
#A6 INTEGERS 15 (2015)

THE STRAIGHT LINE COMPLEXITY OF SMALL FACTORIALS
AND PRIMORIALS

Klas Markström
Department of Mathematics and Mathematical Statistics, Ume̊a University,

Ume̊a, Sweden
Klas.Markstrom@math.umu.se

Received: 6/13/13, Revised: 12/15/14, Accepted: 2/7/15, Published: 2/18/15

Abstract
In this paper we determine the straight-line complexity of n! for n  22 and give
bounds for the complexities up to n = 46. In the same way we determine the
straight-line complexity of the product of the first primes up to p = 23 and give
bounds for p  43. Our results are based on an exhaustive computer search of the
short length straight-line programs.

1. Introduction

In [10], Shub and Smale studied the complexity of a number of di↵erent algebraic
problems in terms of the number of ring operations needed to compute a given ring
element by a straight line program. A straight line program for an integer y can be
described as a sequence of tuples xk = (xi � xj), where i  j < k, x1 = 1, � can
be any of +,�,⇥, and the final element xf is equal to y. The smallest integer f
such that there exists a straight line program of length f is called the straight line
complexity, or cost, of y and is denoted by ⌧(y).

In [2], a general complexity theory for computation over rings was introduced (see
also [1]), and here the ultimate complexity of n! turned out to be of great interest.
For an integer x the ultimate complexity ⌧ 0(x) is defined as the minimum ⌧(y) for
all y which are integer multiples of x. In particular, if there exists a constant c
such that ⌧ 0(n!) is less than (log n)c then this would lead to a fast algorithm for
factoring integers; see the discussion in [4, 5]. The non-existence of such a constant
c would imply that P 6= NP over the complex numbers [10] and provide strong
lower bounds for several important problems in complexity theory; see [3] and [8].

The results of [6, 7, 10] provide upper and lower bounds for the straight line com-
plexity of general integers and imply that for most integers ⌧(n) is not O(p(log log n))
for any polynomial p. In [9], similar bounds were derived for functions over finite



INTEGERS: 15 (2015) 2

fields. The known bounds for a general integer n are

log2(log2 n) + 1  ⌧(n)  2 log2 n. (1)

The lower bound is optimal since ⌧(22k
) = k + 1. The upper bound is achieved by

first computing the necessary powers of 2 and then adding them according to the
binary expansion of n.

For specific integers, such as n!, there are few results that strengthen the general
bounds. However for n!, Cheng derived an improved algorithm, conditional on a
conjecture regarding the distribution of smooth integers, and earlier [11] a weaker,
unconditional bound was derived by Strassen.

The purpose of this short note is to report the exact values of ⌧ 0(n!) for small
values of n and likewise for ⌧ 0(p#), where p# is the primorial, which is the product
of all primes less than or equal to p. It is easy to see that, given a short straight
line program for p#, we can also find one for n! by using repeated squaring. Our
results were obtained by first doing an exhaustive computer search of all straight
line programs up to a given length followed by an extended search, adapted to
finding programs for n! and p#.

Most of the material in this note was originally part of a longer paper but while
preparing that paper the author found out that the non-computational results were
already covered by other recently published papers. That was over ten years ago
but given the slow progress on problems in this area we hope that these exact results
and bounds will help draw attention to the problems and stimulate interest among
new researchers. Additions to the material from the older paper is a recomputation
of all data using a newly written program and as a result of this an improvement of
some of the lower bounds, and the addition of data for the straight line complexity
of the factorials and primorials, instead of only their ultimate complexities.

2. Searching for Optimal Straight Line Programs

Our bounds have been found by doing an exhaustive search of the set of all straight
line programs of a given length. In Appendix A we give a more detailed description
of how the search was performed. In Figure 1 we display some statistics for the
straight line programs. We say that an integer y has been reached if there is a
straight line program of length at most k which computes y, and that y has been
covered if y is a divisor of xj for some j  k. We also include the length of the
longest interval of the form [1, . . . , x] in which all integers have been reached and
covered respectively.

Full data from the search were saved up to k = 9, after which the space re-
quirements for the full set of programs became prohibitive. For larger k we instead
extended the search to higher values of k for specific target integers, in particular the



INTEGERS: 15 (2015) 3

k Size of reached set Initial interval Covered interval Covered set
1 2 2 2 2
2 4 4 4 4
3 9 6 6 8
4 26 12 12 27
5 102 40 43 125
6 562 112 138 970
7 4363 310 705 13384
8 46154 1820 3546 337096
9 652227 10266 26686 19040788

Figure 1: Statistics for straight line programs of length at most 9

di↵erent factorials, primorials and multiples of them. A complete search of this type
was made up to k = 11, thereby finding the optimal program for the cases where
the length is at most 11 and providing a lower bound of 12 for the remaining target
integers. For certain target integers the complete search could be extended further
thanks to the e�ciency in pruning the search tree for larger targets, as described
in Appendix A. We also performed searches to extend some heuristically chosen
straight line programs, hoping to find improved upper bounds for some cases.

In Figure 2 we show the exact values for ⌧ 0(n!) for n  28 and for each such n
an example of an optimal straight line program. For larger n we display the best
method found by our partial search. The final columns states whether the method
is optimal or not, and otherwise the lowest possible value. In Figure 3 we show
the exact values for ⌧(n!) for n  14, and upper and lower bounds for some larger
values of n.

Similarly Figures 4 and 5 give exact values and bounds for the small primorials,
and multiples of them.

The optimal methods are noticeably better than the upper bound for ⌧(n!) given
in inequality (1). The method of Strassen [11] gives a bound ⌧(n!) = O(

p
n log2 n),

which seems to deviate more and more from the optimal methods for larger n. The
conditional method of Cheng [5] has a complexity of the formO(exp(c

p
log n log log n)),

which certainly seems compatible with the results for small n, but is so sensitive to
the value of the constant c that very little can be said based on small values of n.

The function ⌧ 0(n!) is a monotone increasing function however it is not obvious
that ⌧(n!) is. We end this note with an open problem.

Problem 2.1. Is ⌧(n!) a monotone function?

For small n Table 2 shows that ⌧(n!) is monotone, but we would not find it
surprising if this fails for larger n.



INTEGERS: 15 (2015) 4

n f Program Lower
bound

2 1 {1, 1,+} Opt
3 3 {1, 1,+}, {1, 2,+}, {2, 3, ⇤} Opt
4 4 {1, 1,+}, {2, 2,+}, {2, 3,+}, {3, 4, ⇤} Opt
5 5 {1, 1,+}, {2, 2,+}, {3, 3, ⇤}, {4, 1,�}, {4, 5, ⇤} Opt
6-
7

6 {1, 1,+}, {2, 2, ⇤}, {3, 3, ⇤}, {4, 4, ⇤},
{5, 5, ⇤}, {6, 4,�}

Opt

8-
10

7 {1, 1,+}, {2, 2,+}, {3, 3, ⇤}, {4, 4, ⇤},
{5, 5, ⇤}, {6, 4,�}, {7, 7, ⇤}

Opt

11-
14

9 {1, 1,+}, {2, 2,+}, {3, 3, ⇤}, {4, 4, ⇤},
{5, 3,+}, {6, 4, ⇤}, {7, 2,�}, {7, 8, ⇤}, {9, 9, ⇤}

Opt

15-
17

10 {1, 1,+}, {2, 2,+}, {3, 3, ⇤}, {4, 4, ⇤},
{5, 5, ⇤}, {6, 6, ⇤}, {5, 7,�}, {8, 8, ⇤},
{8, 9,�}, {9, 10, ⇤}

Opt

18-
19

11 {1, 1,+}, {2, 2,+}, {3, 3, ⇤}, {4, 2,+},
{5, 5, ⇤}, {6, 4,�}, {6, 7, ⇤}, {6, 8, ⇤},
{9, 7,�}, {9, 10, ⇤}, {11, 11, ⇤}

Opt

20-
22

12 {1, 1,+}, {2, 2,+}, {3, 3, ⇤}, {4, 4, ⇤},
{3, 5,+}, {6, 4, ⇤}, {2, 7,�}, {7, 8, ⇤},
{9, 9, ⇤}, {10, 5,�}, {10, 11, ⇤}, {10, 12, ⇤}

Opt

23-
28

14 {1, 1,+}, {2, 2, ⇤}, {3, 3, ⇤}, {4, 4, ⇤},
{5, 5, ⇤}, {6, 6, ⇤}, {5, 7, ⇤}, {8, 4,�},
{8, 9, ⇤}, {10, 9,�}, {8, 11,+},
{10, 12, ⇤}, {13, 13, ⇤}, {14, 14, ⇤},

Opt

29-
34

16 {1, 1,+}, {2, 2, ⇤}, {3, 3, ⇤}, {4, 4, ⇤},
{5, 5, ⇤}, {6, 6, ⇤}, {5, 7, ⇤}, {8, 4,�},
{8, 9, ⇤}, {10, 9,�}, {8, 11,+}, {10, 12, ⇤},
{13, 13, ⇤}, {14, 14, ⇤},{7,4,-}, {14, 15, ⇤}

14

35-
46

17 {1, 1,+}, {2, 2, ⇤}, {3, 3, ⇤}, {4, 4, ⇤}, {5, 5, ⇤}
{6, 6, ⇤}, {5, 7, ⇤}, {8, 4,�}, {8, 9, ⇤}
{10, 9,�}, {10, 11,+}, {11, 12, ⇤}, {13, 6,�}
{11, 14, ⇤}, {15, 15, ⇤}, {16, 16, ⇤}, {17, 17, ⇤}

14

Figure 2: Straight line programs for multiples of n!

Acknowledgements This research was conducted using the resources of High
Performance Computing Center North (HPC2N). The author would like to thank
Charles R Greathouse and Rich Schroeppel for pointing out an error in the first
version of the paper, and the anonymous referee for constructive criticism.



INTEGERS: 15 (2015) 5

References

[1] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and real compu-
tation. Springer-Verlag, New York, 1998. With a foreword by Richard M. Karp.

[2] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity
over the real numbers: NP-completeness, recursive functions and universal machines. Bull.
Amer. Math. Soc. (N.S.), 21(1):1–46, 1989.

[3] Peter Bürgisser. On defining integers and proving arithmetic circuit lower bounds. Comput.
Complexity, 18(1):81–103, 2009.

[4] Qi Cheng. Straight-line programs and torsion points on elliptic curves. Comput. Complexity,
12(3-4):150–161, 2003.

[5] Qi Cheng. On the ultimate complexity of factorials. Theoret. Comput. Sci., 326(1-3):419–429,
2004.

[6] Carlos Gustavo T. de A. Moreira. On asymptotic estimates for arithmetic cost functions.
Proc. Amer. Math. Soc., 125(2):347–353, 1997.

[7] W. de Melo and B. F. Svaiter. The cost of computing integers. Proc. Amer. Math. Soc.,
124(5):1377–1378, 1996.

[8] Pascal Koiran. Valiant’s model and the cost of computing integers. Comput. Complexity,
13(3-4):131–146, 2004.

[9] Abraham Lempel, Gadiel Seroussi, and Jacob Ziv. On the power of straight-line computations
in finite fields. IEEE Trans. Inform. Theory, 28(6):875–880, 1982.

[10] Michael Shub and Steve Smale. On the intractability of Hilbert’s Nullstellensatz and an
algebraic version of “NP 6= P?”. Duke Math. J., 81(1):47–54 (1996), 1995. A celebration of
John F. Nash, Jr.

[11] Volker Strassen. Einige Resultate über Berechnungskomplexität. Jber. Deutsch. Math.-
Verein., 78(1):1–8, 1976/77.

Appendix

Our bounds have been found by doing a two stage search of the set of all straight
line programs of a given length.

Definition 2.2. A straight line program is normalized if

(1) xi 6= xj if i 6= j

(2) xi > 0 for all i.

It is easy to see that an optimal straight line program for an integer n must
satisfy (1) of the above definition, and that every n has an optimal straight line
program which satisfies (2).

Further we say that two straight line programs p1 and p2, both of length k, are
range-isomorphic if the sequence of numbers computed by p2 is a permutation of
the sequence computed by p1. It is easy to see that this is an equivalence relation
on the set of straight line programs.



INTEGERS: 15 (2015) 6

Our search for optimal straight line programs was performed in two stages. First
we found one representative for each range-isomorphism equivalence class of the
normalized straight line programs of length up to k = 9. Second, a search targeted
at specific integers was performed.

The first stage was done as follows, starting from the initial straight line program
just containing the number 1.

1. Increase k by 1 and continue.
2. Extend all programs of length k�1 by one step in every possible way. Discard

those of the resulting programs which are not normalized.
3. Reduce the set of all programs of length k by only keeping one representative

for each range-isomorphism equivalence class.
4. Repeat from 1.

Step 3 is done since if one replaces an initial segment p0, of length t, of a straight
line program p1 by a range-isomorphic straight line program p0

0 then we can modify,
by changing some of the indices, the resulting program to a new program p0

1 which
computes the same set of numbers as p1. So, if p1 was an optimal program for some
integer N then p0

1 is also optimal for N .
After stage 1 is done we have found optimal programs for all integers N with

⌧(N)  9, and have shown that ⌧(N) � 10 for all other integers.
After the set of programs of length 9 had been found in this way we went on

with the second stage search. For each target integer N , such that ⌧(N) � 10 each
program of length 9 was extended in a targeted depth-first search.

Given a target integer N , each straight line program of length 9, found in the first
stage search, was recursively extended by one operation, up to a specified maximum
length K, with the following pruning criteria.

1. If the current program p computes the target N then save the program and
do not extend it further.

2. If the current program p is not normalized then do not extend it further.
3. If the current program has length k and the maximum integer x which it has

computed satisfies x2(K�k)
< N then do not extend it further.

The third condition is included since if a program p of this type is extended by
K � k steps then the resulting program cannot compute an integer as large as the
target N , if k � 2.

Using this depth-first search strategy each program of length 9 was extended to
k = 11 for each of our target integers. For the larger target integers the search could
be completed for larger values of k as well, thanks to the more restrictive bound
in the third pruning criterion, thus providing larger lower bounds for the optimal
straight line programs, and proving the optimality of the some of the programs
found.



INTEGERS: 15 (2015) 7

n f Program Lower bound
2 1 {1, 1,+} Opt
3 3 {1, 1,+}, {1, 2,+}, {2, 3, ⇤} Opt
4 4 {1, 1,+}, {2, 2,+}, {2, 3,+}, {3, 4, ⇤} Opt
5 6 {1, 1,+}, {1, 2,+}, {1, 3,+}, {3, 4, ⇤},

{5, 2,�}, {5, 6, ⇤}
Opt

6 6 {1, 1,+}, {1, 2,+}, {3, 3, ⇤}, {3, 4, ⇤},
{5, 5, ⇤}, {6, 4,�}

Opt

7 7 {1, 1,+}, {1, 2,+}, {2, 3, ⇤}, {2, 4, ⇤},
{4, 5, ⇤}, {6, 2,�}, {6, 7, ⇤}

Opt

8 8 {1, 1,+}, {1, 2,+}, {1, 3,+}, {3, 4, ⇤},
{5, 5, ⇤}, {6, 4,�}, {6, 7, ⇤}, {8, 2,�}

Opt

9 8 {1, 1,+}, {1, 2,+}, {2, 3, ⇤}, {2, 4, ⇤},
{4, 5, ⇤}, {6, 2,�}, {6, 7, ⇤}, {7, 8, ⇤}

Opt

10 9 {1, 1,+}, {1, 2,+}, {2, 3,+}, {2, 4,+},
{4, 5,+}, {6, 6, ⇤}, {4, 7, ⇤}, {5, 8, ⇤}, {8, 9, ⇤}

Opt

11 9 {1, 1,+}, {2, 2,+}, {3, 3, ⇤}, {3, 4,+},
{4, 5, ⇤}, {3, 6,+}, {5, 7, ⇤}, {8, 6,�}, {8, 9, ⇤}

Opt

12 10 {1, 1,+}, {2, 2,+}, {3, 3, ⇤}, {2, 4,+}, {4, 5, ⇤},
{4, 6,+}, {7, 7, ⇤}, {8, 4,�}, {6, 9, ⇤}, {5, 10, ⇤}

Opt

13 11 {1, 1,+}, {1, 2,+}, {1, 3,+}, {3, 3, ⇤}, {4, 5, ⇤},
{3, 6,+}, {5, 6, ⇤}, {7, 8, ⇤}, {7, 9, ⇤}, {10, 4,�},
{9, 11, ⇤}

Opt

14 11 {1, 1,+}, {2, 2, ⇤}, {3, 3, ⇤}, {3, 4,+}, {2, 5,+},
{5, 6,+}, {5, 7, ⇤}, {6, 8, ⇤}, {4, 9, ⇤}, {10, 8,�},
{10, 11, ⇤}

Opt

15 12 {1, 1,+}, {2, 2, ⇤}, {2, 3, ⇤}, {1, 4,+}, {3, 5, ⇤},
{6, 4,�}, {6, 7, ⇤}, {8, 4,�}, {6, 9, ⇤}, {10, 6,+},
{8, 11, ⇤}, {10, 12, ⇤}

Opt

16 12 {1, 1,+}, {2, 2, ⇤}, {2, 3,+}, {3, 4,+}, {3, 4, ⇤},
{4, 5, ⇤}, {6, 7,+}, {6, 7, ⇤}, {9, 5,�}, {8, 9, ⇤},
{10, 11, ⇤}, {11, 12, ⇤}

Opt

17 12 {1, 1,+}, {2, 2, ⇤}, {2, 3,+}, {2, 4, ⇤}, {5, 5, ⇤},
{6, 3,�}, {5, 6,+}, {6, 7, ⇤}, {8, 9, ⇤}, {4, 10, ⇤},
{11, 9,�}, {11, 12, ⇤}

Opt

18 13 {1, 1,+}, {1, 2,+}, {2, 3, ⇤}, {3, 4, ⇤}, {3, 5,+},
{6, 6, ⇤}, {5, 7,+}, {6, 8,+}, {5, 9, ⇤}, {7, 10, ⇤},
{7, 11, ⇤}, {12, 10,�}, {11, 13, ⇤}

Opt

19 13 {1, 1,+}, {2, 2,+}, {3, 3, ⇤}, {4, 2,�}, {4, 2,+},
{4, 5, ⇤}, {7, 3,�}, {6, 6, ⇤}, {7, 9, ⇤}, {9, 10, ⇤},
{11, 7,�}, {11, 12, ⇤}, {8, 13, ⇤}

Opt

20 14 {1, 1,+}, {2, 2,+}, {3, 3, ⇤}, {1, 4,+}, {3, 5, ⇤},
{6, 4,�}, {7, 7, ⇤}, {8, 3,�}, {8, 4,�}, {5, 9,+},
{5, 11, ⇤}, {9, 10, ⇤}, {13, 13, ⇤}, {12, 14, ⇤}

13

Figure 3: Straight line programs for n!



INTEGERS: 15 (2015) 8

p f Program lower bound
2 1 {1, 1, +} Opt
3 3 {1, 1, +}, {1, 2, +}, {2, 3, ⇤} Opt
5 5 {1, 1, +}, {2, 2, ⇤}, {3, 3, ⇤}, {4, 4, ⇤}, {4, 5,�} Opt
7 6 {1, 1, +}, {2, 2, ⇤}, {3, 3, ⇤}, {4, 4, ⇤}, {5, 5, ⇤}, {4, 6,�} Opt
11 7 {1, 1, +}, {2, 2, ⇤}, {3, 3, ⇤}, {3, 4, ⇤},

{3, 5, +}, {6, 6, ⇤}, {3, 7,�}
Opt

13 8 {1, 1, +}, {2, 2, ⇤}, {3, 3, ⇤}, {4, 4, ⇤},
{5, 5, ⇤}, {6, 6, ⇤}, {7, 7, ⇤}, {4, 8,�}

Opt

17 9 {1, 1, +}, {2, 2, ⇤}, {3, 3, ⇤}, {4, 4, ⇤}, {5, 5, ⇤},
{6, 6, ⇤}, {7, 7, ⇤}, {8, 8, ⇤}, {9, 5,�}

Opt

19-
23

10 {1, 1, +}, {2, 2, ⇤}, {3, 3, ⇤}, {4, 4, ⇤},
{5, 2,�}, {6, 6, ⇤}, {7, 7, ⇤}, {8, 8, ⇤}, {9, 9, ⇤}, {10, 8,�}

Opt

29-
31

11 {1, 1, +}, {1, 2, +}, {2, 3, +}, {2, 4, ⇤}, {5, 5, ⇤},
{6, 6, ⇤}, {7, 4, +}, {7, 5, +},
{9, 3, +}, {9, 8, ⇤}, {11, 10, ⇤}

Opt

37-
43

14 {1, 1, +}, {2, 2, ⇤}, {3, 3, ⇤}, {4, 4, ⇤}, {5, 5, ⇤}{6, 6, ⇤},
{5, 7, ⇤}, {8, 4,�}, {8, 9, ⇤}, {10, 9,�}, {10, 11, +},
{11, 12, ⇤}, {13, 6,�}, {11, 14, ⇤}

13

Figure 4: Straight line programs for multiples of p#

p f Program lower bound
2 1 {1, 1, +} Opt
3 3 {1, 1, +}, {1, 2, +}, {2, 3, ⇤} Opt
5 5 {1, 1, +}, {1, 2, +}, {2, 3, +}, {2, 3, ⇤}, {4, 5, ⇤} Opt
7 6 {1, 1, +}, {1, 2, +}, {2, 3, +}, {3, 4, ⇤}, {5, 1,�}, {5, 6, ⇤} Opt
11 7 {1, 1, +}, {1, 2, +}, {2, 3, ⇤}, {2, 4, +},

{4, 5, ⇤}, {6, 6, ⇤}, {4, 7, +}
Opt

13 8 {1, 1, +}, {1, 2, +}, {2, 3, +}, {2, 4, ⇤},
{5, 5, ⇤}, {6, 6, ⇤}, {5, 7, +}, {3, 8, ⇤}

Opt

17 9 {1, 1, +}, {2, 2, ⇤}, {3, 3, ⇤}, {1, 4, +},
{3, 5, +}, {2, 5, ⇤}, {6, 7, ⇤}, {1, 8, +}, {8, 9, ⇤}

Opt

19 10 {1, 1, +}, {1, 2, +}, {2, 3, ⇤}, {4, 4, ⇤}, {4, 5, ⇤},
{6, 4,�}, {6, 1,�}, {8, 8, ⇤}, {9, 5,�}, {10, 7, ⇤}

Opt

23 11 {1, 1, +}, {1, 2, +}, {2, 3, +}, {2, 4, ⇤}, {5, 3, +}, {5, 6, ⇤},
{5, 7, ⇤}, {5, 8, +}, {9, 9, ⇤}, {10, 1,�1}, {11, 7, ⇤}

Opt

29 13 {1, 1, +}, {2, 2, +}, {3, 3, ⇤}, {2, 4, +}, {1, 5, +}, {2, 6, ⇤},
{7, 7, ⇤}, {6, 8, +}, {4, 9, +}, {4, 10, +}, {2, 9, ⇤},
{10, 11, ⇤}, {12, 13, ⇤}

12

31 15 {1, 1, +}, {2, 2, +}, {3, 3, ⇤}, {2, 4, +},
{1, 5, +}, {2, 6, ⇤}, {7, 7, ⇤}, {6, 8, +},
{4, 9, +}, {4, 10, +}, {2, 9, ⇤}, {10, 11, ⇤},
{12, 13, ⇤}, {4, 1,�}, {14, 15, ⇤}

12

Figure 5: Straight line programs for p#


