi+ P+ 1+ (1) = L + 1+ (1),
Aj=Fjy1, Bj=(-1Y"F_;; (0<j<k-1),

where Ly = Fj 1 + Fi—1 is the k'™ Lucas number.
Furthermore, (13) reduces to (3). Before justifying this assertion we consider the
following lemma.

Lemma 2. For every positive integer k > 3, we have

k—1

Fpth + Y F; (¢ + (D)) = !

s (1— Lpt" + (—1)Fe) . (22)

j=0
Proof. We proceed by induction on k. For k = 3, we have
Ft® + 37 Fy (8 + (—1)>t5770) = Byt® + Fy (t+15) + Fy (2 — 1) =

t— 4t — 7 t
= 1— Lat3 — %) .
—ime io—e s )

=ttt 24t =

Now, by assuming that our claim is true for an integer k > 3, we will prove that
it is true for k£ + 1. Indeed,

Frqat" 1+ 8 Fy (8 + (— 1)+ 192k 2)
= (Fj + Fp_1) t*1 + Zf;é F; (tj + (_1)k+1fjt2k+2fj) + F, (tk _ tk+2)
—¢ (Fktk + 25;21 Fj, (tj—l + (_1)k+1—jt2k+1—j)) b+ (—1)kg2ktl

12 (Fk_ltk—l n 25;21 Fj o (72 + (_1)k+1—jt2k—j)) + Fy (% — t9+2)

(0 ) i 01—
42 (Fk,ltk_l + Z;:g Fy (8 + (_1>k+1—jt2k—j—2)2 -~
12y (72 — tR) 4 By (tF — £5H2) £ 4 (—1)kg2R

= g (1= Leth o (< D)R2%) 4ty (1= Ly qth ™t o (—1)F1e26-2)

+t (Fk—l (tk+1 — tkil) + tFy_o (tk - tkfz) + F, (tk‘*l _ tk+1) 414 (71)1%21@)
= 1—tt—t2 (1 — (Lg—1 + Li) tF+1 + (—1)’“+1t2(’€+1))

i (1= LigatF ! 4 ()R 12040

t
1-t

12
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By (13) and taking into account Lemma 2, we obtain

k—1
. . 1
Ft) =Y t{F + (-1 F,_t"
() JZ::O {]+( ) k—j }1_thk+(_1)kt2k
k—1 1
= [ F¢* F; (7 4 (=1)F 74267
k +jz:;) J ( +( ) ) 1— thk + (_1)kt2k

1otz

By Corollary 2 and using the well known identity L2 = 5F2 + 4(—1)¥ | we have

k
Fosorejar _ Le+V6F (1415

LU Foriji1 2 - 2
and
i Fnkit _ 26y — (1= VB)FFjpq .
n—too Fuky; 26Fy i — (1 —V/B)RE;
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