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Abstract

It is well-known that p divides some Fibonacci numbers F;, for any prime number
p. Moreover, it is also known that any Lucas number L, cannot be divided by
5. Let p be a prime number and d(p) be the smallest positive integer n for which
p | F,. In this article, we consider the generalized Fibonacci sequence {G,}, which
satisfies the Fibonacci recurrence relation, but with arbitrary initial conditions. We
define an equivalence relation among the sequences {G,} and give all equivalence
classes {G, }, whose representatives {G,} satisfy p { G,, for any n € N. From the
result, we know that if p = £1 (mod 5), then there are infinitely many generalized
Fibonacci sequences {G,,} that satisfy p{ G, for any n € N, and if p = +2 (mod 5)
and d(p) = p+1, then for any generalized Fibonacci sequences {G,, }, we have p|G,,
for some n € N.

1. Introduction and Main Result
We define the generalized Fibonacci sequence {G,} by
G1,G2€Z and Gpio=Gpi1+ Gy forany n > 1.

Many interesting properties of the sequences are known ([2, especially see §7 and
§17]). We fix a prime number p and let d(p) be the order of appearance of p for
the Fibonacci sequence {F),}, which is defined as the smallest positive integer n
such that F, =0 (mod p). By the periodicity modulo p (]2, §35]), we have F,, =0
(mod p) if and only if n =0 (mod d(p)). Furthermore, we know d(p) < p+ 1 from
the well-known properties of Fibonacci numbers.
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Lemma 1. ([2,§34, Theorem 34.8])

(1) If p=£1 (mod 5), then we have F,_1 =0 (mod p).

(2) If p= =2 (mod 5), then we have Fp41 =0 (mod p).

For any integer G that is not divisible by p, we denote an inverse element modulo
p by G71(€ Z) (ie., GG™! = 1 (mod p)). Let {G,} and {G/} be generalized
Fibonacci sequences that satisfy p § G1,Ga and p § G, G, If GoGTt = GLG, ™

(mod p), then we write {G,} ~ {G] }. This relation ~ is an equivalence relation.
We denote the quotient set of this relation by

X, = {{Gn} | generalized Fibonacci sequences that satisfy p{ G1, G2}/ ~ .

By the definition of the relation ~, each class {G,} € X, contains infinitely
many generalized Fibonacci sequences. The number of equivalence classes {G,,} of
X, is |X,| = [F| = p— 1. Furthermore, we define the subset Y, of X, by

Y, ={{G.} € X, | p{ G, forany n e N}

We know that Y}, is well-defined; the condition “p t G,, for any n € N” does not
depend on a representative {G,} by the following lemma.

Lemma 2. Assume pt G1,Ga, pt Gi,GS, and {G,} ~ {G,,}. Then we have
p1 Gy if and only if pt G., for any n € N.

For any positive integers ¢ which satisfy ¢ Z 0 (mod d(p)), let g; (0< g; <p—1)
be the integer such that g, = H_lFi_l (mod p). The next lemma is the key to
proving our main theorem. The key lemma shows that the ratios of successive
Fibonacci numbers modulo p have the period d(p).

Lemma 3. Leti and j be positive integers which satisfy i,j #Z 0 (mod d(p)). We
have g; = g; if and only if i = j (mod d(p)).

We denote the generalized Fibonacci sequence {G,, } such that G; = a, and G5 =
b (a,b € Z) by {G(a,b)}. For example, {F,,} = {G(1,1)} and {L,} = {G(1,3)}.
We can write X, = {{G(1,k)} | 1 <k <p—1}. Our main theorem is as follows.

Theorem 1. (1) Y, =X, — {{G(1,9:)} | 1 <i <d(p) —2}.
2) Ypl=p+1-d(p).
The next corollary immediately follows from Theorem 1, Lemma 1, and d(5) = 5.
Corollary 1. (1) |Y5|=1.

(2) If p = £1 (mod b), then there are infinitely many generalized Fibonacci se-
quences {Gy} that satisfy pt G, for any n € N.
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(3) If p = £2 (mod 5) and d(p) = p + 1, then for any generalized Fibonacci
sequence {Gp}, we have p|G,, for somen € N.

If p = +£2 (mod 5), then we have d(p) < p+ 1 by Lemma 1 (2). Furthermore,
we get d(p)|p+ 1 by a brief discussion (cf. [3, Lemma 2.2 (¢)]). We give a necessary
condition for d(p) = p + 1 below. We obtained the following lemma from a private
discussion with Yasuhiro Kishi.

Lemma 4. Let p be an odd prime number. If d(p) =p+1, then we have p = 3
(mod 4).

Proof. Applying the property F, ., = Fan—i-l + Fp 1 F, for (n, m) b=, =

and (n,m) = (p"'l,w), we get Fp+1 —l—Fp 1 = F, and FP+3 +Fp+1 = Fp42. By
our assumption d(p) = p + 1, Lemma 1, and d(5) = 5, we have p = 2 (mod 5).
On the other hand, we get F), = —1 (mod p) ([1, Theorem 6]) and also Fp4o = —1

(mod p) since F,11 = 0 (mod p). Hence we get Fp+1 —l—Fp 1 = —1 (mod p) and

(p 1 p+1)

F,2,+3 + F,JH = —1 (mod p). Furthermore, since

“1=Fl, +FL, (modp) = (Fi n Ff) +F2,

=2FpnFpos — 1+ F,JJrl (mod p),

we conclude Fipia (2FPT—1 + F;%rl) =0 (mod p) and hence Frp = —2Fp (mod p)
by our assumption that d(p) =p+1. We get —1 = F2,, + F2 , =5F2, (mod p).
2 2 2

If we assume p =1 (mod 4), then we have

()= ()= @)= (2) =1 ()1

These contradict 5F,, . = —1 (mod p). Hence we get p =3 (mod 4). O

The primes p which satisfy p < 100 and the condition d(p) = p+ 1 are p =
3,7,23,43,67,83.

2. Proofs

First, we prove Lemma 2 and Lemma 3.

Proof of Lemma 2. Let a be the integer which satisfies a = GoG ' = eNe/n
(mod p) and 1 < a < p—1, and {A,} be the generalized Fibonacci sequence de-
fined by A; =1 and Ay = a. Then, we have G,, = A4,,G1 and G, = A,,G} (mod p)
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for all n € N. As p does not divide G; and G, we have p|G,, if and only if p|G!,. O

Proof of Lemma 3. We consider two subsequences of F,, mod p:
Fi, Fipy1 =gl Fipo = (14 0)F, Fips = (14 2g)F;, -,
Fj,Fj+1 = g]FJ, Fj+2 = (]. —l—g])FJ, Fj+3 = (]. +2gj)FJ, s

Assume g; = g; and let k be a positive integer. Because p does not divide F; and
F;, we have Fi;, =0 (mod p) if and only if F;;; =0 (mod p). We conclude that
i+k=j+k (mod d(p)) for some k € N, and obtain ¢ = j (mod d(p)).

Conversely, we assume i = j (mod d(p)). Let {I,,} and {J,} be the generalized
Fibonacci sequences which are defined as [y = J; = 1 and I» = g;, Jo = g;. We
denote the above two subsequences mod p by

I, Fiyn = DLF;, Fiio=L3F, Fiz3=1LE, -,
F;,Fjq1 = JoFj, Fjio = J3F), Fji3 = J4F},---

By the assumption that ¢ = j (mod d(p)), for any positive integer k, we have
i+ k =0 (mod d(p)) if and only if j + £ = 0 (mod d(p)). Therefore, we have
Fitr =0 (mod p) if and only if Fj; =0 (mod p). Since p does not divide F; and
F;, we get Iy1 =0 (mod p) if and only if Jy11 =0 (mod p). By the formulas

Iyjv =Fe i+ Fplo = F_ 1+ Frgs and  Jyyp = Fp 11+ FrpJy = F_1 + Frgj,

we have Fjg;, = Frg; (mod p). Since k # 0 (mod d(p)) by 4, # 0 (mod d(p)), we
have g; = g; (mod p). Furthermore, since 0 < g;,9; < p — 1, we get g; = g,. |

Proposition 1. Assume p{ Gy, Ga. For all positive integers n which satisfy n # 2
(mod d(p)), we have p | G, if and only if —G1G5* = gn_2 (mod p).

Proof. This follows from the well-known formula G,, = F,,_2G1 4+ F,,_1G>. O

Proposition 2. Assume pt Gy,Gy. We have p|G,, for some n € N if and only if
—G1G5 ! = g; (mod p) for some i which satisfies 1 <14 < d(p) — 2.

Proof. If n =2 (mod d(p)), then we have G,, = F,_2G1 + F,_1G2 = F,_1G2 £ 0
(mod p). Furthermore, if i = d(p) — 1, then we have —G1G5* # g; (mod p) as we
have assumed p { G1 and gq(p)—1 = Fd(p)Fd_(ll))_1 =0 (mod p). Hence it suffices to
show that we have p|G,, for some n € N which satisfies n # 2 (mod d(p)) if and
only if —G1G5' = g; (mod p) for some i which satisfies 1 < i < d(p) — 1. This
follows from Proposition 1 and Lemma 3. O
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Next, we prove the main theorem.

Proof of Theorem 1. (1) Since the Fibonacci numbers satisfy Fy,1m = FinFri1 +
F—1F,, we have 0 = Fd(p) = F‘i—‘r(d(p)—i) = Fd(p)—iFi+1 + Fd(p)—i—lFi (mod p) for
any 7 (1 < ¢ < d(p) — 2). Therefore, g; = _9;(;)—1‘—1 (mod p). By Lemma 3 and
Proposition 2, we have

Y, =X,—-{{Gn} € X, |p|G, for some n € N}

=X, -{{GL,k)}|1<k<p—1, —k~' =g; (mod p)
for some ¢ (1 <i<d(p)—2)}

=X, —{{GLK)} [1<k<p—1, k" =gagp)-i1 (mod p)
for some ¢ (1 <i<d(p)—2)}

=X, - {GAUR} [1<k<p-1, k=—gy, , , (modp)
for some ¢ (1 < i <d(p) —2)}

=X, —{{G(1,9)} [ 1 <i < d(p) — 2}

(2) By Lemma 3, we know g; # g; if 1 < 4,5 < d(p) —2 and ¢ # j. Hence we

conclude Y| = |X;| = (d(p) —2) = (p—1) — (d(p) —2) =p+ 1 —d(p). O
3. Examples
‘ p | d(p) | Yy
3| 4 0
515 {Ln} (={G1,3)})
7 8 0
11| 10 {G(1,4)}, {G(1,8)}
{G(1,3)}, {G(L4)}, {G(1,5)} {GA, 7}, {G(1,9)}, {G(1,10)},
13 7 {G(1,11)}
{G(1,3)}, {G(1,4)}, {G(1,6)}, {G(A,7)}, {GA,9)}, {G(1,11)},
171 9 {G(1,12)}, {G(1,14)},{G(1,15)}
19 | 18 {G(1,5)},{G(1,15)}

Table 1. Y}, for small prime numbers p
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