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Abstract
In 2002, Andrews, Lewis and Lovejoy studied the partition function PDO(n), the
number of partitions of n with designated summands in which all parts are odd and
found several identities and congruences satisfied by the function. In this paper, we
find further identities and congruences satisfied by PDO(n).

1. Introduction

In [1], Andrews, Lewis and Lovejoy introduced and studied a new class of partitions,
partitions with designated summands. Partitions with designated summands are
constructed by taking ordinary partitions and tagging exactly one of each part size.
For example, there are 10 partitions of 4 with designated summands, namely,

4 3+1, 2242 242, 24+1+1, 22+14+71,
'+14+1+1, 1+14+141, 1+1+1+1, 1414+1+1"

The total number of partitions of n with designated summands is denoted by PD(n).
Hence, PD(4) = 10. Further studies on PD(n) were carried out by Chen, Ji, Jin,
and Shen [7].

In the same paper [1], Andrews, Lewis and Lovejoy also studied PDO(n), the
number of partitions of n with designated summands in which all parts are odd.
From the above example, PDO(4) = 5. Note that (PDO(n)) is sequence A102186 in



the On-line Encyclopedia of Integer Sequences available at “https://oeis.org/A102186.”
The generating function found by Andrews, Lewis and Lovejoy for PDO(n) is
(4" 9" (a% ¢%)%

;PDO(n)qn T (40000 %) (0% 40 @

where, here and the sequel, for |¢| < 1 and positive integers n, we use the standard

notation
n—1 o)
(@a)o:=1, (3¢)n:=[[(1—ad®), and (a;¢)0 := [J(1 —ag™).
k=0 n=0

By using g-series and modular forms, they found (1) as well as the following iden-
tities.

Theorem 1.1 [1, Theorem 21 and Theorem 22] We have

- (4" 4")3(a% ¢%)3
PDO(2n)q"™ = 2 e , 2
2 DO = (o P T @
o0 (@ )% (0% ¢12)2

PDO@2n + 1)¢" = o0 E 3
,;) ( ) (¢ D)% (0% 0% (a5 ¢%)% ®)

- (4% 4%)2(a% ¢%)3
PDO(3n)g" = ES e 4
nz;; (3m)g (0 9)3. (4% 4"2)%, W

- (6% d*)3 (0% 4*)5 (4" ¢ oo
PDO@Bn+1)¢" = > == , 5
,;) ( ) (5 0)3 (0% 0*) e (4% ¢5)% ®)
- (6% 0% (¢°% ¢°) (0" 4") o
PDO3n+2)q" =2 = . 6
,,2::0 ( ) (4:9)5(a% 4" (©)
They also deduce the following congruences.
Corollary 1.2 [1, Corollary 19] We have

PDO(9n +6) =0 (mod 3), (7)
PDO(12n + 6) = 0 (mod 3), 8)
PDO(12n + 10) = 0 (mod 3), (9)

PDO(24n) = 0 (mod 3),

PDO(24n 4 16) = 0 (mod 3).

The aim of this paper is to find proofs of (2)—(6) and the following new identities
by using certain dissections of theta functions.



Theorem 1.3 We have

=~ n (0% )2 (a4 (0% 4')2,
PDO(4n)q" =
,; (n)e (@3 9)2 (6% 63) o0 (45 0%)2% (0% 6) % (424 ¢24) 2,
g _ (0% 0%)ae (0% 4 (5 PN . (10)
(4 0) 20 (4% 43) o0 (0% 4%) o0 (6% ¢5) 2 (625 ¢1?) oo
- n (B2 6%
;PDO(%JFDQ C(695%(6% )% (ah gL an
- (0% 4°)% (4% ¢°)2
PDO(4n =
Z:o n T 2)e =2 (4:9)% (4% ¢3)% ()
- n o (@b ") (6% 602
;PDO(MJF?))Q = 0L PR (13)
- n (@A) )5
2 PROG" = o ) (o 4 (14
— (0% 0%) 2 (0% %) o0 (6% ) oo
PDO(6n "= ,
nz:% (Gn 27 =2 (¢:9) (g% q%)% (19)
iPDO(6n+3)qn:4(q 10%)% (0% 6% (¢" 4% (16)
o (¢ 9)5. (4% ¢%)3 ’
= v o (@000 0o (0% 0%) 3 (6% ¢%) o
;PDO(Gn—i—B)q =8 @ , (17)
= n () %)% (g% q)(q ®)%,
PDO(9n = ,
2, PPOGn+3)i" =4 {(q,q> RO (@R }
(18)
S N e R Uil i
;PDO(gnM)q =12 COETCYo (19)
- (4:9) 0 (@ a®) (%)L
PDO(12n)¢" o
2, PPOUZ" = o {<q;q>m<q,q>w
4 54q (@% 65 (quq)
(q;q)oo
8142 (0% 625, (6% ¢®) 2 (6% )%, } (20)

(@:9)%



S (0% a®) (6% )L
O(12n n_
3 PDOGn+ 2" =2 {7
(@% ¢*)2 (6% Q) (4% %)
M wor )
- n w o [P0t e (a5 %)
,;PDO(M 9 4{(q;Q) S (0% ) ae (0% 412)%
L 160 (O 10) 00 (0% %) (645612 (6% 4%) oo
(q,q)17
PG et U >oo
(@ @)oo (0% 0% o (0% ¢12) 2,
gg TP ) (q; 0)eela?:4")%
(4:9) e (a5 4%)% (g8 q)
(4% %) e (% )(8 $)a(¢'%¢")>
16¢> =y
v (@0 (a5 a2, j
>3 (%)

i PDO(12n + 6)¢" = 12 { (¢

= (0)82(q% a%)%

(0% )3 (¢% ¢°)a (q6;q6)‘éo}
(4:9)%8 ’
e 2. 2\14/ 4. ,4\2 6. .,6\4
T;PDO(:[QTL-FQ)Q” — 16 {(q q()oo)(lqs(’ (]12)001(2(])2:1 )oo
(0% 032, (¢% ¢*) oo (q*; 41 2 (¢% ¢°)
(@:9)7 (g% ¢%)%
(0503 2(0% %) (0% 6°) o (0% ¥
()X (q% g%
(4% a®)8. (4% M5 (6% 4% (0% 422
i (4:9)28(¢% %)%, }
(0% ¢*) 2% ¢°) 2
A o
(q2;q2)Zo(q3;q3)oo(q6;q6)Zo}
(g:9)%3 '

From the previous theorem, we easily deduce the following congruences.

+ 10q

+

+ 4q

> PDO(12n + 10)q" =
n=0

+ 16¢q

Corollary 1.4 We have

PDO(4n+2) =0 (mod 2),

(22)

(23)

(24)



PDO(4n + 3) =0 (mod 4),

PDO(6n+2) =0 (mod 2),

PDO(6n+ 3) =0 (mod 4),

PDO(6n+5) =0 (mod 8),

PDO(9n +3) = 0 (mod 4),

PDO(9n +6) = 0 (mod 12), (26)
PDO(12n+6) =0 (mod 12), (27)
PDO(12n+9) =0 (mod 16),

PDO(12n + 10) = 0 (mod 6). (28)

Note that, congruences (26), (27) and (28) are improved versions of (7), (8) and
(9), respectively.
We also find the following congruences.

Theorem 1.5 For all nonnegative integers n, we have

PDO(8n +6) =0 (mod 4), (29)

PDO8n+7) =0 (mod 8), (30)

PDO(18n + 15) = 0 (mod 24), (31)

PDO(9n +9) =0 (mod 4), (32)

PDO(24n +9) =0 (mod 8), (33)

PDO(24n + 15) = 0 (mod 8), (34)

and

PDO(24n 4 21) =0 (mod 8). (35)

In the next section, we give some definitions, preliminary results and dissections
of some theta functions. In the last section, we prove Theorems 1.1, 1.3, 1.5.

2. Definitions, Preliminary Results, and Proof of Some Dissections

Ramanujan’s general theta function f(a,b) is defined as

f(a,b) = Z a D/ 2pn(n=/2 5 gp) <1,

n=—oo

The well-known Jacobi’s triple product identity takes the form

fla,b) = (—a; ab) oo (—b; ab) oo (ab; ab) . (36)



Two special cases of f(a,b) are defined, for |¢| < 1, by [3, p. 36, Entry 22]

e’} 2. .,2\5

o= 10 = 3 = o) % (37)
and

¥(q) = qu(k+1)/2 )oo _ (q2§q2)go7 (38)

(qu )oo (4500

where the penultimate product representations in (37) and (38) arise from (36).
After Ramanujan, we also define

Next, we recall from [5] that

o) = i_ojoo g emin g0 (40)
Now we state a lemma.
Lemma 2.1 We have
¥(g) = f(¢°,4°) + qv(d”), (41)
Flaa?) = 20, (12)
¢’ (a) = 9*(¢%) +4qv* (). (43)

Proof. See [3, p. 49, Corollary(ii)] and [3, p. 350, Eq. (2.3)] for the proofs of (41)
and (42), respectively. Adding identities (v) and (vi) of [3, Entry 25, p. 40 |, we
can easily derive (43). m|

In the remaining lemmas of this section, we state and prove certain 2- and 3-
dissections.

Lemma 2.2 We have
1 B (0% ¢*)2 (0% 43
(@ D)oo (@®:10%)se  (¢262)% (4% ¢*) (4% 49 o (625 )2
(a*0")2 (a*5 a*) 2 m
+q(q 102) a0 (0% 0%)% (63:6%) 2 (012 ¢12) )




1 _ (0% 0°)2 (¢°% *4)2,
(@025 (0% 632 (4%02)% (0% %) (g0 ¢"0)2 (g8 ¢*3)2,
(0% ") ("% ¢")n
(4% ¢%)o0 (4% ¢%)%
s (q4;q4)io(q12;q12)io(q16;qm)io(q%;q‘*g);

+ 2¢q

+ 4q s : (45)
(0% 6%) 56 (4% 4°) 5 (%3 6*) oo (074 %)
Proof. From [6, Corollary 8], we find
b(@)e(a®) = v(g")e(d®) + e (") p(d). (46)
Again, we have from [6, Corollary 4]
2(9)p(¢%) = e(a)e(a") + 2q Y(d*) () + 4¢* P(¢®) (™). (47)
Employing (37) and (38) in (46) and (47), we easily derive (44) and (45), respec-
tively. O
Lemma 2.3 We have
1 (4.4)14 (4.42 8. 8)4
B 7*q") o 7*q") (0% 4°) o
T = T o s i T 2. 2110 (48)
(05 (6%¢*)(d® %) (6%:4%)
Proof. Employing (37) and (38) in (43), we readily arrive at (48). O
Proofs of the results in the next lemma can be found in [2].
Lemma 2.4 We have
6 3 2 2
(@ d%) _ (a"14")oe(d% %) (6%0%)00 (0" 0)oe (0550 )os 49
(@02 (0% (@2¢'2)% (a%:¢%)"
2 4 4 2
(@5 0°)se _ (4"9")00 (0% 6%) o0 (0% 0°) o (05 0"%) o
(705 (0% 0%) oo (@9 ¢'%)2 (% ¢*) o
6 2 2
Lo (0% a9 (0% ¢%) oo (02 0'2)2 (0155 16) 2
(2% 6%) e (0% %) 2 (2% 12
2 6
+2 (419" (4%6°) 2 (6% 0%) o (@5 4°Y)
(¢%; q2)go(q12; 4'2) o0 (q6; 16)?
4. 4\3 (6. .6\2 (,16. ,16\2 (24, 24
L ag (4% 4% ( ;q gog(q 1;q 1300((1 iq )oo’ (50)
(0% 4%) o0 (4'%¢"%)
1 ¢’ (=¢°) | 5 (= )w(@®) |, o 2 3 ¢°(=4")
= + 2q + 4q°w(q° ) ——=%, 51
o(—=q) (=% o' (—4%) ( )904(—(13) &D)



where
(69)00 (g% 453,
wlo) = (4% 6%)e (6% 4°)3 (52)
Lemma 2.5 We have

(@%¢)°,

(a:9)%

_ (¢%0%)0(d% ¢ (6% 0%)0(a% 4°) 01,2 (4 q)(q ¢)ae
(0% 63) o (485 4185, (4% ¢%) e (%5 ¢18)2, (0% 63) o0 (a'8; 4'8)%,
e (qG;qG);(qg'q9)71§q18;q18)w+60q4 (4% 0%, (4% ¢°) 2 (*5; ¢") %,

(@3 ¢%) e (¢%¢3)t
sy (@O q)l?gqm;ql%;mqﬁ (6900 (2%54"°)22 (53
(@3 ¢%) e (0% 09)2 (0% %) 2
Proof. Squaring both sides of (41) and then employing (42), we have
2 _<,02(—q9) 2,2/ 9 o(—q )¢( )
V*(q) = 2P + ¢*Y*(q )+297X( T (54)

Again, squaring both sides of (51), we find that

1 _wﬁ(—qg){1+4 (@) + 12820 (@) + 166w (¢®) + 16¢*w* (¢*)}. (55)
Pmq) (gt I TR R R

Now, replacing ¢ by —g in (37), we have

L (q,Q)io

Multiplying (54) and (55) and then employing (38), (39), (52) and (56), we easily
arrive at (53) to complete the proof. |

Lemma 2.6 We have

(%00 _ (6'%0")oc(a'50")% | (a% %) (4% ¢")2 (6% %)

. 3 2 2
(49 (0% 0%)o0 (635 ¢%%) o (a3 ¢3)% (4%, ¢8)%
5 (6% 0%)00 ("% 4"®) 00 (6% ¢°%) o

3
(@3 ¢%)o

oo

+ 2¢q




Proof. From [4], we have

c(a) _, ?(q°)

) () (58)
Employing (40) in (58), we find that
(054~ ("%¢")3 V*(q°)
(@) 1 (3 ¢%)° {1+q1/)2(q6)}' (59)
Next, replacing ¢ by ¢? in (54), we have
2/ 2\ _ @2(—6118) 4,2/ 18 2%0(—6118)1/}(6118)
Vi(g”) = s T4 Yi(q°) +2q ) (60)
Using (60) in (59), we obtain
(0% 4%) o
(¢ @)oo
(@)L L (G=0") | 4o 18y o 20(—)0(")
~ @ {”qwq)( 2(—gn) TV ) >}
(6% 3% (¢"®)
- (a3 %)%, {1+q W(qﬁ)}
(@225 [ @2 (=d") P(—q"%)1(g"®)
T R {ernee® 2 e | (61)

Employing (38), (39) and (56) in (61), we find that

3 4
(q4;q4)oo B (q12;q12)oo {1+ 3w2( 18)} N (q12;q12)oo(q18;q18)00

@0 " @l U@ ) @ o
18. 18 . 6. .6
+2(]2 (C] Y )00223;7(;):2300((] y 4 )oo. (62)

Now, multiplying both sides of (59) by ¥2(¢%)/%?(¢?), replacing q by ¢3, and
then employing (38), we deduce that

5 U0 (6%40)2 (0% ") (6% %)
V@) (0% 0) oo (@185 01) % (125 012)2,

Employing (63) in (62), we arrive at (62) to finish the proof. O

1+gq
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3. Proofs of Theorems 1.1, 1.3, and 1.5

Proofs of (2) and (3). Using (44) in (1), we have

- (@%¢%)2 ("% ).
PDO(n)q"™ = 00
T;) (e (4% 422 (0% 4*) oo (05 492 (024 24)2,
(a* 94, (q24;q24)io .
(4% 02) a0 (0% 4®) % (4125 ¢12)%,
2n+1

+4q

Extracting the terms involving ¢?" and ¢ in the above, we easily arrive at (2)
and (3), respectively. |

Proofs of (4)—(6). Using (57) in (1), we find that

00 2
S~ PDO(n)g" = (6% 0°)e (0" 0™®) (6% 0°)no (4% 0°) 2 (6°% ¢°%) o
= 2
=0 (0% 0%)a (650%)% 7 (6%6%)2(0'%0"2) o (4% '%)2,
45 36. 36
+q( )(,q)(qw])oo (64)
(4% ¢%) 2 (¢'% 4"%) e
Extracting from both sides of (64), the terms involving ¢®", ¢®"*!, and ¢*"*2
respectively, we arrive at (4)—(6), respectively. O
Proofs of (10) and (12). Employing (45) in (2), we have
oo 5
S PDOR)" = (" 0%)ae (a5 0%)" (6% 42,
= (6% 62)2 (0% 0°) o (4% ') 20 (15 419) 2 (4% 0*9)2
. L1232
+2q(q q) (q 0o
(4% 4*)o. (4% 402

+ 4q4

(¢
<4 ("% ") (6% ¢"%)%
(425427 (05 49) o0 (0% %) o0 (412 412)2 (424 ¢24)

Extracting the terms involving ¢?” and q2”+1 from both sides of the above we obtain
(10) and (12), respectively. O

Proofs of (11) and (13). Employing (48) in (3), we have

- n (%) (¢ ,q
PDO(2n - S °°
; (n = 1)a (g% %)% (¢5 {
(¢*;q*)2, (q q
2) }

+ 4q
(g%
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Extracting the terms involving ¢?” and ¢>**! from both sides of the above, we easily

deduce (11) and (13). |

Proofs of (14) and (16). Using (48) in (4), we arrive at

o0 2. .2\2 (6. 6\% 4. 414 4. 4\2 (8. 8\4
ZPDO(?m)q": < 7ql)200(12 72q ke 2 (2q 1’4q )800 8)4 4 i )200(2‘1 170‘1 e ’
o) (¢"%:¢"2) (0% 6%) o (0% 6%) oo (0% ¢%)
(65)
Now (14) and (16) can be deduced by extracting the terms involving the even and
odd powers of ¢, respectively, of the above. o
Proofs of (15) and (17). Employing (48) in (6), we arrive at
s 2..2\3 (6. 6 12. 12
o (¢% ")
14 2 4
(¢%4") g 05050 0% o 66
x 2.2148.84+q 2. ,2)10 - (66)
(0% 0%) 00 (6% ¢°) (* %)
Extracting the even and odd powers of ¢ from both sides of (66), we readily deduce
(15) and (17), respectively. O

Proofs of (18) and (19). Squaring both sides of (51) and then employing the
resultant identity in (4), we obtain

9

f: PDO(3n)q" = m{l +4q w(g®) +12¢* w?(¢*) + 16¢*w*(¢?)

o ©*(—q?)
+16¢* w'(¢*)}. (67)
Extracting from both sides of (67), those terms involving only ¢®"*! and ¢*"*2

respectively, we find that

Y PDOOn +3)g" =4 ©

n=0

and

i PDO(9n + 6)¢" = 12 wz(Q)wz(—qz);DG(—qg)7

n=0

which by (52) and (56) reduce to (18) and (19), respectively. O



Proofs of (20), (21), (23) and (25

12

). Employing (53) in (12), we find that

i PDO(4n + 2)q"
n=0
_ <qq><qq> (0% ¢%) s (¢°: 0o qu)(qq)”
—2{ 8 19 5 1
(0% 63)20(¢"%; ¢18)%, (2% 0) o (a*%;6"8) 2 (0% 63) o0 (q'%; ¢'8)%,
44 (4% 492 (¢% ¢°) (ql;q )oo+60q4 (4%0%)5. (a% ¢°)a (4% 4"
(g3 %)t (4% %) o
1 asgp 50065 ) (qls;qw);} (68)
(a3 ¢%) s
Extracting from both sides of (68), those terms involving only ¢3", ¢3"*! and ¢3"+2,
respectively, we deduce (21), (23) and (25).
Now we prove (20) and present a second proof of (23).
From (49), we have
<q3;q3>‘;:<qq><qq> <qq><qq>
@) (¢%¢)2 (% q12)8 (¢2:4%)2 (¢ q12)io
> (6%0Y) e (0% 695 (% ¢*)on (0% ¢%)ou (2% ¢"),
ol PaTaL s @ )°
s s1gt 0@ (@), (69)
(g% %)%
Employing (69) in (14), we find that
= (4% %)t (0% a2 (% %)L
PDO(6n)q" =
2, PRO" = T {<q~q>oo<q 2 g12)?
(¢4 (¢® ¢)ae 2 (g%0Y) o (a% 0%
12
T g )34((1 2,¢12)7 (4% ¢2)22
1108 (CH0)2 (@00 ()
(g% %)%
(¢ a*)5 (0% ¢%)a (05 "),
+81¢* v } (70)

Extracting the terms involving ¢?* and ¢*>"*! from both sides of (70), we readily

arrive at (20) and (23) to finish the proof.

O



Proofs of (22) and (24). Squaring both sides of (50), we have

(@% %), _ (g% g5 (6% )2 (6% 4®)o (4% 4"2) e

(:9)% (4% 62)20(a"%; ¢16) 5 (624 ¢24) 2
| g (¢"q )10(q6;q6)§8(q8;qs)iogq”;q”)io
(4% 6%) 5 (6*% ¢*4) 5,
44 (0% 42 (qG,qG)‘%(qg;q8)££q12;q12)oo
(qz;qQ)oo(qw'qw)oo
162 (0% a0 (0% %)% (6% 0% (6% ¢'%) e
(4% 62)or

(g% 9") e (a"; q) (4%9'2)2 (4" ¢"°),
(4% %) (4% ¢5)5 (q24;q24)io
(g% 442 (0% 0°)e (6% 6%) (445 ¢*)2
(4% 42) oo (4% 4'2) % (¢16; ¢1),
(g% 0")o (a"; q) (qw;q%(qlﬁ;qw);
(4% ¢%) e (% ¢5)%
<q4;q4>io<q8q> (4% ¢°)a (g
(4% ¢%) s (4'2:¢"2)%,
(0% a0 (0% %)n (a'%5 4'%)2 (¢ ¢°*) 2
(4% ¢%) s (2 ¢12)%

+ 4q2

+ 4q2

+ 164>

24, 24\2
+16q3 54 )oo

+ 164*

Now, using (71) in (16), we find that

o0 . (g% 0") e (0% 4%) o (0% ")
> PDO(6n +3)¢" =4 {(q 102) 5 (q'6; q16)4 (g% ¢24)%,

n=0
(0% g4t (a5 %)% ( 1q'%)0
4
B g )
(a* 42 (4% %) o (q ) (0'%¢"%) e
4
i () (% )
4 1642 (¢*q )oo(q ;q()qzi(qi);ﬁ )a (0% 4" e

> (q‘*'614)16(f112;ql2)4 (4" 4",
(0% 0%) e (@®: ¢%) 5 (q2"‘;q24)2
(0" 0%)o (4% 0°) 2 (6% %) oo (63 6*) 2%
(0% ¢%) e (@'%:¢'2)2 (¢'%; ¢'6)2,

+ 4q

+4q

13
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(a* 4" (4% ") ( 2,4'%) o (¢"%;¢')"
16 3 o0 o0
e (4% ¢2) e (% ¢%)%
5 (a5 aM5 (0% )2 (5 > <24;q24>io
i (P (% g2
4. 4 2 16\4 [ 24. 24)\2
4 164* (a* 4" (d%q )‘ﬁé 7% (®*iq )oo}. (72)

(g% 422 ¢12)%

Extracting the terms involving ¢?” and ¢>**! from both sides of the above, we easily
deduce (22) and (24), respectively. O

Proofs of (29)—(32). By the binomial theorem, it is easy to deduce that
(@:0)% = (¢*;¢°)os (mod 2) (73)
and

(4:9)5 = (0% 4")% (mod 4). (74)
Employing (73) in (12), (13), and (19), we find that

i PDO(4n + 2) ;=

5 (0% ¢°)2 (6% ¢%), (mod 2),

n=0

—~ PDO(4n +3) ,,
L

0

(0% 4% (4% ¢%)., (mod 2),

n

and

>, PDO(On +6) ,, _ (4%,
2 12 T @R (mod 2)

n=0

respectively. Now (29)—(31) are apparent from the above.
Now, from (67), we find that

o 2(_ 6Y,6(_ 9
ZOPDO(Sn)q" = W (mod 4).
Thus,

3 n = PER)(0)
T;)PDO(%l)q (0

I
—
g
o
(oW
N
SN—
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which can be rewritten with the help of (56) as

S w_ (6@
,;PDO(%)Q (¢59)"%(a* a*)*(¢% ¢%)° (mod 4).

Employing (74) in the above, we obtain

i": PDO(9n)q" =1 (mod 4),

n=0

from which (32) follows readily. O

Proofs of (33)—(35). From (72), we find that

<q "2 (" q> (4'2;¢'2)%,

PDO(6n+ 3)q" =4 mod 16).
3P0+ 0 =4 L v (104 19

=4 (¢* 4) (mod 16), (75)

which immediately yields (33)—(35). O

4. Concluding Remarks

1. It is not known whether the congruences in Corollary 1.2, Corollary 1.4, or
Theorem 1.5 are part of a family of congruences modulo prime powers or not. It
would also be interesting to find proofs of the congruences in this paper by appealing
to a rank/crank-type statistic.

2. Identities (1) and (2) imply that

E:PDO2n (E:PDO )é

n=0 n=0

It would be interesting to find a combinatorial proof of this identity.
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