
#A3 INTEGERS 15A (2015)

23 QUANTIFIED BOOLEAN FORMULA GAMES AND THEIR
COMPLEXITIES

Kyle Burke
Department of Computer Science and Technology, Plymouth State University,

Plymouth, New Hampshire
kgburke@plymouth.edu

Received: 1/16/14, Revised: 5/7/15, Accepted: 5/22/15, Published: 6/15/15

Abstract
Consider QBF, the Quantified Boolean Formula problem, as a combinatorial game
ruleset. The problem is rephrased as determining the winner of the game where two
opposing players take turns assigning values to Boolean variables. In this paper,
three variations of games are applied to create seven new rulesets: whether each
player is restricted to where they may play, which values they may set variables
to, or whether conditions they are shooting for at the end of the game di↵er. The
complexity for determining which player can win is analyzed for all games. Of the
seven, two are trivially in P and the other five are PSPACE-complete. Two of these
hard games are impartial, (the only known impartial formula rulesets incorporating
unassigned variables), and two are hard for 2-CNF formulas.

1. Introduction

1.1. Combinatorial Game Theory

Two-player games with alternating turns, perfect information, and no random ele-
ments are known as combinatorial games. Combinatorial Game Theory determines
which of the players has a winning move from any position (game state). Many of
the elegant aspects of CGT, such as game sums, are ignored here. The interested
reader is encouraged to browse [4] and [1].

1.2. Quantified 3SAT

In computational complexity, the quantified Boolean satisfiability problem, QBF,
consists of determining whether formulas of the following form are true. 9x0 : 8x1 :
9x2 : 8x3 : · · ·Qn�1xn�1 : f(x0, x1, x2, . . . , xn�1), where f is a Boolean formula
and Qi = 9 if i is even, and 8 when i is odd. QBF is commonly considered
the fundamental problem for the complexity class PSPACE, the set of true-false

INTEGERS: 15A (2015) 2

problems that can be solved using workspace polynomial in the size of the input.
In other words, PSPACE is the set of problems that can be e�ciently reduced to
QBF.

Each QBF instance can be reconsidered as a combinatorial game between two
players: Even/True and Odd/False. The initial position consists of a list of the
indexed literals and the unquantified formula, f . Even/True moves first, choosing
a value for x0. Odd/False goes next, choosing a value for x1. The players continue
taking turns in this manner until all variables have been assigned. At this point,
the value of f is determined. If f is true, Even/True wins, otherwise Odd/False
wins.

1.2.1. Sample QBF Game

For example, consider the position with formula: (x0 _ x3 _ x1) ^ (x2 _ x1 _ x6) ^
(x4 _ x6 _ x0) ^ (x2 _ x4 _ x3) and no assignments. Then the following would be a
legal sequence of turns:

• Even/True chooses True (T) for x0. The players are likely keeping track of
the assignments and updating the formula:
(F _ x3 _ x1) ^ (x2 _ x1 _ x6) ^ (x4 _ x6 _T) ^ (x2 _ x4 _ x3)
= (x3 _ x1) ^ (x2 _ x1 _ x6) ^ (x2 _ x4 _ x3)

• Next, Odd/False chooses T for x1. Formula:
(x3 _ F) ^ (x2 _T _ x6) ^ (x2 _ x4 _ x3)
= x3 ^ (x2 _ x4 _ x3)

• Even/True (not feeling very confident at this point), chooses F for x2:
x3 ^ (T _ x4 _ x3)
= x3

• Odd/False triumphantly chooses F for x3. With the assignments, the evalu-
ated formula will be False in the end. Despite this, the players may continue
taking their turns:

• Even/True chooses T for x4.

• Odd/False chooses F for x5. (Notice that no instances of x5 exist in the
formula.)

• Even/True chooses F for x6.

• The assignments cause the formula to be false; Odd/False wins.

INTEGERS: 15A (2015) 3

1.3. Algorithmic Combinatorial Game Theory

Notice that determining, from the initial position, whether the Even/True player
has a winning strategy is exactly the same problem as determining whether the
QBF instance is true. Due to this equivalence, we will abuse notation slightly and
refer to both this ruleset and the computational problem as QBF. A position in this
ruleset is the unquantified formula, f , and the list of n indexed Boolean variables,
with assignments for the first k � 1 (0 k n).

The lack of distinction between computational problems and combinatorial rule-
sets is not specific to QBF. It is common to use a ruleset’s name to refer to the
computational complexity of a ruleset by the induced problem of determining which
player can win. For example, we say that nim is in P. (To be even more specific,
nim is in O(n) where n is the number of heaps of sticks.) The study of algorithms
and computational complexity to determine the winner is known as algorithmic
combinatorial game theory [5]. This paper covers the computational hardness for
new games based on formula satisfiability.

1.4. Another SAT Game: Positive CNF

Many other Boolean formula satisfiability games have been defined [6]. We go
into more detail for one of them, GPOS(POS CNF)—here referred to as positive
cnf—as it will be used in later proofs. Other satisfiability games from [6] are highly
recommended to the interested reader.

Definition 1 (Positive CNF). positive cnf is the ruleset for games played on a
Boolean 3-CNF formula, f , using n variables without including any negations. The
players are indicated True and False. Each turn, the current player chooses any one
unassigned variable and assigns it the value corresponding to their name. When all
variables are assigned, True wins if the value of the formula is true, otherwise False
wins.

positive cnf is known to be PSPACE-complete [6], which will make two of the
five reductions (Sections 5 and 8) very simple.

2. Three Ruleset Toggles

Some PSPACE-hard combinatorial games are di�cult to reduce to from QBF.
These target games often have properties—such as being able to play anywhere on
the “board”—very dissimilar from QBF. There are three common properties of
games that we vary to modify QBF. We refer to each property as a ruleset toggle,
since each has exactly two possible values.

INTEGERS: 15A (2015) 4

2.1. Play Location

In QBF, on the ith turn, the current player assigns a value to variable xi. Many
combinatorial games are more flexible, allowing the next player to play wherever
on the board they would like. We can model that by allowing a variant of QBF
where the current player may choose to play at any unassigned variable. We refer
to this toggle as locality with possible values local and anywhere.

• local: The current player assigns a value to the unassigned variable, xi, with
lowest index.

• anywhere: The current player assigns a value to any one of the unassigned
variables.

2.2. Boolean Choice

In QBF, each player chooses to set a variable either true or false. However, in
rulesets such as snort, a player is identified by their color (either Red or Blue) and
may only play pieces of that color. We model this with the toggle Boolean identity,
with possible values either and by player.

• either: The current player assigns either true or false to a variable.

• by player: One player only assigns variables to true, the other player only
assigns false.

2.3. Goal

In QBF, one player is trying to force the formula to have the value true, while the
other one is vying for false. With impartial games, both players have the same goal;
the one who makes the last move to reach that goal wins. We model that with the
goal toggle, with values di↵erent and same. When the goal is the same, players
avoid creating a formulas that are casually false (defined below). Unfortunately, we
cannot simply use contradictions (or tautologies) as the forbidden formulas.

2.3.1. Contradictions are not Enough

There are two reasons it is impractical to enforce avoidance of contradictions:

• Determining whether a Boolean formula is satisfiable is NP-hard. Thus, it
would be computationally di�cult to determine when the formula is a con-
tradiction and the game has already ended. Enforcing this would be extra
onerous.

INTEGERS: 15A (2015) 5

• If contradictions are not legal positions, then each position’s formula must be
satisfiable. That means all unset variables can be used, and the number of
remaining turns is simply the number of unset variables. Determining who
can win from a legal position is trivial.

Instead, a lazy form of evaluation is used to avoid only “obvious” contradictions.
This allows for the first impartial Boolean formula games that use unassigned vari-
ables and are playable on all first-order formulas.

2.3.2. Casual Evaluation

To solve the problems, the evaluation scheme must be able to handle formulas with
unassigned variables without trying all possible assignments. When x0 is assigned
to false, both (x0 ^ x1) and (x1 ^ x1) are contradictions. This scheme, however,
will only detect a contradiction in the first case. The second case is detectable by
trying both possibilities for x1, but no such case analysis is used here. We refer to
this as casual evaluation and define it for the not, or, and and operators:

• Variables: variables can be true, false, or unassigned.

• Expressions: expressions can be a tautology, contradiction, or unknown.

• Literals: true literals are tautologies, false literals are contradictions, and
unassigned literals are unknown.

• Fully-Known Operators: Operations where none of the inputs are unknown
act exactly as normal.

• Not: The negation of an unknown expression is also unknown.

• And: A conjunction with at least one unknown input is a contradiction if any
of those inputs is a contradiction. If none of the inputs are contradictions, it
is unknown.

• Or: A disjunction with at least one unknown input is a tautology if any of
those inputs is a tautology. If none of the inputs are tautologies, it is unknown.

As mentioned before, (contradiction^ x5) casually evaluates to a contradiction,
while ((x4^x4)^x5) remains unknown. It becomes natural to refer to formulas that
casually evaluate to true and false as casually true and casually false, respectively.

2.3.3. Goals: Di↵erent or Same

With this notion, we can define the two possible values for the goal toggle:

INTEGERS: 15A (2015) 6

• di↵erent: One player is trying to set the formula to true, the other to false.
After all variables are assigned, the formula is evaluated. Whichever player
has reached their target value wins.

• same: Players are not allowed to assign a variable such that the resulting
formula casually evalutes to false. If a player cannot move, they lose the
game—the usual end-of-game condition for combinatorial games. This means
that there are no legal moves on the formula: x0 ^ x0; the first player would
automatically lose. (If the formula is a tautology at the end of the game, the
player to choose the value of the last unassigned variable wins.)

2.4. QBF Categorized

QBF, then, is the either-local-different ruleset: players have to play on the
next variable, are allowed to set the value to either true or false, and one is shooting
to make the formula true, while the other tries to make it false. There are seven
total other rulesets generated by changing these variables. The following sections
cover each of these and analyze their computational complexity. These results are
summarized in table 1. For some rulesets, di↵erent minimum numbers of literals
per clause are needed for formulas that are known to be hard. For example, for
either-local-same, hard instances are only known for formulas in Conjunctive
Normal Form with at least four literals per clause. (DNF stands for Disjunctive
Normal Form.)

Boolean
choice

play location goal section computational
complexity

hard
instances

by player local same 3 In P never
by player local di↵erent 3 In P never

by player anywhere same 4 PSPACE-
complete 2-CNF

by player anywhere di↵erent 5 PSPACE-
complete

11-CNF
11-DNF

either local same 6 PSPACE-
complete 4-CNF

either local di↵erent none PSPACE-
complete 3-CNF

either anywhere same 7 PSPACE-
complete 2-CNF

either anywhere di↵erent 8 PSPACE-
complete

11-CNF
11-DNF

Table 1: QBF Ruleset Complexities

INTEGERS: 15A (2015) 7

3. By-Player-Local-X Rulesets

Two of the rulesets generated are trivial for determining the winner: by-player-
local-same and by-player-local-different. In the games where players have
neither a choice of the Boolean value nor the location to play, there is only one
possible sequence of moves. To figure out which player will win, a program needs
only simulate the moves, adhering to the goal condition.

For example, consider the by-player-local-same initial position with the for-
mula described in Section 1.2.1: (x0 _ x3 _ x1) ^ (x2 _ x1 _ x6) ^ (x4 _ x6 _ x0) ^
(x2 _ x4 _ x3). Then the following would be the sequence of turns:

3.1. Sample Game

• Even/True must assign T to x0. We keep track by updating the formula:
(F _ x3 _ x1) ^ (x2 _ x1 _ x6) ^ (x4 _ x6 _T) ^ (x2 _ x4 _ x3)
= (x3 _ x1) ^ (x2 _ x1 _ x6) ^ (x2 _ x4 _ x3)

• Next, Odd/False assigns F to x1. Formula:
(x3 _T) ^ (x2 _ F _ x6) ^ (x2 _ x4 _ x3)
= (x2 _ x6) ^ (x2 _ x4 _ x3)

• Even/True assigns T to x2:
(T _ x6) ^ (F _ x4 _ x3)
= x4 _ x3

• Odd/False assigns F to x3:
x4 _ F
= x4

• Even/True now cannot make a move. (Their only normal option: assigning
T to x4, would make the formula casually evaluate to false, so they cannot
move to that position.) Odd/False wins!

In by-player-local-different with this same formula, Odd/False also wins
because the formula evaluates to false by the end.

4. By-Player-Anywhere-Same

The by-player-anywhere-same QBF ruleset consists of the games with two play-
ers, True and False, each avoiding creating a casually false formula, while allowed
to play anywhere on the board.

INTEGERS: 15A (2015) 8

4.1. Sample Game

For example, consider the initial position with the same formula given in Section
1.2.1: (x0 _ x3 _ x1)^ (x2 _ x1 _ x6)^ (x4 _ x6 _ x0)^ (x2 _ x4 _ x3). The following
is a legal sequence of plays from the initial position:

• True chooses x3. The partially-evaluated formula now looks like:
(x0 _T _ x1) ^ (x2 _ x1 _ x6) ^ (x4 _ x6 _ x0) ^ (x2 _ x4 _T)
= (x2 _ x1 _ x6) ^ (x4 _ x6 _ x0)

• False chooses x1. (Notice that choosing x6 would cost False the game since
there would be an odd number of moves remaining.)
(x2 _ F _ x6) ^ (x4 _ x6 _ x0)
= (x2 _ x6) ^ (x4 _ x6 _ x0)

• True chooses x2:
(T _ x6) ^ (x4 _ x6 _ x0)
= x4 _ x6 _ x0

• False chooses x4:
F _ x6 _ x0

x6 _ x0

• True chooses x0:
x6 _T
= T

The formula now always evaluates to True. (There are an even number of
moves left, so True wins.)

4.2. PSPACE-completeness

Theorem 1 (by-player-anywhere-same PSPACE-completeness). Ruleset by-
player-anywhere-same is PSPACE-complete on 2-CNF.

Proof. To show hardness, we reduce from the well-known PSPACE-complete ruleset
snort [6]. A snort position consists of a graph, with some vertices painted blue,
some red, and the rest uncolored. The two players, Blue and Red, take turns
choosing an uncolored vertex and painting it their own color. Players are not allowed
to paint vertices adjacent to the opposite color. The first player who cannot play
loses.

The reduction is as follows. Let G = (V,E) be the snort graph and let
V = {0, . . . , n � 1}. The set of literals for our formula is x0, x1, . . . , xn�1. Blue
corresponds to True and Red corresponds to False. For any edge, (i, j) 2 E, we
include two clauses: (xi _ xj) ^ (xi _ xj). In the case where any of i and j are
painted, the resulting formula is casually false only when they have opposing colors.

INTEGERS: 15A (2015) 9

Thus, the only moves a player is not allowed to make correspond exactly to illegal
moves in snort.

To get the overall formula, we conjoin all pieces together:
^

(i,j)2E

(xi_xj)^(xi_xj)

Since the winnability of the two games are equal, the by-player-anywhere-
same ruleset is PSPACE-hard. Moreover, these formulas are in conjunctive normal
form using only two literals per clause, so hard games are in 2-CNF.

5. By-Player-Anywhere-Di↵erent

The by-player-anywhere-different ruleset consists of games between two play-
ers, True and False, who may choose to play on any unassigned variable on their
turn. Each player wins if the value of the formula matches their identity.

5.1. Sample Game

Consider the initial position with the same formula given in Section 1.2.1: (x0 _
x3 _ x1) ^ (x2 _ x1 _ x6) ^ (x4 _ x6 _ x0) ^ (x2 _ x4 _ x3). The following is a legal
sequence of plays from the initial position:

• True chooses x3:
(x0 _T _ x1) ^ (x2 _ x1 _ x6) ^ (x4 _ x6 _ x0) ^ (x2 _ x4 _T)
= (x2 _ x1 _ x6) ^ (x4 _ x6 _ x0)

• False chooses x2:
= (F _ x1 _ x6) ^ (x4 _ x6 _ x0)
= (x1 _ x6) ^ (x4 _ x6 _ x0)

• True chooses x1:
= (T _ x6) ^ (x4 _ x6 _ x0)
= (x4 _ x6 _ x0)

• False chooses x4:
= F _ x6 _ x0

= x6 _ x0

• True chooses x0:
= x6 _T
= T

• No matter which order x5 and x6 are chosen, True has won the game.

5.2. PSPACE-completeness

Theorem 2 (by-player-anywhere-di↵erent PSPACE-completeness). Ruleset
by-player-anywhere-different is PSPACE-complete on 11-CNF and 11-DNF.

INTEGERS: 15A (2015) 10

Proof. To show hardness, we reduce from positive cnf (see Section 1.4).
The rules for positive cnf are exactly the same as by-player-anywhere-

different, except that not all formulas are allowed. Thus, each instance of pos-
itive cnf is also an instance of by-player-anywhere-different, meaning the
new game is “automatically” PSPACE-hard.

The same reduction follows from the analagous positive dnf. Both of these
rulesets are known to be hard on formulas with at least 11 literals per clause (11-
CNF and 11-DNF)[6], so the same is true for by-player-anywhere-different.

6. Either-Local-Same

The either-local-same ruleset consists of the games between two players forced
to play on a specific literal each turn while avoiding creating a casually false formula.

6.1. Sample Game

As an example, consider the initial position with the same formula given in Section
1.2.1: (x0 _ x3 _ x1)^ (x2 _ x1 _ x6)^ (x4 _ x6 _ x0)^ (x2 _ x4 _ x3). The following
is a legal sequence of plays from the initial position:

• Even assigns F to x0:
(T _ x3 _ x1) ^ (x2 _ x1 _ x6) ^ (x4 _ x6 _ F) ^ (x2 _ x4 _ x3)
= (x2 _ x1 _ x6) ^ (x4 _ x6) ^ (x2 _ x4 _ x3)

• Odd assigns F to x1:
(x2 _ F _ x6) ^ (x4 _ x6) ^ (x2 _ x4 _ x3)
= (x2 _ x6) ^ (x4 _ x6) ^ (x2 _ x4 _ x3)

• Even assigns T to x2:
(T _ x6) ^ (x4 _ x6) ^ (F _ x4 _ x3)
= (x4 _ x6) ^ (x4 _ x3)

• Odd assigns F to x3:
(x4 _ x6) ^ (x4 _ F)
= (x4 _ x6) ^ x4

• Even assigns F to x4:
(F _ x6) ^T
x6

• Odd assigns T to x5. The formula does not change.

• Even assigns F to x6. The formula will now always evaluate to True. There
are no more variables, so Even wins!

INTEGERS: 15A (2015) 11

6.2. PSPACE-completeness

Theorem 3 (either-local-same PSPACE-completeness). Ruleset either-local-
same is PSPACE-complete on 4-CNF.

Proof. To show hardness, we reduce from QBF.
Assume our QBF formula is written in conjunctive normal form (this subset of

positions is still PSPACE-complete [2]) using n variables x0, . . . , xn�1. Let
^

i2[c]

'i

be the formula, with clauses '0, . . . ,'c�1.
For each 'i, we create a new clause, �i, in the following way. Let l be the largest

index of the literals in 'i.

Define �i =

(
'i , l is even
('i _ (xl+1 ^ xl+1)) = ('i _ xl+1) ^ ('i _ xl+1) , l is odd

. Also,

let m =

(
n + 1 , n is even
n + 2 , n is odd

. In this way, m will always be odd.

The resulting position for either-local-same consists of a formula with c
clauses,

^
i2[c]

�i, and has m variables x0, . . . , xm�1. In some cases, no literal with

index m� 1 will appear in the formula.
It remains to be shown that the winnability of the either-local-same position

is equivalent to the QBF position. Notice that in QBF, if any one clause is casually
false, the even/true player loses. The �-clauses simulate this in the reduced formula:
the last assignment to a literal in a clause is always made by the even player. If the
clause would become casually false, even cannot move and loses.

Alternatively, in order for odd to lose the game, the variables must have been set
so that all clauses are true. To maintain this condition, we just make sure the last
variable index is even. Thus, if all variables are successfully set, the even player will
win the game after having made the last move. To accomplish this, we enforce that
m must be odd, even if this means the literal xm�1 does not appear in the reduced
formula.

Since the winnability of the two games are equal, the either-local-same ruleset
is PSPACE-hard. QBF is hard on 3-CNF formulas[6]. Since our reduction extends
some of the clauses by a literal, either-local-same is hard for 4-CNF.

7. Either-Anywhere-Same

The either-anywhere-same ruleset consists of the games between two players
who can play either value on any unassigned variable each turn while avoiding
creating an casually false formula.

INTEGERS: 15A (2015) 12

7.1. Sample Game

As an example, consider the initial position with the same formula given in Section
1.2.1: (x0 _ x3 _ x1)^ (x2 _ x1 _ x6)^ (x4 _ x6 _ x0)^ (x2 _ x4 _ x3). The following
is a legal sequence of plays from the initial position:

• Even assigns F to x6:
(x0 _ x3 _ x1) ^ (x2 _ x1 _T) ^ (x4 _T _ x0) ^ (x2 _ x4 _ x3)
= (x0 _ x3 _ x1) ^ (x2 _ x4 _ x3)

• Odd assigns T to x2:
(x0 _ x3 _ x1) ^ (F _ x4 _ x3)
= (x0 _ x3 _ x1) ^ (x4 _ x3)

• Even assigns T to x3:
= (x0 _T _ x1) ^ (x4 _T)
T

From this point on, the formula will always evaluate to True. With four
variables remaining, Even takes the last turn and wins.

7.2. PSPACE-completeness

Theorem 4 (either-anywhere-same PSPACE-completeness). Ruleset either-
anywhere-same is PSPACE-complete on 2-CNF.

Proof. The reduction here is similar to the reduction from snort to by-player-
anywhere-same in Section 4. Instead of snort, we’ll reduce from proper 2-
coloring, a di↵erent graph game where players take turns painting uncolored
vertices so that no two neighboring vertices have the same color. In this game, both
players can choose either color on their turn. proper 2-coloring is impartial and
PSPACE-complete [3].

The reduction is as follows. Let G = (V,E) be the proper 2-coloring graph
and let V = {0, . . . , n� 1}. The literals for the formula are: x0, x1, . . . , xn�1. Blue
corresponds to True and Red corresponds to False. Now, for each edge, (i, j) 2 E,
we include: (xi _ xj)^ (xi _ xj). This subformula will only become casually false if
both variables are given the same value, corresponding to them being painted the
same color in proper 2-coloring.

The overall formula is the conjunction of these pieces:
^

(i,j)2E

(xi _ xj)^ (xi _ xj)

Since the two games are equivalent, either-anywhere-same is PSPACE- com-
plete. Just as with by-player-anywhere-same, these formulas are all in 2-CNF,
thus the game is hard on 2-CNF formulas.

INTEGERS: 15A (2015) 13

8. Either-Anywhere-Di↵erent

The either-anywhere-different ruleset consists of the games between the two
players who can play either value on any unassigned variable each turn. The players
have separate goals: the even player is attempting to set the entire formula to true,
the odd player is shooting for false.

8.1. Sample Game

As an example, consider the initial position with the same formula given in Section
1.2.1: (x0 _ x3 _ x1) ^ (x2 _ x1 _ x6) ^ (x4 _ x6 _ x0) ^ (x2 _ x4 _ x3). One legal
sequence of plays from the initial position could be:

• Even/True assigns T to x3:
(x0 _T _ x1) ^ (x2 _ x1 _ x6) ^ (x4 _ x6 _ x0) ^ (x2 _ x4 _T)
= (x2 _ x1 _ x6) ^ (x4 _ x6 _ x0)

• Odd/False assigns T to x6:
(x2 _ x1 _ F) ^ (x4 _ F _ x0)
= (x2 _ x1) ^ (x4 _ x0)

• Even/True confidently assigns T to x4:
(x2 _ x1) ^ (T _ x0)
= x2 _ x1

• Odd/False assigns F to x1:
x2 _ F
= x2

• Even/True assigns T to x2 and wins.

8.2. PSPACE-completeness

Although the reduction for this completeness proof is quite simple, we first introduce
an intermediate ruleset for clarity:

Definition 2 (toy positive cnf). toy positive cnf is exactly the same as
positive cnf, except that each player may choose to assign either True or False to
the variable on their turn.

Lemma 1 (toy positive cnf). toy positive cnf is PSPACE-complete.

To prove this, we reduce from positive cnf (see Section 1.4).

Proof. To begin this proof, we notice that it never improves a player’s strategy to
choose to assign a variable with the value opposite their identity. Since no negations

INTEGERS: 15A (2015) 14

exist in the formula, f , the True player never benefits by assigning False and the
False player never benefits by choosing True.

Thus, any winning strategy cooresponds directly to a winning strategy in pos-
itive cnf. Our reduction is trivial; no transformation is needed to reduce from
positive cnf to toy positive cnf.

Theorem 5 (either-anywhere-di↵erent PSPACE-completeness). The ruleset
either-anywhere-different is PSPACE-complete on 11-CNF and 11-DNF.

To prove this, we will reduce from toy positive cnf.

Proof. Note that the set of toy positive cnf positions is exactly a subset of
the set of either-anywhere-different positions. Thus, we can use the trivial
(identity) reduction to show that either-anywhere-different is also PSPACE-
complete. positive cnf is known to be hard for 11-CNF[6], so the same is true of
toy positive cnf and either-anywhere-different. The same reduction holds
from positive dnf, hard on 11-DNF[6]. Thus, either-anywhere-different is
also hard on 11-DNF.

9. Conclusions

This work defines seven new combinatorial game rulesets based on satisfying Boolean
formulas. Two of these are trivial in that the players do not have any choices to
make. The other five are all computationally di�cult (PSPACE-complete) to de-
termine which player has a winning strategy in the worst case.

Of the five new hard rulesets, both either-local-same and either-anywhere-
same are impartial and incorporate unassigned variables into gameplay: the first
games of this kind. They are hard for CNF formulas with only 4 and 2 literals per
clause, respectively.

Also among the five new hard rulesets, by-player-anywhere-same is hard on
2-CNF formulas. The low size is surprising for this and either-anywhere-same
because QBF is easy to solve on 2-CNF.

A summary of the results, by ruleset, can be found in Table 1.

10. Future Work

10.1. Additional Toggles

This work can be expanded on by introducing more toggle properties for satisfia-
bility games. Schaefer defines many related games, including games with partitions

INTEGERS: 15A (2015) 15

on the variables between the two players [6]. Certainly all relevant properties of
rulesets are not covered here and further attributes can be considered.

10.2. Open: Tightness of Hard Instances

Although it is known that QBF is easy on 2-CNF and hard on 3-CNF, the same
tight bounds are not known for the other games. It would be very useful to find
the other boundaries. Hardness of the DNF versions are also unknown for most of
the games.

References

[1] M. H. Albert, R. J. Nowakowski, and D. Wolfe. Lessons in Play: An Introduction to Combi-
natorial Game Theory. A. K. Peters, Wellesley, Massachusetts, 2007.

[2] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Inform. Process. Lett., 8(3):121–123, 1979.

[3] Gabriel Beaulieu, Kyle G. Burke, and Éric Duchêne. Impartial coloring games. Theoret.
Comput. Sci., 485:49–60, 2013.

[4] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning Ways for your Math-
ematical Plays, volume 1. A K Peters, Wellesley, Massachsetts, 2001.

[5] Erik D. Demaine and Robert A. Hearn. Playing games with algorithms: Algorithmic combi-
natorial game theory. Games of No Chance 3, volume 56 of Math. Sci. Res. Inst. Publ., pages
3–56. Cambridge Univ. Press, 2009.

[6] Thomas J. Schaefer. On the complexity of some two-person perfect-information games. J.
Comput. System Sci., 16(2):185–225, 1978.

