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Abstract
A set A = Ak,n ⇢ [n] [ {0} is said to be an additive k-basis if each element
in {0, 1, . . . , kn} can be written as a k-sum of elements of A in at least one way.
Seeking multiple representations as k-sums, and given any function �(n) ! 1,
we say that A is said to be a truncated �(n)-representative k-basis for [n] if for
each j 2 [↵n, (k�↵)n] the number of ways that j can be represented as a k-sum of
elements of Ak,n is ⇥(�(n)). In this paper, we follow tradition and focus on the case
�(n) = log n, and show that a randomly selected set in an appropriate probability
space is a truncated log-representative basis with probability that tends to one as
n!1. This result is a finite version of a result proved by Erdős and extended by
Erdős and Tetali.

1. Introduction

In 1956 Erdős [4] answered a question posed in 1932 by Sidon by proving that there
exists an infinite sequence of natural numbers S and constants c1 and c2 such that
for large n,

c1 log n  r2(n)  c2 log n, (1)
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where, for k � 2, rk(n) is the number of ways of representing the integer n as the
sum of k distinct elements from S, a so-called log-representative basis of order k.
The result was generalized in the 1990 work of Erdős and Tetali [5] which established
that there exists an infinite sequence S for which (1) was true for each fixed k � 2,
i.e., for each large n,

rk(n) = ⇥(log n). (2)

To achieve this result, Erdős and Tetali constructed a random sequence S of natural
numbers by including z in S with probability

p(z) =

(
C (log z)1/k

z(k�1)/k , if z > z0

0 otherwise

where C is a determined constant and z0 is the smallest constant such that p(z0) 
1/2. They then showed that this random sequence is almost surely (a.s.) a log-
representative basis of order k, with (2) holding a.s. for large n. We note here that
a.s. in this context means “with probability one,” i.e., in the sense used in measure
theory.

For a natural finite variant of the above problem, we define:

Definition 1.1. With [n] := {1, 2, . . . , n}, a set Ak,n ✓ [n] [ {0} is said to be a
log-representative k-basis for B (or simply a representative k-basis for B) if each
j 2 B ⇢ [kn] [ {0} can be represented as a k-sum of distinct elements of Ak,n in
⇥(log n) ways.

Remark 1.2. To see how this is the natural finite variant of the problem tackled in
Erdős and Tetali in [5], note that they teased out asymptotics for the emergence of
log-representative bases for B = [N0,1) for some suitable N0. They showed that
in some probability space, almost all infinite sequences S satisfy (2). It is natural
to then ask, for finite Ak,n, how small Ak,n can be while still being a representative
k-basis for a suitable B.

Remark 1.3. Note that a more general definition might ask that the number of
representations of j equal ⇥(�(n)) for some �(n)!1, but we stick close to tradi-
tion and just deal with the case �(n) = log n; it is interesting to note, though, that
Sidon’s original question asked about whether it was possible to find a representative
basis with �(n) = o(n✏) for all ✏ > 0.

We will use a probability model in which each integer in [n] [ {0} is chosen to
be in Ak,n with equal (and low) probability p = pn. Since, e.g., the only way to
represent 1 as a 2-sum of elements of [n] [ {0} is as 1+0, it would be impossible
for the random ensemble to form an representative basis unless we choose a target
sumset, B, smaller than [kn] [ {0}; this motivates the next definition – which was
the one adopted in [7] even when we had �(n) = 1 for each n.
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Definition 1.4. Let Ak,n be a subset of [n][{0}. Then Ak,n is said to be a truncated
log-representative k-basis for [n] if each j 2 [↵n, (k � ↵)n] can be represented as a
k-sum of distinct elements of Ak,n in ⇥(log n) ways.

In [7], the authors used Poisson approximation (see [2] for background) and the
Janson inequality [10] to derive a sharp threshold for which values of p = pn make
the set Ak,n almost never/almost surely a truncated k-basis as n ! 1, i.e. every
j 2 [↵n, (k � ↵)n] could be represented at least once as a k-sum of elements in
Ak,n with probability tending to 0 or 1 as n ! 1. Here the phrases “almost
never” and “almost surely” are used as is traditional in random methods. The
threshold function for k=2 (for example) is roughly at pn = A↵

p
log n/n, with a

third order correction term controlling the actual threshold, in contrast to the fact
that the minimal size of a truncated 2-basis is of magnitude O(

p
n) [12], [9]. The

corresponding questions of maximal Sidon families (i.e., ones for which each target
integer is represented at most once), and zero-one thresholds for the emergence of
the Sidon property feature a wider gap; see [6].

The authors of [7] did not derive the asymptotics for which p determine whether
Ak,n is a truncated representative k-basis as n ! 1, a question which we take
up presently. Our work is organized as follows: We present results on truncated
representative 2-bases in Section 2, using some simple Cherno↵ bounds. In Section
3, we consider similar questions for truncated representative k-additive bases, and
we apply Talagrand’s inequality [1] to derive our desired results. The methods of
proof are not dissimilar to the ones in [5], though the use of Talagrand’s inequality
streamlines the analysis significantly.

Remark 1.5. An alternate way of dealing with the boundary e↵ects encountered
in finite additive bases is to define modular representative k-bases. A set Ak,n ✓
[n� 1] [ {0} is said to be a modular representative k-basis for [n] if the number of
ways that each j 2 [n�1][{0} can be written as a mod(n) k-sum of elements of Ak,n

is ⇥(log n). Definitive results on the emergence of modular additive bases have been
proved in the papers of Yadin [15] using the method of Brun’s sieve and in Sandor
[13] using Janson’s correlation inequalities. Neither tackled the representative basis
question, as we do in the present work. We believe, moreover, that the truncated
basis is the more natural finite variant of the problem considered by Erdős and
Tetali in [5]. They were concerned with constructing a basis with rk(n) = ⇥(log n)
for all integers greater than a fixed but arbitrary N0. This allowed them great
flexibility in choosing the threshold N0 to be large enough to achieve the desired
behavior. One might ask how small N0 can be while still maintaining an additive
basis with rk(n) = ⇥(log n), which is the natural analogue to the truncated basis
question explored below.

Throughout the rest of the paper, we suppress the descriptors “truncated” and
“log”, referring simply to “representative k-bases.”
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2. 2-Additive Representations

Consider first the case where k = 2. Construct the random set A2,n by choosing
each integer in [n] [ {0} to be in A2,n independently with probability p = pn. Let
S2(↵, n) := [↵n, (2�↵)n], and for each j 2 S2(↵, n), let Yj,n be the number of ways
that j can be represented as a 2-sum of distinct elements of A2,n; the case where
summands are allowed to be equal can be proved exactly as in what follows. Let
Ij,n := 1{Yj,n 6= ⇥(log n)}, so that Xn :=

P
j2S2(↵,n) Ij,n is the number of elements

of S2(↵, n) that are not represented order log n times in the 2-sum set.
For each j 2 [↵n, n], the maximum number of representations as 2-sums from

A2,n is given by

⇢2,n(j) = ⇢2,n(2n� j) =
⇠

j

2

⇡
.

Fixing j, for i = 1, ..., ⇢2,n(j) let

Bi,n = 1{i-th pair of integers in [n] [ {0} summing to j is present in A2,n}

so that Yj,n =
P⇢2,n(j)

i=1 Bi,n. Note that each integer in [n] [ {0} can be in at most
one of the ⇢2,n(j) pairs of integers summing to j, and so the associated Bi,n’s are
independent Bern(p2) random variables. It follows that Yj,n has a Bin(⇢2,n(j), p2)
distribution. Two straightforward applications of Cherno↵-type bounds then yield
the following result:

Theorem 2.1. Let ↵ 2 (0, 1) be fixed, and let ⌘ > 0 be arbitrarily small. Create the
random set A2,n by picking each integer in [n] [ {0} to be in A2,n with probability

p = pn :=

s�
2
↵ + ⌘

�
log n

n
.

Then
lim

n!1
P(Xn = 0) = 1,

so that w.h.p. A2,n is an asymptotic representative 2-basis as n!1.

Proof. First note that ⇢2,n(j) is maximized by j = n, so that for any constant K,
it follows that P(Yn,n � K log n) � P(Yj,n � K log n) for all j 2 S2(↵, n). We have
that

E(Yn,n) =
n

2

✓ 2
↵ + ⌘

n

◆
log n + o(1) =

✓
1
↵

+
⌘

2

◆
log n + o(1).

An application of Cherno↵’s bound, see for example [3, Theorem 2.15], gives that
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for any � > 0, j 2 S2(↵, n):

P[Yj,n � (1+�)E(Yn,n)]  P [Yn,n � (1 + �)E(Yn,n)]

= P

Yn,n � (1 + �)

✓
1
↵

+
⌘

2

�
log n + o(1)

◆�

 (1 + o(1)) exp
⇢
�
✓

1
↵

+
⌘

2

◆
(log n)[(1 + �) log(1 + �)� �]

�
.

Letting f(�) =
�

1
↵ + ⌘

2

�
[(1 + �) log(1 + �) � �], we see that f is unbounded and

monotonically increasing for � > 0, and so for any � > 0, an appropriate �0 can be
chosen such that f(�0) = � + 1 giving that

P

Yj,n � (1 + �0)

✓
1
↵

+
⌘

2

�
log n + o(1)

◆�
 n���1.

Next note that ⇢2,n(j) is minimized for j = ↵n = (2 � ↵)n, so that for any
constant K0, it follows that P(Y↵n,n  K0 log n) � P(Yj,n  K0 log n) for all j 2
S2(↵, n). Now

E(Y↵n,n) =
↵n

2

✓ 2
↵ + ⌘

n

◆
log n + o(1) =

⇣
1 +

⌘↵

2

⌘
log n + o(1).

Another application of Cherno↵’s bound, see [3, Theorem 2.17], gives then that for
any 0  "  e�1 and j 2 S2(↵, n):

P(Yj,n  "E(Y↵n,n))  P(Y↵n,n  "E(Y↵n,n))

= P
✓

Y↵n,n  "

⇣
1 +

⌘↵

2

⌘
log n + o(1)

�◆

 (1 + o(1)) exp
⇢
� (1� 2" + 2" log ")

⇣
1 +

⌘↵

2

⌘
log n

�
.

Let g(") = (1 � 2" + 2" log ")
�
1 + ⌘↵

2

�
. We see that lim"!0 g(") = 1 + ⌘↵

2 so that
there exists a � > 0 and a "0 > 0 such that g("0) = 1 + � and

P(Yj,n  "0E(Y↵n,n))  n���1

for all j 2 S2(↵, n). Next, note that

P(Xn = 0) = P
�
\j2S2(↵,n){Yj,n = ⇥(log n)}

�
= 1� P

�
[j2S2(↵,n){Yj,n 6= ⇥(log n)}

�
� 1�

X
j2S2(↵,n)

P(Yj,n 6= ⇥(log n))

� 1� n(n���1 + n���1)
= 1� n�� � n��

! 1 as n!1,

which finishes the proof. 2
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Remark: Note that, with the notation as in Theorem 2.1, if for any constants
K, " > 0 we have

p = pn :=

s
K log1+" n

n
,

then

E(Yn,n) =
n

2
K log1+✏ n

n
+ o(1) = ⇥(log1+" n).

As we have that Yn,n ⇡Bin(n
2 , p2), it follows that

Var(Yn,n) = ⇥(log1+" n),

and a simple application of Chebyshev’s inequality gives

P(|Yn,n � E(Yn,n)|  log n) � 1�⇥([log1�" n]�1)! 1 as n!1.

Therefore P(Xn = 0)! 0 and A2,n is not an asymptotic representative 2-basis.
In [7], the authors were able to show that if

p = pn :=

s
2
↵ log n� 2

↵ log log n + An

n

for an arbitrary sequence An = o(log log n), then

P(A2,n is an truncated 2-basis) =

8><
>:

1 if An !1
0 if An ! �1
exp{�2↵e�↵A/2} if An ! A.

It follows immediately that if

p = pn :=
r

K log n

n
,

for some 0 < K < 2, then with probability converging to 1, A2,n will not be a
k-basis and hence cannot be a representative 2-basis. At the threshold value

p = pn ⇡

s
2
↵ log n

n
,

we have that the behavior of lower order terms controls whether A2,n represents each
integer at least once, and so it is reasonable to expect that there are integers that
are only represented a few times in the 2-sum set of A2,n and therefore A2,n will not
form a representative 2-basis, though we have no concrete proof of this conjecture
beyond our heuristic reasoning. Note however the similarity between the p = pn of
Theorem 2.1 and the p(z) used in [5] to construct their infinite representative basis.
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3. k-Additive Representations

The problem is complicated further if we consider the representation question in the
k-additive basis case, as di↵erent k-sums summing to an integer j are not necessarily
disjoint. We shall begin, as before, by creating the random set Ak,n by choosing
each integer in [n] [ {0} to be in Ak,n independently with probability p = pn. Fix
↵ 2 (0, 1), and let Sk(↵, n) := [↵n, (k � ↵)n], and for each j 2 Sk(↵, n), let Yk,n(j)
be the number of ways that j can be represented as a k-sum of distinct elements
of Ak,n. Let Ij,k,n := 1{Yk,n(j) 6= ⇥(log n)}, so that Xk,n :=

P
j2Sk(↵,n) Ij,k,n is

the number of elements of Sk(↵, n) that are not represented order log n times in
the k-sum set of Ak,n. The following theorem will constitute the main result of the
section, and the remainder of the section will be dedicated to its proof.

Theorem 3.1. Let " > 0 be fixed, and let k � 3 be fixed. Create the random set
Ak,n by independently picking each integer in [n][{0} to be in Ak,n with probability

p = pn := k

r
K log n

nk�1
,

with
K = K↵,k :=

(4 + ")(k!)2

↵k�1
.

Then
lim

n!1
P (Xk,n = 0) = 1,

so that w.h.p. Ak,n is an asymptotic representative k-basis as n!1.

Fix k � 3. For 1  l  k, define Y ⇤
l,n(j) to be the size of a maximum collection of

disjoint representations of j as a l-sum of distinct elements of Ak,n. The Y ⇤
k,n’s are

significantly simpler to work with than the original Yk,n’s, as the di�culty presented
by overlapping k-sums is circumvented. This idea was exploited to great e↵ect in our
motivational paper [5]. A few simple calculations yield that for all i 2 [1, (k � ↵)n]

E[Yl,n(i)] = O
�
nl�1pl

�
= O

⇣
n�1+l/k

⌘
no(1).

The disjointness lemma (Lemma 1 in [5]) implies then that for all l  k � 1,

P(Y ⇤
l,n(i) � 3k)  O

�
n�3

�
no(1).

We are ready to establish the following lemmata, the first of which is the analogue
of Lemma 10 from [5]:

Lemma 3.2. With notation as above, it follows that for all i 2 [1, (k � ↵)n] we
have

P
�
Yk�1,n(i) � (3k � 1)k�1(k � 1)!

�
< O

�
n�3

�
no(1).
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Proof. We say that m sets form a �-system (of size m) if they have pairwise the
same intersections. If Yk�1,n(i) � (3k � 1)k�1(k � 1)!, then the �-system lemma
(Lemma 2, [5]) implies that the set system composed of the Yk�1,n(i) (k� 1)-sums
of i contains a �-system of size 3k, and we shall denote this system via

{Sk�1
1 , . . . , Sk�1

3k }

with common pairwise intersection set R. Letting |R| = r  k � 2 and letting the
sum of elements of R be equal to m < i, it follows that if bSk�1

i := Sk�1
i \ R then

{bSk�1
1 , . . . , bSk�1

3k }

is a system composed of 3k disjoint sets of size k � 1 � r each summing to i �m.
The probability of such a system occurring is bounded above by

P(Y ⇤
k�1�r,n(i�m) � 3k)  O

�
n�3

�
no(1)

as desired. 2

The next result is the analogue of Lemma 11 from [5]:

Lemma 3.3. With notation as above, let Ck := (3k � 1)k�1k!. Then for each j in
[↵n, (k � ↵)n], we have

P
�
Yk,n(j) � CkY ⇤

k,n(j)
�
 O

�
n�2

�
no(1).

Proof. Slightly abusing notation, we shall write x 2 Y ⇤
k,n(j) to mean that x is in

one of the maximum collection of disjoint k-sums of j counted by Y ⇤
k,n(j). Then by

Lemma 3.2,

P
�
Yk,n(j) � CkY ⇤

k,n(j)
�
 P

0
@ [

x2[0,n]

{Yk�1,n(j � x) � Ck

k
, x 2 Y ⇤

k,n(j)}

1
A


X

x2[0,n]

P
✓

Yk�1,n(j � x) � Ck

k
, x 2 Y ⇤

k,n(j)
◆


X

x2[0,n]

P
✓

Yk�1,n(j � x) � Ck

k

◆


X

x2[0,n]

O
�
n�3

�
no(1)

= O
�
n�2

�
no(1),

as desired. 2
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Next, we shall use Talagrand’s inequality (see Section 7.7, [1]) to show that
Y ⇤

k,n(j) = ⇥(log n) with high probability for all j 2 [↵n, (k � ↵)n]. Towards that
end, we prove

Lemma 3.4. For some constant Bk 2 [�40
p

k, 40
p

k] we have that

Med(Y ⇤
k,n(j)) = E(Y ⇤

k,n(j)) + Bk

q
E(Y ⇤

k,n(j)).

Proof. First note that Y ⇤
k,n(j) can be written as a function

Y ⇤
k,n(j) = f(J0, J1, . . . , Jn)

of the indicator variables

Ji :=

(
1 if i 2 A
0 else.

As the k-sums counted by Y ⇤
k,n(j) are disjoint, the function f(·) is one-Lipschitz.

Also note that f is h�certifiable with h(s) = ks, since if f(J0, . . . , Jn) � s, there
exists s disjoint k-sums of j present in A, and any other realization of A with those
sk Ji’s equal to 1 has f � s as well. It immediately follows from Fact 10.1 in [11]
that ��E(Y ⇤

k,n(j))�Med(Y ⇤
k,n(j))

��  40
q

kE(Y ⇤
k,n(j)).

This completes the proof. 2

Next we prove

Lemma 3.5. With p = pn defined as in Theorem 3.1 and notation as above,

E
�
Y ⇤

k,n(j)
�
 E (Yk,n(j))  E

�
Y ⇤

k,n(j)
�

+ o(1).

Proof. Let Wj,k,n be the number of overlapping pairs of k-sums in the set of all
k-sums of j using elements of A. Then, as each k-sum not in Y ⇤

k,n(j) must intersect
with at least one of the k-sums of Y ⇤

k,n(j), we have that

Y ⇤
k,n(j)  Yk,n(j)  Y ⇤

k,n(j) + Wj,k,n.

Note that (writing
P

l,⇤ to be the sum over all overlapping pairs of k-sums of j
using elements of A with overlap of size l)

E(Wj,k,n) =
k�1X
l=1

X
l,⇤

p2k�l =
k�1X
l=1

O
�
n2k�l�2p2k�l

�

=
k�1X
l=1

O
⇣
n�l/k(log n)(2k�l)/k

⌘

= O
⇣
n�1/k(log n)(k+1)/k

⌘
= o(1),

as desired. 2
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Theorem 3.6. With p defined as in Theorem 3.1, there exist constants �j > 0 and
⇠ > 0 such that

P
⇣
Y ⇤

k,n(j)  �j log(n) + O(
p

log n)
⌘
 2n�1�⇠.

Proof. In [7] it was shown that the number ⇢k,n(j) of (not necessarily disjoint)
k-sums of distinct elements of [n] [ {0} summing to j, for j 2 [↵n, (k � ↵)n], is
bounded below by

⇢k,n(j) � (1 + o(1))
(↵n)k�1

k!(k � 1)!
.

It is immediate that ⇢k,n(j) = O(nk�1), so that there exists a constant C(j) �
↵k�1

k!(k�1)! such that ⇢k,n(j) = C(j)(1 + o(1))nk�1. From Lemma 3.5, we have then
that for j 2 [↵n, (k � ↵)n],

E[Y ⇤
k,n(j)] = (1 + o(1))C(j)nk�1pk + o(1)

= (1 + o(1))C(j)K↵,k log n + o(1),

and so Lemma 3.4 gives us that

Med(Y ⇤
k,n(j)) = (1 + o(1))C(j)K↵,k log n + O

⇣p
log n

⌘
. (3)

Talagrand’s inequality (see Theorem 7.7.1 in [1]) gives us that for all t,m > 0 (where
h(s) = ks is the aforementioned certification function for Y ⇤

k,n(j) = f(J0, J1, . . . , Jn)):

P
⇣
Y ⇤

k,n(j)  m� t
p

h(m)
⌘

P
�
Y ⇤

k,n(j) � m
�
 e�t2/4.

Let t =
p

(4 + 4⇠) log n, and m = Med(Y ⇤
k,n(j)) to see that

P
⇣
Y ⇤

k,n(j) Med(Y ⇤
k,n(j))�

p
(4 + 4⇠) log n

q
kMed(⇢⇤k,n(j))

⌘
 2n�1�⇠.

Using (3), we see then that

P
✓

Y ⇤
k,n(j)  (1 + o(1))


C(j)K↵,k �

p
4 + 4⇠

q
kC(j)K↵,k

�
log n + · · ·

· · · + O(
p

log n)
◆
 2n�1�⇠.

Letting �j = C(j)K↵,k �
p

4 + 4⇠
p

kC(j)K↵,k, then for any ⇠ < "/4 (where this
is the " from the definition of K↵,k) it follows from C(j) � ↵k�1

k!(k�1)! that �j > 0 as
desired. 2

Theorem 3.7. With p = pn defined as in Theorem 3.1, for each j there exists a
constant �j > 0 such that

P
⇣
Y ⇤

k,n(j) � �j log(n) + O(
p

log n)
⌘
 2n�5/4.
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Proof. We will again use Talagrand’s inequality, but we shall now set

m� t
p

km = Med(Y ⇤
k,n(j)).

Solving for m, we get that

m =

 
t
p

k

2
+

1
2

q
kt2 + 4Med((Y ⇤

k,n(j))

!2

.

As in the proof of Theorem 3.6, we have that

Med[(Y ⇤
k,n(j)) = (1 + o(1))C(j)K↵,k log n + O

⇣p
log n

⌘
,

with C(j) � ↵k�1

k!(k�1)! so that

m =

 
t
p

k

2
+

1
2

q
kt2 + 4(1 + o(1))C(j)K↵,k log n + O

�p
log n

�!2

.

Let t =
p

5 log n to arrive at m = �j log n + O(
p

log n) for some constant �j . Apply
Talagrand’s inequality to see that P

⇣
Y ⇤

k,n(j) � �j log n + O
�p

log n
�⌘
 2n�5/4, as

desired. 2

We are now ready to prove our main result:

Proof of Theorem 3.1: Let

�n := min
j2Sk(↵,n)

�j , and �n := max
j2Sk(↵,n)

�j .

Note that there exist strictly positive finite functions g1(k), g2(k), g3(k) and g4(k)
of k, such that for all n, g1(k) < �n < g2(k) and g3(k) < �n < g4(k). It follows that
as n!1, we have

0 < lim
n!1

�n <1, and 0 < lim
n!1

�n <1.

It follows from Theorems 3.6 and 3.7 that there exists a ⇠ > 0 such that for all
j 2 Sk(↵, n),

P
⇣
Y ⇤

k,n(j)  �n log n + O
�p

log n
�⌘
 2n�1�⇠,

P
⇣
Y ⇤

k,n(j) � �n log n + O
�p

log n
�⌘
 2n�5/4.

It follows immediately that for any constant c,

P
�
Y ⇤

k,n(j)  c
�
� P (Yk,n(j)  c) ,
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and hence there exists a ⇠ > 0 such that for all j 2 Sk(↵, n),

P
⇣
Yk,n(j)  �n log n + O

�p
log n

�⌘
 2n�1�⇠.

Next note that by Lemma 3.3,

P
⇣
Yk,n(j) � Ck�n log n + O(

p
log n

⌘

= P
⇣
Yk,n(j) � Ck�n log n + O

�p
log n

�
, Yk,n(j) � CkY ⇤

k,n(j)
⌘

+ P
⇣
Yk,n(j) � Ck�n log n + O

�p
log n

�
, Yk,n(j) < CkY ⇤

k,n(j)
⌘

 O(n�2)no(1) + P
⇣
Y ⇤

k,n(j) � �n log n + O
�p

log n
�⌘

= O(n�2)no(1) + 2n�5/4.

Therefore, defining the event

Aj := {Yk,n(j) � Ck�n log n + O
�p

log n
�
} [ {Yk,n(j)  �n log n + O

�p
log n

�
}

P(Xk,n � 1)  P ([jAj)


X

j

P
⇣
Yk,n(j) � Ck�n log n + O

�p
log n

�⌘

+
X

j

P
⇣
Yk,n(j)  �n log n + O

�p
log n

�⌘

 kn
⇣
O(n�2)no(1) + 2n�5/4 + 2n�1�⇠

⌘
= O(n�⇠) = o(1),

and P(Xk,n = 0)! 1 as n!1 as desired. 2

Remarks: (i) If we consider representations of integers in [↵n, (k � ↵)n] using k
integers from Ak,n that are not necessarily distinct, we can prove a result similar
to Theorem 3.1. We skip the details.
(ii) In [7], the authors showed that if

p :=
k

s
k!(k�1)!

↵k�1 log n� k!(k�1)!
↵k�1 log log n + An

nk�1

for An = o(log log n), then

P(Ak,n is an asymptotic k-basis)!

8>><
>>:

1 if An !1
0 if An ! �1

exp
⇢
� 2↵

k�1e
�A↵k�1
(k!(k�1)!)

�
if An ! A <1.
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Therefore if we choose elements to be in Ak,n with probability

p = k

r
C log n

nk�1

for C < k!(k�1)!
↵k�1 , then w.h.p. Ak,n is not a k-basis, and so w.h.p. it is not a

representative k-basis. When C = k!(k�1)!
↵k�1 , the behavior of Ak,n as a k-basis hinges

on the behavior of lower order terms, and so again it is reasonable to expect some
integers to be represented only a few times as k-sums of elements of Ak,n. We
would expect then that Ak,n is not a representative k-basis w.h.p. As the constant
C increases to K↵,k, our random set becomes a representative k-basis w.h.p. as
n ! 1. We haven’t yet established any threshold behavior when k!(k�1)!

↵k�1  C <
K↵,k, leaving the door open for future research.

4. Further Research

It would be interesting to work out the asymptotics when A becomes a truncated
�(n)-representative k-basis for �(n) = o(n") for �(n) other than log n, and to what
extent the linearity of the target sumset can be relaxed from [↵n, (k�↵)n] to perhaps
[✓(n), kn� ✓(n)]. We expect the most di�cult challenges to present themselves for
�(n) = o(log n). In a similar vein, improvements in Theorems 2.1 and 3.1 would be
most instructive. In particular, how close to the additive basis constant k!(k�1)!

↵k�1 can
we force the constant in Theorem 3.1, as discussed in greater detail in the previous
paragraph?
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