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Abstract
We prove a Ramsey-theoretic result on set partitions of finite sets and a refinement
based on the number of blocks in the set partition. A well-known bijection shows
that our results are equivalent to results on finite sequences in the spirit of the
Erdős-Szekeres theorem.

1. Background and Definitions

In their early work on Ramsey theory, Erdős and Szekeres established the following
result:

Theorem 1 (Erdős-Szekeres [2]). Any sequence of (n�1)2 +1 distinct numbers
contains a monotonic (either increasing or decreasing) subsequence of length n. This
bound is tight; i.e., there are sequences of (n� 1)2 distinct numbers not containing
a montonic subsequence of length n.

Our goal here is to establish an analogous result for set partitions, that is, to de-
termine the minimum weight for a partition which will guarantee that the partition
contains a monotonizable subpartition of a given weight. We start by specifying the
meanings of the terms “weight”, “subpartition”, and “monotonizable”. Throughout
this paper, let S ⇢ N be finite. A (set) partition ⇡ of S is a collection {A1, . . . , Ak}
of pairwise disjoint nonempty subsets of S such that [Ai = S. We refer to the Ai’s
as blocks. We say that ⇡ has weight |S| and refer to ⇡ as an |S|-partition. Weight
will serve as our measure of size and will serve the same purpose in this paper as
length does in the Erdős-Szekeres result.

A partition µ is said to be a subpartition of ⇡ if there exists T ✓ S such that µ is
the set of all nonempty sets of the form Ai\T . In this case, we say that T induces µ
and write µ = ⇡|T . Terminology for partitions also applies to subpartitions, so, e.g.,
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we say that µ is a |T |-subpartition. For example, the blocks of ⇡ = 1378/2/49/56 are
1378, 2, 49, and 56, and the weight of ⇡ is 9. If T = {2, 5, 6, 9} then ⇡|T = 2/9/56
and the weight of ⇡|T is 4.

Here and elsewhere, when writing particular partitions, we omit commas and set
braces and simply list the elements of each block and separate blocks with slashes.
The flattening of such a representation of a partition is obtained by dropping slashes.
For example, the flattening of 1378/2/49/56 is 137824956. Observe that the ele-
ments of each block of ⇡ in this example are in their natural order and the blocks of
⇡ are ordered by smallest element. This way of representating a partition is called
its canonical form.

We say that a partition is monotonizable if it has no subpartition of the form
ac/b, where a < b < c. Monotonizable partitions are precisely those from which
one can obtain a monotonic sequence (either increasing or decreasing) by flattening
the partition after imposing a suitable ordering on the blocks and their elements;
specifically, the canonical ordering of a monotonizable partition flattens to an in-
creasing sequence. A partition A1/ · · · /Ak in canonical form is monotonizable if
and only if it has the property that i < j implies every element of Ai is less than
every element of Aj . For example, ⇡ in our earlier example is not monotonizable
since 3 and 8 are in the same block and 4 is in a di↵erent block and 3 < 4 < 8. On
the other hand, ⇡|T is monotonizable, since the canonical form of ⇡|T is 2/56/9.
In this paper, monotonizability is analogous to monotonicity in the Erdős-Szekeres
result.

We will consider the function f(n) which is defined to be the least integer w
such that that every w-partition has a monotonizable n-subpartition. That such an
integer exists follows since any partition with at least n blocks or a block of weight
at least n trivially has a monotonizable n-subpartition (i.e., f(n)  (n�1)2 +1). In
Section 2, we establish the value of f(n). In Section 3, we refine these results based
on the number of blocks of the set partitions in question. In Section 4, we remind
the reader of a well-known bijection between set partitions and finite sequences and
show how this bijection can be used to reinterpret our results in the language of
sequences. In Section 5, we examine those partitions just smaller than f(n) that
have no orderly subpartition of size n.

The following results are for partitions of arbitrary sets of numbers, but by
relabeling we can always assume that a given partition of weight w consists of the
consecutive numbers 1, 2, ..., w.

2. Main Result

Let btc and dte denote the floor of t (i.e., the greatest integer less than or equal to
t) and the ceiling of t (i.e., the least integer greater than or equal to t), respectively.
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Let g(n) =
j

(n+1)2

4

k
. In this section, we will prove that f(n) = g(n). We begin by

proving that g(n) is an upper bound for f(n). Let [m] = {1, . . . ,m}.

Lemma 1. Every
j

(n+1)2

4

k
-partition has a monotonizable n-subpartition.

Proof. We will argue by induction that f(n)  g(n).
Partitions of weight g(1) = 1 and g(2) = 2 are monotonizable. Observe that

g(n) = g(n � 2) + n for n � 3 and assume that every partition of [g(n � 2)] has a
monotonizable (n�2)-subpartition. Let ⇡ = B1/ · · · /Bk be a partition of [g(n)], not
necessarily in canonical order, and suppose that r = |B1| � |Bj | when 2  j  k.
We may assume r < n or else B1 itself provides the desired n-subpartition. Let
m = n� r + 2. We consider two cases.

First, suppose that |Bj \ [m]| � 2 for some j with 1  j  k, and let C =
[g(n)] \ (Bj [ [m]). Since |Bj |  r, we have

|C| � g(n)� (r + m� 2) = g(n)� n = g(n� 2).

By induction, ⇡|C has a monotonizable (n � 2)-subpartition, so ⇡|C[(Bj\[m]) is a
monotonizable subpartition of ⇡ of weight at least n.

For the second case, suppose that |Bj \ [m]|  1 for all j with 1  j  k. In
particular, |B1 \ [m]|  1, so |B1 \ [m]| � r � 1, so the partition

(B1 \ [m])/(B2 \ [m])/ · · · /(Bk \ [m])

(with all occurrences of the empty set deleted) is a monotonizable subpartition of
⇡ of weight at least (r � 1) + (m� 1) = n. 2

Next, we will show that g(n) is a lower bound for f(n).

Lemma 2. There exists a
⇣j

(n+1)2

4

k
� 1

⌘
-partition that has no monotonizable n-

subpartition.

Proof. First, we prove that for any k 2 [n], there is a (k(n � k + 1) � 1)-partition
with k blocks that has no monotonizable n-subpartition.

Let �(n, k) be the partition of [k(n� k + 1)� 1] into k blocks �m(n, k) for 1 
m  k, where the elements of �m(n, k) are precisely those elements of [k(n�k+1)�1]
that are congruent to m mod k. That is, �m(n, k) is the block

�m(n, k) = {m, m + k, m + 2k, . . . , m + (n� k)k}

for m = 1, . . . , k � 1, and

�k(n, k) = {k, 2k, . . . , (n� k)k}.

For example, �(5, 3) = 147/258/36 and �(6, 4) = 159/2610/3711/48. Here and
elsewhere, numbers having more than one decimal digit are overscored to avoid
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confusion. Note that �(5, 3) has no monotonizable 5-subpartition and that �(6, 4)
has no monotonizable 6-subpartition.

Suppose µ is a monotonizable n-subpartition of �(n, k). Consider the increasing
sequence a1, . . . , an obtained by flattening the canonical-form representation of µ.
If ai and ai+1 belong to the same block of µ, then ai+1 � ai � k. If not, then
ai+1 � ai � 1.

Let q denote the number of indices i for which ai and ai+1 are in the same block
and let r denote the number of indices i for which ai and ai+1 belong to di↵erent
blocks, where 1  i  n� 1. Then q + r = n� 1 and r  k � 1. Thus,

k(n� k + 1) > an = (an � an�1) + (an�1 � an�2) + · · · + (a2 � a1) + a1

� 1 · r + kq + 1
= (n� 1)k � (k � 1)r + 1
� (n� 1)k � (k � 1)2 + 1
= k(n� k + 1).

This contradiction shows that �(n, k) has no monotonizable n-subpartition.
As a function of k, the expression k(n�k+1)�1 is maximized when k = (n+1)/2.

Since k is an integer, the maximizing values are actually
⌅

n+1
2

⇧
and

⌃
n+1

2

⌥
. Sub-

stituting either of these values for k in k(n� k + 1)� 1 gives
j

(n+1)2

4

k
� 1. Thus,

�
�
n,
⌃

n+1
2

⌥�
is a

⇣j
(n+1)2

4

k
� 1

⌘
-partition with no monotonizable n-subpartition. 2

In Section 5, we will see that �
�
n,
⌃

n+1
2

⌥�
is an instance of a wide class of

⇣j
(n+1)2

4

k
� 1

⌘
-

partitions with no monotonizable n-subpartition.

Corollary 1. Every
j

(n+1)2

4

k
-partition has a monotonizable n-subpartition, and

this is the least integer with this property.

3. A Refinement Based on the Number of Blocks

In this section, we refine the previous section’s results according to the number
of blocks k of the partitions in question. Let M(n, k) denote the least positive
integer m such that an m-partition into exactly k blocks is guaranteed to have a
monotonizable n-subpartition.

Theorem 2. Let n and k be positive integers. Then

M(n, k) =

8>><
>>:

k(n� k + 1) 1  k  (n + 2)/2j
(n+1)2

4

k
(n + 2)/2 < k < n

k k � n

.
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Proof. It is easy to see that M(n, k) = k when k � n. Suppose 1  k  (n + 2)/2.
Lemma 2 shows that M(n, k) � k(n� k + 1). We will use induction on k to show
that M(n, k)  k(n� k + 1).

If k = 1, then the unique partition of [n] into a single block is a monotonizable
n-subpartition of itself. For purposes of starting the induction, it is also useful to
note that ; is a partition of ; into zero blocks.

Now assume that every partition of [k(n � k + 1)] into at most k blocks has
a monotonizable n-subpartition whenever n � 2(k � 1). We show that if n �
2((k+1)�1) = 2k, then every partition of [(k+1)(n�(k+1)+1)] = [(k+1)(n�k)]
into at most k + 1 blocks has a monotonizable n-subpartition.

Let B1/ · · · /Bp be such a partition, where p  k + 1. Order the blocks so that
B1 is a block of maximum cardinality and let r = |B1|. We may assume that r < n,
since otherwise B1 itself provides the desired subpartition. Let m = n� r + 2. We
treat two cases.

First, suppose that |Bj \ [m]| � 2 for some j  p. Let C = [(k + 1)(n � k)] \
(Bj [ [m]). Note that all elements of C are greater than m and C is disjoint from
Bj . The original partition induces a partition on C into at most k blocks. Since
|Bj |  r, we have

|C| � (k + 1)(n� k)� (r + m� 2)
= (k + 1)(n� k)� n

= k((n� 2)� k + 1).

Also, n � 2 � 2(k � 1). By the induction assumption the induced partition on
C has a monotonizable subpartition µ of weight n � 2. Then µ [ {Bj \ [m]} is a
monotonizable subpartition of the original partition of weight at least n.

Next, suppose that |Bj \ [m]|  1 for all j  p. In particular, |B1 \ [m]|  1,
so |B1 \ [m]| � r � 1. Also, all elements of B1 \ [m] are greater than m. So, the
partition (B1 \ [m])/(B2 \ [m])/ · · · /(Bp \ [m]) (with all occurrences of the empty
set deleted) is a monotonizable subpartition of weight at least (r�1)+(m�1) = n.
This concludes the proof of the case in which 1  k  (n + 2)/2.

Now suppose that (n + 2)/2 < k < n. By Lemma 1, we know that M(n, k) j
(n+1)2

4

k
. To see that M(n, k) �

j
(n+1)2

4

k
, we will modify the partition �(n,

⌃
n+1

2

⌥
)

of Lemma 2 to create a partition �(n, k) = �1(n, k)/ · · · /�k(n, k) of
hj

(n+1)2

4

k
� 1

i
with k blocks that has no monotonizable n-subpartition. Specifically, let

�m(n, k) =

8><
>:

�m(n, dn+1
2 e) 1  m 

⌃
n+1

2

⌥
� 1�⌃

n+1
2

⌥
, . . . ,

⌃
n+1

2

⌥
(n� k)

 
m =

⌃
n+1

2

⌥
{
⌃

n+1
2

⌥ �
n� k + m�

⌃
n+1

2

⌥�
}

⌃
n+1

2

⌥
< m  k

.
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For example, none of

�(8, 5) = 1 6 11 16/2 7 12 17/3 8 13 18/4 9 14 19/5 10 15
�(8, 6) = 1 6 11 16/2 7 12 17/3 8 13 18/4 9 14 19/5 10/15
�(8, 7) = 1 6 11 16/2 7 12 17/3 8 13 18/4 9 14 19/5/10/15

has a monotonizable subpartition of weight 8, which shows that M(8, k) � 20 for
k = 5, 6, 7.

We now prove that �(n, k) has no monotonizable n-subpartition. As in Lemma 2,
suppose µ is a monotonizable n-subpartition of �(n, k) and consider the increasing
sequence a1, . . . , an obtained from the canonical-form representation of µ. If ai+1

and ai di↵er by a multiple of
⌃

n+1
2

⌥
, then ai+1�ai �

⌃
n+1

2

⌥
. If not, then ai+1�ai �

1.
For 1  i  n � 1, let q denote the number of indices i for which ai and ai+1

di↵er by a multiple of
⌃

n+1
2

⌥
. Let r = n� q�1 be the number of indices where this

is not true, so that r 
⌃

n+1
2

⌥
� 1. Thus,�

(n + 1)2

4

⌫
> an

= (an � an�1) + (an�1 � an�2) + · · · + (a2 � a1) + a1

� 1 · r +
⇠

n + 1
2

⇡
q + 1

= 1 · r +
⇠

n + 1
2

⇡
(n� r � 1) + 1

=
⇠

n + 1
2

⇡
(n� 1)�

✓⇠
n + 1

2

⇡
� 1

◆
r + 1

�
⇠

n + 1
2

⇡
(n� 1)�

✓⇠
n + 1

2

⇡
� 1

◆2

+ 1

=
⇠

n + 1
2

⇡✓
n + 1�

⇠
n + 1

2

⇡◆

�
⇠

n + 1
2

⇡�
n + 1

2

⌫

=
�

(n + 1)2

4

⌫
.

Thus �(n, k) has no monotonizable n-subpartition. 2

4. Parallel Results for Sequences

A restricted growth function is a sequence a1a2 . . . of natural numbers that satisfies
aj  1 + maxi<j ai. There is a well-known bijection mapping r-partitions with k
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blocks onto surjective restricted growth functions on [k] of length r. Specifically,
suppose that the partition A1/ · · · /Ak is in canonical form. Then A1/ · · · /Ak is
mapped to the sequence a1 . . . ar where aj = m when aj 2 Am. For example,
1378/2/49/56 7! 121344113. Under this map, each of the results from the previous
section can be interpreted in terms of restricted growth functions. In fact, the
results apply to all sequences, so we state them in this generality.

We say that a sequence a1 . . . ar is separated if i  m  j and ai = aj imply
am = ai. Equivalently, a separated sequence is one in which all like terms ap-
pear consecutively. A partition is monotonizable precisely when the corresponding
sequence is separated. In this paper, subsequences need not be consecutive.

Theorem 3. Every sequence of length
j

(n+1)2

4

k
has a separated subsequence of

length n, and this is the least integer with this property.

Let S(n, k) denote the least positive integer s such that every sequence of length
s on exactly k letters has a separated subsequence of length n.

Theorem 4. Let n and k be positive integers. Then

S(n, k) =

8><
>:

k(n� k + 1) 1  k  1 + n/2j
(n+1)2

4

k
1 + n/2 < k < n

k k � n

.

5. n-Extremal Partitions and Sequences

In the case of the Erdős-Szekeres result, (n2� 2n +2)� 1 = (n� 1)2 is the greatest
length that a permutation can have without having a monotonic n-subsequence. Say
that an (n � 1)2-permutation is n-extremal if it has no monotonic n-subsequence.
How many n-extremal permutations are there?

The Robinson-Schensted-Knuth correspondence [4, 5, 6] provides a bijection from
the set of n-extremal permutations to the set of pairs of (n� 1)⇥ (n� 1) standard
Young tableaux. This shows that the number of n-extremal permutations is a
square. The hook length formula [3] can then be used to calculate the number of
such tableaux.

By analogy, we say that a
⇣j

(n+1)2

4

k
� 1

⌘
-partition is n-extremal if it has no

monotonizable n-subpartition. It is natural to inquire about t(n), the number of
n-extremal partitions. A sequence is n-extremal if it is of length

j
(n+1)2

4

k
� 1 and

has no separated n-subsequence. The function t(n) also counts the number of n-
extremal restricted growth functions. We computed the first six values of t(n) by
computer. The seventh and eighth values were computed by Butler and Graham[1];
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they appear in the following table.

n 1 2 3 4 5 6 7 8
t(n) 1 1 1 4 9 121 1080 88788

Suggestively, t(n) is square if 1  n  6, which initially led us to conjecture that
t(n) is always a square. Butler and Graham’s determination that t(7) = 332 � 1
and t(8) = 88788 = 2982�16 resolved that conjecture in the negative. We consider
the determination of the values of t(n), exact or asymptotic, and the classification
of n-extremal partitions to be interesting questions worthy of further investigation.
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[2] Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470
(1935); Zentralblatt 12,270.

[3] Frame, J. S., Robinson, G. de B. and Thrall, R. M.: The hook graphs of the symmetric group.
Canad. J. Math. 6, 316–325 (1954)

[4] Knuth, D.: Permutations, matrices, and generalized Young tableaux. Pacific J. Math. 34,
709–727 (1970); MR 0272654

[5] Robinson, G. de B.: On the Representations of the Symmetric Group. Amer. J. Math. 60 (3):
745–760 (1938); doi:10.2307/2371609, JSTOR 2371609, Zbl 0019.25102.

[6] Schensted, C.: Longest increasing and decreasing subsequences. Canad. J. Math. 13: 179–191
(1961); doi:10.4153/CJM-1961-015-3, MR 0121305.


