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Abstract
We study combinatorial games under misère convention. Several sets of games have
been considered earlier to better understand the behaviour of misère games. We
here connect several of these sets. In particular, we prove that comparison modulo
binary dicot games is often the same as comparison modulo dicot games, and that
equivalence modulo dicot games and modulo impartial games are the same when
they are restricted to impartial games.

1. Introduction

In this paper, we study combinatorial games under misère convention, and focus
our analysis on some special families of games, namely dicot games, binary games,
impartial games and their intersections. We first recall basic definitions, following [1,
4, 5, 15].

A combinatorial game is a finite two-player game with no chance and perfect
information. The players, called Left and Right1, alternate moves until one player
is unable to move. The last player to move wins the game in its normal version,
while that player would lose the game in its misère version. In this paper, we are
mostly considering games in their misère version.

A game can be defined recursively by its sets of options G = {GL|GR}, where
GL is the set of games Left can reach in one move (called Left options), and GR

the set of games Right can reach in one move (called Right options). The typical
Left option of G is denoted GL, and the typical Right option of G is denoted GR. A
follower of a game G is a game that can be reached from G after a succession of (not
necessarily alternating) Left and Right moves. Note that a game G is considered
one of its own followers. The zero game 0 = {·|·}, is the game with no options (a

1By convention, Left is a female player whereas Right is a male player.
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Figure 1: Partial ordering of outcomes

dot indicates an empty set of options). A Left end (resp. Right end) is a game
where Left (resp. Right) cannot move. The birthday b(G) of a game G is defined
recursively as one plus the maximum birthday of the options of G, with 0 being the
only game with birthday 0. For example, the game ∗ = {0|0} has birthday 1.

The (disjunctive) sum G + H of two games G and H is defined recursively as
G+H = {GL +H,G+HL|GR +H,G+HR}, where GL + H is understood to
range over all sums of H with an element of GL, that is the game where each
player can on their turn play a legal move for them in one (but not both) of the
components. The conjugate G of a game G is recursively defined as G = {GR|GL},
where again GR is understood to range over all conjugates of elements of GR, that
is the game where Left’s and Right’s roles are reversed.

Under both conventions, we can sort all games into four sets, depending on their
outcomes. When Left has a winning strategy on a game G no matter which player
starts, we say G has outcome L, and G is an L-position. Similarly, N , P and R
(for Next, Previous and Right) denote respectively the outcomes of games on which
the first player, the second player and Right has a winning strategy whoever starts
the game. The misère outcome of a game G is denoted o−(G), while its normal
outcome is denoted o+(G). Outcomes are partially ordered according to Figure 1,
with Left prefering greater games.

A game G is said to be greater than or equal to a gameH in misère play whenever
Left always prefers having the game G to the game H in a sum, that is G !− H
if we have o−(G+X) ! o−(H +X) for every game X . A game G is said to be
equivalent to a game H in misère play, denoted G ≡− H , if we have both G !− H
and H !− G. Two games G and H are said to be incomparable if we have neither
G !− H nor H !− G. Comparability, equivalence and incomparability are defined
similarly in normal play, using superscript + rather than −.

Mesdal and Ottaway [8], and Siegel [14] gave evidence that equivalence and even
comparability are very limited in general misère play. This is why Plambeck and
Siegel defined in [12, 13] equivalence modulo restricted sets of games, leading to a
breakthrough in the study of misère play games.

Definition 1.1 ([12, 13]). Let U be a set of games, G and H two games (not
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necessarily in U). We say G is greater than or equal to H modulo U in misère play
and write G !− H (mod U) if o−(G + X) ! o−(H + X) for every X ∈ U . We
say G is equivalent to H modulo U in misère play and write G ≡− H (mod U) if
G !− H (mod U) and H !− G (mod U).

For instance, Plambeck and Siegel [12, 13] considered the sets of all positions of
given games, octal games in particular. Other sets have been considered, including
the sets of alternating gamesA [10], impartial games I [4, 5], dicot games D [2, 6, 7],
dead-ending games E [9, 11], and all games G [8, 14].

We believe that having some properties, namely being closed under followers,
addition and conjugates, makes a set more relevant to be studied. We hence define
a universe to be a set closed under followers, addition and conjugates. When a set
U is not a universe, it is natural to consider the closure c!(U) of U , that is, the
smallest set containing U that is closed under addition and followers. Note that
c!(U) might still not be closed under conjugates.

To simplify notations, we use !−
U and ≡−

U to denote superiority and equivalence
between games modulo a set U . The symbol = between games is here reserved to
denote recursive equality on the sets of options. Observe also that when U and U ′

are two sets such that U ′ ⊆ U , then we have G !−
U ′ H whenever we have G !−

U H .

In the following, we study several sets of games, namely dicot games, binary
games, impartial games and their intersections. A game is said to be dicot if it
is {·|·} or it has both Left and Right options and all these options are dicot. A
game is said to be binary if it has at most one Left option and at most one Right
option, and all these options, if any, are binary. A game is said to be impartial if
its Left options and its Right options are the same, and all these options, if any, are
impartial. Throughout this paper, the universe of dicot games is denoted D, the set
of binary games is denoted B, the set of binary dicot games is denoted (D ∩ B), and
the universe of impartial games is denoted I. Note that binary games, and binary
dicot games are not closed under addition.

Binary dicot games were introduced and studied by Allen in [2, 3]. In particular,
she proved the invertibility of an infinite family of binary dicot games modulo dicot
games.

In the following, outcomes of games (or sums of games) with small birthday
are often given without proof, but can be checked by hand. When considering an
impartial game G, as GL = GR, we note G′ a typical option of G. Observe that for
any game G with outcome P , G+ ∗ has outcome N . This is used without reference
throughout this paper. It is also worth noticing that many results in this paper are
due to the fact that the only end in the sets of games considered is 0, that is they
all have the same subset of ends.

The paper is organized as follows. In Section 2, we consider tractability to misère
convention of some normal play games properties, giving more evidence that misère
play is in general harder than normal play. In Section 3, we consider comparison
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modulo (D ∩ B), and prove that in infinitely many (non-trivial) cases, it is the same
as comparison modulo D. Finally, in Section 4, we look at impartial games modulo
D, and prove that comparison modulo I is the same as comparison modulo D when
restricted to this particular case.

2. Comparison Between Normal and Misère Play

In normal play, dicot games are called all-small, because they are infinitesimal, that
is for any positive number a and dicot game x, we have −a "+ x "+ a, which also
implies o+(a + x) = L. In misère play, this is no longer the case. In particular,
any pair made of a negative number and a positive number is incomparable [11],
which prevents any game to be in the interval between them. Nevertheless, it is
still natural to ask if there is a game G such that for any dicot game X , we have
o−(G +X) = L. Siegel [14] gave all the tools to answer this question by defining
the adjoint of a game and giving some of its properties.

Definition 2.1 (Siegel [14]). The adjoint of G, denoted Go, is given by

Go =






∗ if G = 0 ,

{(GR)o|0} if G '= 0 and G is a Left end,

{0|(GL)o} if G '= 0 and G is a Right end,

{(GR)o|(GL)o} otherwise.

where (GR)o denotes the set of adjoints of elements of GR.

Remark 2.2 (Dorbec et al. [6]). The adjoint of any game is a dicot game.

Proposition 2.3 (Siegel [14]). For any game G, G+Go is a misère P-position.

Thus, for any game G, we can find a dicot game, namely Go, such that o−(G+
Go) = P . From this, we can naturally find for any game G some dicot games to
sum G with and match any outcome.

Corollary 2.4. For any game G, we have:

(i) o−(G+Go) = P,

(ii) o−(G+ {Go|Go}) = N ,

(iii) o−(G+ {Go, (GR)o|(GL)o}) = L,

(iv) o−(G+ {(GR)o|Go, (GL)o}) = R.

where (GL)o (resp. (GR)o) is replaced by 0 when G is a Left (resp. Right) end.
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The natural following question is whether we can look at a smaller set U ⊂ D to
find a game G such that for any game X in U , we have o−(G +X) = L. Among
such sets, we answer that problem for the universe of impartial games I and the
set of binary dicot games (D ∩ B).

We first look at impartial games and define the game I = {∗|{∗|0}}. Note that
I is a binary dicot game.

Theorem 2.5. For any impartial game X, we have o−(I +X) = L.

Proof. Let X be an impartial game. We give a winning strategy for Left on I +X :
as long as Right has not played two moves in the I component and there is a move
in the X component leaving that component as an N -position, Left plays such a
move. If Right plays two moves in the I component, we know that Left played the
last move in the X component, leaving it as an N -position Y . Hence the resulting
game is 0+Y , which Left wins playing first a priori. Otherwise, at some point there
is no move in the X component leaving that component as an N -position, and Left
moves the I component to ∗. If Right moves ∗ to 0, either there is no move in the X
component and Left wins immediately, or she plays any move in that component,
resulting in a P-position, which she wins playing second. If Right moves in the X
component, he leaves that component as a P-position Y , and Left can move ∗ to 0.
Hence the resulting game is 0 + Y , which Left wins playing second a priori.

It might seem surprising that such a simple game, binary dicot with birthday 3,
might overtake any impartial game, but we remind the reader that for any dicot
game X , we have o+(1 +X) = L, and 1 seems way simpler than I in our opinion,
and dicot games have a richer structure than impartial games.

We now look at binary dicot games and define a family (Bi)i∈N as follows:

• B0 = {0|∗},

• Bi+1 =
{
{{0|Bi}|{0|Bi}}

∣∣{0|Bi}
}
.

Observe that we can recursively verify that Bi is binary dicot for any i.

This family serves here as a counterexample to our prior interrogation, as shown
in the following theorem.

Theorem 2.6. For any game G and any i with i ! b(G), we have o−(G+Bi) = R.

Proof. We prove the result by induction on i and b(G). If i = 0, then G = 0 and
o−(0 +B0) = R.

Assume now i ! 1. Assume first Right starts the game. If he has an available
move GR in G, he can play it and win by induction as b(GR) < b(G). Otherwise,
he plays to G + {0|Bi−1}. From there, Left can play to G+ 0 or possibly to some
GL + {0|Bi−1}. In the first case, Right wins as he has no move available. In the
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second case, he can play to GL + Bi−1 where he wins by induction as b(GL) "
b(G)− 1 " i− 1.

Assume now Left starts the game. If she plays to some GL+Bi, then Right wins
by induction as b(GL) < b(G). Otherwise, she plays to G + {{0|Bi−1}|{0|Bi−1}}.
Then Right plays in the G component as long as it is possible and Left is playing in
the G component. If Right cannot play in the G component, the proof is similar to
the proof of Right winning when he starts in G+Bi since playing in the G component
can only decrease its birthday. If Left plays to some G′ + {0|Bi−1}, Right answers
to G′ + Bi−1 where he wins by induction since b(G′) " b(G) − 1 " i − 1 as Right
played at least once in the G component.

This leads to the following corollary.

Corollary 2.7. For any game G and any i with i ! b(G), we have:

(i) o−(G+Bi) = R,

(ii) o−(G+Bi) = L,

(iii) o−(G+ {Bi|Bi}) = N .

Unfortunately, we cannot hope for a family (Hi)i∈N such that for any game G and
any i with i ! b(G), we have o−(G+Hi) = P , as this would mean o−(0+H1) = P
which implies o−(∗+H1) = N . Nevertheless, it might be possible to construct for
any game G a binary dicot game HG such that o−(G +HG) = P , which we leave
as an open question.

Question 2.8. Does there exist a game G such that for any binary dicot game X,
we have o−(G+X) '= P?

In misère play, having a game G greater than any element of a set of games closed
under conjugates is not equivalent to having the sum of each game of this set with
G be an L-position. Hence we may still wonder if such a game G exists for the sets
we considered earlier.

For dicot games, we may use the adjoint again and prove that the dicot game
(Go)o + ∗ and G are incomparable for any game G, as their sums with Go have
respective outcomes N and P . However, we propose here a proof that no such
game exists for both binary dicot games and impartial games, which implies the
result on dicot games.

We define a family (si)i∈N of games as follows:

• s0 = 0,

• si+1 = {si|si}.
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Observe that we can recursively verify that si is both impartial and binary dicot
for any i, and si can be seen as the sum of i games, each of them being ∗. Actually,
we can also recursively verify that any game that is both impartial and binary is of
the form si for some integer i.

Recall that the set of natural integers is recursively defined as k + 1 = {k|·}.

Theorem 2.9. For any game G and any integer i with i ! b(G) + 1, G and si are
incomparable.

Proof. Let G be a game and i an integer such that i ! b(G) + 1.

Consider the game G+ i. As Left would need at least i moves to get rid of the i
component, where Right has no move, Right can win by only playing in G where he
cannot play more than b(G) moves. Hence we have o−(G+ i) = R. Now consider
the game si+ i. Playing first, Left can choose to only play in the i component while
Right has no choice but to play in the si component. As both games would last
i moves and Left started, Right will play the last move and lose. Hence we have
o−(si + i) ! N .

A similar reasoning would prove that o−(G+ i) = L and o−(si + i) " N , which
concludes the proof.

Again, it is interesting to see how simple the families (si)i∈N and N are, which
emphasizes the complexity of misère play: in normal play, any si is equivalent either
to 0 or to ∗, depending on the parity of i; in misère play, we just proved that they
are pairwise incomparable.

It is worth noticing here that the games used to distinguish G and si are not
dicot, a fortiori neither impartial nor binary dicot. Hence we might consider the
question modulo the universe of dicot games. For dicot games, the answer is still
negative, as the game used to prove that G and (Go)o+∗ are incomparable, namely
Go, is dicot, but it might be possible to find a game greater than all impartial games
or all binary dicot games modulo the universe of dicot games. In particular, in the
case of binary impartial games, their intersection, such a game exists, and even such
a dicot game.

We define a game S =
{
0, ∗

∣∣{0, ∗|0, ∗}
}
. Note that S is dicot.

Proposition 2.10. For any binary impartial game G, we have S !−
D G.

Proof. Let G be a binary impartial game. As mentioned earlier, a binary impartial
game is of the form si for some integer i. Modulo D, si is equivalent to either 0 or
∗ [2]. Hence we can consider G to be either 0 or ∗.

First assume G = 0 and consider X a dicot game such that Left has a winning
strategy on 0 + X playing first (respectively second). On S + X , Left can follow
the same strategy, until either Right plays on the S component or she has no move
available in the X component. In the first case, she can answer in the S component
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by moving {0, ∗|0, ∗} to 0 and resume her winning strategy. In the second case, it
means the X component has been reduced to 0 and she wins by moving from S to
∗. Therefore S !−

D 0.

Now assume G = ∗ and consider X a dicot game such that Left has a winning
strategy on ∗+X playing first (respectively second). On S+X , Left can follow the
same strategy, unless the strategy recommends that she plays in the ∗ component or
Right eventually plays in the S component. In the first case, the move recommended
by the strategy is from ∗ to 0, hence moving from S to 0 is also a winning move.
In the second case, she can answer in the S component by moving {0, ∗|0, ∗} to ∗
and resume her winning strategy. Therefore S !−

D ∗.

As S is dicot, it could be interesting to find an impartial game or a binary game
sharing that same property. Unfortunately, as an impartial game can only have
outcome P or N , no impartial game can be both greater than 0 and greater than
∗ modulo any set containing 0. Moreover, we will see in the next section that any
binary game greater than 0 modulo binary dicot games has outcome N , and as such
is also incomparable to ∗ modulo any set containing 0.

As impartial games seem to have a more predictable behaviour (in particular we
have I !−

I X for any impartial game X), we highlight the following question.

Question 2.11. Does there exist a game G such that for any impartial game X,
we have G !−

D X?

In the case the answer is positive, it would also be interesting to find such games
G being dicot, as we know that no impartial game would have that property.

3. Comparison Modulo Binary Dicot Games

In this section, we focus on binary games, dicot games and their intersection.

First, we prove a useful result on the misère outcome of the adjoint of any binary
game.

Lemma 3.1. Let G be a binary game. Then the misère outcome of Go is totally
determined by the misère outcome of G, namely:

(i) if o−(G) = L, then o−(Go) = L,

(ii) if o−(G) = R, then o−(Go) = R,

(iii) if o−(G) = N , then o−(Go) = P,

(iv) if o−(G) = P, then o−(Go) = N .
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Proof. We prove the result by induction on G. If G is a Left end, then o−(G) ! N ,
and as GoR = {0}, we have o−(Go) ! P . Likewise, if G is a Right end, o−(G) " N
and o−(Go) " P . Assume now G is neither a Left end nor a Right end. Assume
first o−(G) ! N , that is Left’s only move from G is to a position with outcome L
or P . Then Right’s only move from Go is to a position with outcome L or N by
induction, and o−(Go) ! P . Similarly, if o−(G) " N , then o−(Go) " P . Assume
now o−(G) ! P , that is Right’s only move from G is to a position with outcome
L or N . Then Left’s only move from Go is to a position with outcome L or P by
induction, and o−(Go) ! N . Similarly, if o−(G) " P , then o−(Go) " N , which
concludes the proof.

This only works with binary games as, for example, o−({0, ∗|0}) = L and
o−({0, ∗|0}o) = N . The argument is that even though Left’s winning move to
∗ creates a losing move for Right to ∗o, Left’s other move to 0 is losing and thus
creates a winning move to 0o = ∗ for Right.

We can make the following remark about the adjoint of binary games.

Remark 3.2. The adjoint of any binary game is a binary dicot game.

Using Lemma 3.1, we can give the outcome of any binary game greater than or
equivalent to 0 modulo (D ∩ B).

Proposition 3.3. Let G be a binary game such that G !−
(D∩B) 0. Then o−(G) = N .

Proof. As o−(0) = N , we must have o−(G) ! N . Assume o−(G) = L. Then
o−(Go) = L. But o−(G +Go) = P < L = o−(0 +Go), contradicting the fact that
G !−

(D∩B) 0. Hence o−(G) = N .

This leads to the following corollary.

Corollary 3.4. Let G be a binary game such that G !−
(D∩B) 0, GLR exists and

GLR = 0. Then G ≡−
(D∩B) 0.

Proof. Let X be a binary dicot game such that Right has a winning strategy on X
playing first (respectively second). On G+X , Right can follow the same strategy,
until either Left plays on the G component or he has no move available in the X
component. In the first case, he can answer in the G component by moving from
GL to GLR = 0. In the second case, as G !−

(D∩B) 0, we have o−(G) = N , and
as the X component has been reduced to 0, Right wins playing first in G. Hence
G "−

(D∩B) 0.

As we assumed G !−
(D∩B) 0, we have G ≡−

(D∩B) 0.

The reader familiar with canonical forms of games would have recognized that
GL is (D ∩ B)-reversible through 0. In particular, Corollary 3.4 can be rephrased as
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A binary game that has a (D ∩ B)-reversible option through 0 is (D ∩ B)-equivalent
to 0. A slight modification of results presented in [6, 14] (see Lemmas 3.19 and 3.22
at the end of this section) would lead to a canonical form for binary dicot games
modulo (D ∩ B), but as we show at the end of this section, it would be the same
form as modulo D, hence we only mention its existence.

Despite Corollary 3.4, which could make us believe that many binary dicot games
greater than or equal to 0 modulo (D ∩ B) are actually equivalent to 0, there exist
some binary dicot games that are strictly greater than 0 modulo (D ∩ B). We here
give an example and define Z =

{
{∗|{∗|0}}

∣∣∗
}
and Ga = {0|∗}. Observe that Z is

a misère N -position and Ga is a misère R-position.

Proposition 3.5. We have Z >−
(D∩B) 0.

Proof. Let X be a binary dicot game such that Left has a winning strategy on X
playing first (respectively second). On Z + X , Left can follow the same strategy,
until either Right plays on the Z component or she has no move available in the X
component. In the first case, she can answer in the Z component by moving from
∗ to 0. In the second case, as X is dicot, it means the players have reduced X to 0,
and as Z is an N -position, Left wins playing first a priori. Hence Z !−

(D∩B) 0.

To see that the inequality is strict, one needs only see that o−(0 +Ga) = R while
o−(Z +Ga) = L.

We now want to compare comparison modulo (D ∩ B) with comparison modulo
D. The following results lead to Theorems 3.9, 3.17 and 3.24, which we consider
the most interesting results of this paper, together with Theorem 4.6.

We first focus on the game 0 and give a sufficient condition for a game to be
greater than or equal to 0 modulo (D ∩ B).

Lemma 3.6. Let G be a game with misère outcome N or L such that for any Right
option GR of G, there exists a Left option GRL of GR with GRL !−

(D∩B) 0. Then

G !−
(D∩B) 0.

Proof. Let X be a binary dicot game such that Left has a winning strategy on X
playing first (respectively second). On G + X , Left can follow the same strategy,
until either Right plays on the G component or she has no move available in the
X component. In the first case, she can answer in the G component by moving
from GR to some GRL with GRL !−

(D∩B) 0. In the second case, as G has misère
outcome N or L and X has been reduced to 0, Left wins playing first in G + 0.
Hence G !−

(D∩B) 0.

Using Lemma 3.6, we can give a characterisation of games greater than or equiv-
alent to 0 modulo (D ∩ B).
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Lemma 3.7. Let G be a game and i an integer with i ! b(G). Then we have
G !−

(D∩B) 0 if and only if Left has a winning strategy on G+{Bi|0} playing second.

Proof. As {Bi|0} is a binary dicot game with outcome P , if G !−
(D∩B) 0, then Left

has a winning strategy on G+ {Bi|0} playing second.

Assume now Left has a winning strategy on G+{Bi|0} playing second. We prove
the result by induction on G. If G = 0, then G !−

(D∩B) 0. Assume now G '= 0. As

Right can play from G+ {Bi|0} to G+ 0, o−(G) has to be N or L. Assume Right
plays from G+{Bi|0} to some GR+{Bi|0}. Then Left has a winning answer, which
cannot be to GR +Bi since Theorem 2.6 states its outcome is R. Then there exists
a Left option GRL of GR such that Left has a winning strategy on GRL + {Bi|0}
playing second. By induction, we have GRL !−

(D∩B) 0. Hence for any Right option

GR of G, there exists a Left option GRL of GR with GRL !−
(D∩B) 0. Then by

Lemma 3.6, G !−
(D∩B) 0.

The proof of Lemma 3.7 has for immediate consequence the converse of
Lemma 3.6.

Corollary 3.8. Let G be a game such that G !−
(D∩B) 0. Then for any Right option

GR of G, there exists a Left option GRL of GR such that GRL !−
(D∩B) 0.

We now have the tools needed to state Theorem 3.9.

Theorem 3.9. Let G be a game. Then we have G !−
D 0 if and only if we have

G !−
(D∩B) 0.

Proof. As (D ∩ B) is a subset of D, we naturally have G !−
(D∩B) 0 whenever we

have G !−
D 0.

Assume now G !−
(D∩B) 0. We prove the result by induction on G. If G = 0, we

have both G !−
(D∩B) 0 and G !−

D 0. Now assume G '= 0. Let X be a dicot game
such that Left has a winning strategy on X playing first (respectively second).
On G + X , Left can follow the same strategy, until either Right plays on the G
component or she has no move available in the X component. In the first case,
Corollary 3.8 ensures she can answer in the G component by moving from GR to
some GRL with GRL !−

(D∩B) 0. By induction, we have GRL !−
D 0, hence Left wins

the game a priori. In the second case, as we have G !−
(D∩B) 0, G has misère outcome

N or L, and X has been reduced to 0, so Left wins playing first in G + 0. Hence
G !−

D 0.

We would like here to emphasize the fact that in Theorem 3.9, G ranges in the
universe of all games. In particular, as G !−

D H implies G !+ H [6], we get that
only normal P-positions might be equivalent to 0 modulo (D ∩ B).
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In the following, we somehow extend this result by replacing 0 by a larger set of
games. Unfortunately, to get there, we also reduce the set in which we choose G.
First, we give the following definition.

Definition 3.10. For a game G and an integer i, we note G̃
i
the game given by

G̃
i
=






{Bi|0} if G = 0 ,

{(̃GR)
i
|0} if G '= 0 and G is a Left end,

{Bi|(̃GL)
i
} if G '= 0 and G is a Right end,

{(̃GR)
i
|(̃GL)

i
} otherwise.

Note that this definition looks quite similar to the definition of the adjoint, and

the G̃
i
games actually share several properties with Go, that we state here, the

proofs being similar to the proofs of the similar properties for the adjoint.

Remark 3.11. If G is a binary game, then G̃
i
is a binary dicot game.

Lemma 3.12. Let G be a binary game. Then the misère outcome of G̃
i
is totally

determined by the misère outcome of G, namely:

(i) if o−(G) = L, then o−(G̃
i
) = L,

(ii) if o−(G) = R, then o−(G̃
i
) = R,

(iii) if o−(G) = N , then o−(G̃
i
) = P,

(iv) if o−(G) = P, then o−(G̃
i
) = N .

Proposition 3.13. For any game G and any integer i such that i ! b(G), G+ G̃
i

has misère outcome P.

We now prove some intermediate lemmas to get to the proof of Theorem 3.17.
They are similar to the lemmas we proved to get to Theorem 3.9, with other sets
of games.

Lemma 3.14. Let G and H be games such that

1. if G is a Right end, then the misère outcome of H is either N or R.

2. for any Right option GR of G, there exists a Right option HR with GR !−
(D∩B)

HR or a Left option GRL of GR with GRL !−
(D∩B) H,

3. if H is a Left end, then the misère outcome of G is either N or L.
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4. for every Left option HL of H, there exists a Left option GL of G with GL !−
(D∩B)

HL or a Right option HLR of HL with G !−
(D∩B) H

LR.

Then G !−
(D∩B) H.

Proof. LetX be a binary dicot game such that Left has a winning strategy onH+X
playing first (respectively second). On G + X , Left can follow the same strategy,
until either Right plays on the G component from G to some GR, the strategy
recommends that she plays on the H component from H to some HL, or the two
players reduces X to 0. In the first case, she can either consider Right played from
H to some HR with GR ! HR, or answer in the G component by moving from GR

to some GRL with GRL !−
(D∩B) H . In the second case, she can either play in the G

component from G to some GL with GL !−
(D∩B) H

L or consider she moved to HL

and Right answered to some HLR with G !−
(D∩B) H

LR. In the third case, if it is
Right’s turn to play, H has outcome P or L so G is not a Right end and the same
argument as in the first case ensures Left wins. Assume then it is Left’s turn to
play. If H is not a Left end, the same argument as in the second case ensures Left
wins. Otherwise, as the misère outcome of G is either N or L, Left wins a priori.
Hence G !−

(D∩B) H .

Using Lemma 3.14, we can give a characterisation of games greater than or
equivalent to a binary game H modulo (D ∩ B), given that no follower of H has
outcome L.

Lemma 3.15. Let G be a dicot game, i an integer with i ! max(b(G), b(H))
and H a binary game such that no follower of H has outcome L. Then we have

G !−
(D∩B) H if and only if Left has a winning strategy on G+ H̃

i
playing second.

Proof. As H̃
i
is a binary dicot game such that H + H̃

i
has misère outcome P , if

G !−
(D∩B) H , then Left has a winning strategy on G+ H̃

i
playing second.

Assume now Left has a winning strategy onG+H̃
i
playing second. Left’s move to

any follower of G summed with Bi is always losing, which is why we never consider
it among potential winning moves in this proof. We prove the result by induction

on G and H . If H is a Left end, as Right can move from G+ H̃
i
to G, the misère

outcome of G is either N or L. If G is a Right end, as G is dicot, we have G = 0,

hence as Left can win G+ H̃
i
= H̃

i
playing second, H̃

i
has outcome P or L, which

means H has outcome N or L by Lemma 3.12. As we assumed H does not have
outcome L, H has outcome N .

Assume first Right plays from G + H̃
i
to some GR + H̃

i
. Then Left has a

winning answer, which is either to some GRL + H̃
i
or to some GR + H̃R

i
. In

the first case, there exists a Left option GRL of GR such that Left has a winning
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strategy on GRL + H̃
i
playing second. By induction, we have GRL !−

(D∩B) H .

In the second case, there exists a Right option HR such that Left has a winning

strategy on GR + H̃R
i
playing second. By induction, we have GR !−

(D∩B) HR.

Hence for any Right option GR of G, there exists a Right option HR of H such that
GR !−

(D∩B) H
R or a Left option GRL of GR with GRL !−

(D∩B) H .

Assume now Right plays from G+H̃
i
to some G+H̃L

i
. Then Left has a winning

answer, which is either to GL + H̃L
i
or to G + H̃LR

i
. With a reasonment similar

to the previous paragraph, we get that for any Left option HL of H , there exists
a Left option GL of G with GL !−

(D∩B) HL or a Right option HLR of HL with

G !−
(D∩B) H

LR.

Then by Lemma 3.14, G !−
(D∩B) H .

Here, we added the extra condition that G needs to be dicot. The problem is we
cannot deal with Right ends which are not 0, and as the proof is by induction we
only consider dicot games. To see that the result becomes false when you remove the
dicot condition, consider G = 1, i = 1 and H = ∗. Then Left has a winning strategy
playing second in 1 + ∗̃1, but 1 "−

(D∩B) ∗ as o−(0 + 1) = R and o−(0 + ∗) = P .

We also added the condition that H needs to be binary, and again, this condition
cannot be removed: consider G = 0, i = 2 and H =

{
{0|0, ∗}

∣∣0
}
. Then as o−(0) =

N , o−(H) = P and o−(H̃
3
) = L, we have 0 and H incomparable modulo (D ∩ B)

though Left has a winning strategy playing second in 0 + H̃
3
.

The third condition we added is that H has no follower with outcome L, which
again cannot be removed: consider G = 0, i = 0 and H = Z =

{
{∗|{∗|0}}

∣∣ ∗
}
. We

saw in Proposition 3.5 that Z >−
(D∩B) 0, hence we cannot have 0 !−

(D∩B) Z, whereas

Left has a winning strategy on 0 + Z̃
4
playing second as Z̃

4
has outcome P .

The proof of Lemma 3.15 has for immediate consequence the converse of
Lemma 3.14, with the additional hypothesis that G is dicot and H is binary with
no follower having outcome L.

Corollary 3.16. Let G be a dicot game and H a binary game such that G !−
(D∩B) H

and H has no follower with outcome L. Then

1. if G is a Right end, then the misère outcome of H is either N or R.

2. for any Right option GR of G, there exists a Right option HR with GR !−
(D∩B)

HR or a Left option GRL of GR with GRL !−
(D∩B) H,

3. if H is a Left end, then the misère outcome of G is either N or L.

4. for every Left option HL of H, there exists a Left option GL of G with GL !−
(D∩B)

HL or a Right option HLR of HL with G !−
(D∩B) H

LR.
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We are now in position to state Theorem 3.17.

Theorem 3.17. Let G be a dicot game and H a binary game with no follower
having outcome L. Then we have G !−

D H if and only if we have G !−
(D∩B) H.

Proof. As (D ∩ B) is a subset of D, we naturally have G !−
(D∩B) H whenever we

have G !−
D H .

Assume now G !−
(D∩B) H . We prove the result by induction on G and H . Let

X be a dicot game such that Left has a winning strategy on H + X playing first
(respectively second). On G + X , Left can follow the same strategy, until either
Right plays on the G component from G to some GR or the strategy recommends
that she plays on the H component from H to some HL, or the players reduce the
X component to 0. In the first case, Corollary 3.16 ensures she can answer in the
G component by moving from GR to some GRL with GRL !−

(D∩B) H or consider

Right moved in the H component from H to some HR with GR !−
(D∩B) HR.

By induction, we have GRL !−
D H or GR !−

D HR, hence Left wins the game a
priori. In the second case, Corollary 3.16 ensures she can play to some GL with
GL !−

(D∩B) HL or consider Right moved in the H component from HL to some

HLR with G !−
(D∩B) H

LR. By induction, we have GL !−
D HL or G !−

D HLR, hence
Left wins the game a priori. In the third case, if it is Right’s turn to play, H has
outcome P or L so G is not a Right end by Corollary 3.16 and the same argument as
in the first case ensures Left wins. Assume then it is Left’s turn to play. If H is not
a Left end, the same argument as in the second case ensures Left wins. Otherwise,
as the misère outcome of G is either N or L by Corollary 3.16, Left wins a priori.
Hence G !−

D H .

Though Lemma 3.15 cannot be extended by choosing G in all games, nor by
choosing H to all dicot games, we might still hope to extend Theorem 3.17. In
particular, it would be really interesting to know whether having G !−

(D∩B) H

impliesG !−
D H when G andH are both dicot games since equivalence modulo dicot

games is mostly used between dicot games, but having a similar result considering
all games would still give even more meaning to the set (D ∩ B). We here present
a proof of a similar result when G and H are both binary, using a slightly different
method. We need some results from [6] and [14], that we recall here, together with
some counterparts of other results from these papers adapted to binary dicot games.

We first recall the following proposition.

Proposition 3.18 (Dorbec et al. [6]). Let U be a set of games, G and H two games
(not necessarily in U). We have G !−

U H if and only if the following two conditions
hold:

(i) For all X ∈ U with o−(H +X) ! P, we have o−(G+X) ! P; and
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(ii) For all X ∈ U with o−(H +X) ! N , we have o−(G+X) ! N .

We can now adapt the following lemma to binary dicot games, being careful
about the construction staying in (D ∩ B), in particular by only considering binary
games.

Lemma 3.19. Let G and H be any binary games. If G "−
(D∩B) H, then:

(a) There exists some Y ∈ (D ∩ B) such that o−(G+Y ) " P and o−(H +Y ) ! N ;
and

(b) There exists some Z ∈ (D ∩ B) such that o−(G+Z) " N and o−(H +Z) ! P.

Proof. Negating the condition of Proposition 3.18, we get that (a) or (b) must hold.
To prove the lemma, we show that (a) ⇒ (b) and (b) ⇒ (a).

Consider some Y ∈ (D ∩ B) such that o−(G+ Y ) " P and o−(H +Y ) ! N , and
set

Z =

{
{0|Y } if H is a Right end

{(HR)o|Y } otherwise.

First note that since Z has both a Left and a Right option, and both these options
are binary dicot, Z is also binary dicot. We now show that Z satisfies o−(G+Z) " N
and o−(H+Z) ! P , as required in (b). From the game G+Z, Right has a winning
move to G+Y , so o−(G+Z) " N . We now prove that Right has no winning move
in the game H + Z. Observe first that H + Z is not a Right end since Z is not. If
Right moves to HR + Z, Left has a winning response to HR + (HR)o. If instead
Right moves to H + Y then, since o−(H + Y ) ! N , Left wins a priori. Therefore
o−(H + Z) ! P , and (a) ⇒ (b).

To prove (b) ⇒ (a), for a given Z we set Y = {Z|0} when G is a Left end and
{Z|(GL)o} when G is not a Left end and prove similarly that Left wins if she plays
first on H + Y and loses if she plays first on G+ Y .

We now recall the following definition and lemma, that will be useful in the
following.

Definition 3.20 (Siegel [14]). Let G and H be any two games and U a set of games.
If there exists some T ∈ U such that o−(G+ T ) " P " o−(H + T ), we say that G
is U-downlinked to H (by T ). In that case, we also say that H is U-uplinked to G
by T .

Lemma 3.21 (Dorbec et al. [6]). Let G and H be any two games and U be a set of
games. If G !−

U H, then G is U-downlinked to no HL and no GR is U-downlinked
to H.

We can now adapt the following lemma to binary dicot games, being careful that
the construction stays in (D ∩ B), again by only considering binary games.
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Lemma 3.22. Let G and H be any binary games. G is (D ∩ B)-downlinked to H
if and only if no GL !−

(D∩B) H and no HR "−
(D∩B) G.

Proof. Consider two binary games G and H such that G is (D ∩ B)-downlinked to
H by some binary dicot game T , i.e. o−(G+ T ) " P " o−(H + T ). Then Left has
no winning move from G+T , thus o−(GL+T ) " N and similarly o−(HR+T ) ! N .
Therefore, T witnesses both GL "−

(D∩B) H and G "−
(D∩B) H

R.

Conversely, suppose that no GL !−
(D∩B) H and no HR "−

(D∩B) G. By

Lemma 3.19, if G is not a Left end, we can associate to GL a game X ∈ (D ∩ B)
such that o−(GL + X) " P and o−(H + X) ! N . Likewise, if H is not a Right
end, we associate to HR a game Y ∈ (D ∩ B) such that o−(G + Y ) " N and
o−(HR + Y ) ! P . Let T be the game defined by

TL =






{0}
{(GR)o}
{Y }

if both G and H are Right ends,
if H is a Right end and G is not,
otherwise.

TR =






{0}
{(HL)o}
{X}

if both G and H are Left ends,
if G is a Left end and H is not,
otherwise.

As T has both a Left option and a Right option, and both these options are
binary dicot, T is binary dicot. We claim that G is (D ∩ B)-downlinked to H by T .

To show that o−(G + T ) " P , we just prove that Left loses if she plays first in
G+T . Since T has a Left option, G+T is not a Left end. If Left moves to GL+T ,
then by our choice of X , Right has a winning response to GL +X . If Left moves
to G + (GR)o, then Right can respond to GR + (GR)o and win. If Left moves to
G+ Y , then by our choice of Y , o−(G+ Y ) " N and Right wins a priori. The only
remaining possibility is, when G and H are both Right ends, that Left moves to
G+ 0. But then Right cannot move and wins.

Now, we show that o−(H + T ) ! P by proving that Right loses playing first in
H +T . If Right moves to HR + T , then Left has a winning response to HR + Y . If
Right moves to H +(HL)o, then Left wins by playing to HL + (HL)o, and if Right
moves to H +X , then by our choice of X , o−(H +X) ! N and Left wins a priori.
Finally, the only remaining possibility, when G and H are both Left ends, is that
Right moves to 0. But then Left cannot answer and wins.

With this, we can state some converse of Lemma 3.14, restricted to binary games.

Lemma 3.23. Let G and H be any binary games. If G !−
(D∩B) H, then

1. if G is a Right end, then the misère outcome of H is either N or R.

2. for any Right option GR of G, there exists a Right option HR with GR !−
(D∩B)

HR or a Left option GRL of GR with GRL !−
(D∩B) H,
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3. if H is a Left end, then the misère outcome of G is either N or L.

4. for every Left option HL of H, there exists a Left option GL of G with GL !−
(D∩B)

HL or a Right option HLR of HL with G !−
(D∩B) H

LR.

Proof. 1. and 3. are immediate since otherwise we would have o−(G+0) " o−(H+
0).

Now consider the Right option GR of G when it exists. As we have G !−
(D∩B) H ,

by Lemma 3.21, GR is not (D ∩ B)-downlinked to H . Hence by Lemma 3.22, there
exists a Left option GRL of GR such that GRL !−

(D∩B) H or a Right option HR of

H such that GR !−
(D∩B) H

R, which is exactly 2.
The proof of 4. is similar to the proof of 2.

We can now state Theorem 3.24.

Theorem 3.24. Let G and H be any binary games. We have G !−
(D∩B) H if and

only if we have G !−
D H.

Proof. As (D ∩ B) is a subset of D, we naturally have G !−
(D∩B) H whenever we

have G !−
D H .

Assume now G !−
(D∩B) H . We prove the result by induction on G and H . Let

X be a dicot game such that Left has a winning strategy on H + X playing first
(respectively second). On G + X , Left can follow the same strategy, until either
Right plays on the G component from G to GR or the strategy recommends that she
plays on the H component from H to HL, or the players reduce the X component
to 0. In the first case, Lemma 3.23 ensures she can answer in the G component by
moving from GR to GRL with GRL !−

(D∩B) H or consider Right moved in the H

component from H to HR with GR !−
(D∩B) H

R. By induction, we have GRL !−
D H

or GR !−
D HR, hence Left wins the game a priori. In the second case, Lemma 3.23

ensures she can play to GL with GL !−
(D∩B) HL or consider Right moved in the

H component from HL to HLR with G !−
(D∩B) HLR. By induction, we have

GL !−
D HL or G !−

D HLR, hence Left wins the game a priori. In the third case,
if it is Right’s turn to play, H has outcome P or L so G is not a Right end by
Lemma 3.23 and the same argument as in the first case ensures Left wins. Assume
then it is Left’s turn to play. If H is not a Left end, the same argument as in the
second case ensures Left wins. Otherwise, as the misère outcome of G is either N
or L by Lemma 3.23, Left wins a priori. Hence G !−

D H .

As we announced earlier in this section, Theorem 3.24 implies that we cannot
reduce a binary dicot game more by considering it modulo binary dicot games rather
than modulo all dicot games. This implies in particular that if the canonical form
of a dicot game (modulo D) is not binary, then this game cannot be equivalent to
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any binary dicot game modulo D, as it is easy to verify that the canonical form of
a binary dicot game modulo the dicot games (as defined in [6]) is a binary dicot
game. This emphasizes the fact that binary dicot games do not reach all equivalence
classes of dicot games modulo D, as for example there are 1268 equivalence classes
of dicot games with birthday at most 3 modulo D[6], and only 26 binary dicot trees
with birthday at most 3, among them only 13 are in canonical form. Nevertheless,
the equivalence classes they reach seem to be those that matter more, as the others
add nothing when comparing binary games, and in many other cases.

4. Comparison Modulo Impartial Games

In this section, we focus on impartial games and dicot games.

First, we recall some definitions and results about impartial games.

Definition 4.1 (Conway [5]). An option G′ of an impartial game G is said to be
I-reversible (through G′′) if G′′ ≡−

I G for some option G′′ of G′.

Definition 4.2 (Conway [5]). An impartial game G is said to be in impartial canon-
ical form if no follower of G has any I-reversible option.

Theorem 4.3 (Conway [5]). Consider two impartial games G and H in impartial
canonical form with G ≡−

I H. Then G = H.

Theorem 4.4 (Siegel [15]). Consider two impartial games G and H such that every
option of H is in impartial canonical form, and some option of H is reversible
through G. Then

(i) every option of G is an option of H,

(ii) every other option of H is reversible through G.

Another useful observation is the following, using the fact that impartial games
are their own conjugates.

Observation 4.5. Let G and H be two impartial games and U a set of games
closed by conjugates. If G !−

U H, then G ≡−
U H.

We are now in position to state the main result of this section.

Theorem 4.6. Let G and H be two impartial games such that G ≡−
I H. Then

G ≡−
D H.

Proof. By induction, we can consider that G and all options of H are in impartial
canonical form. If H is in impartial canonical form, then we have G = H , and so
G ≡−

D H . Hence we can assume H is not in impartial canonical form. This means
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there is a reversible option H ′ of H through an option H ′′ (of H ′) with H ≡−
I H ′′.

As H ′ is in impartial canonical form, so is H ′′, and H ′′ = G. By Theorem 4.4,
every option of G is an option of H , and every option of H that is not an option of
G has G as one of its options.

Now consider a dicot gameX such that Left wins G+X playing first (respectively
second). In H +X , she can follow the same strategy until either Right plays in H ,
or her strategy recommends a move in G, or there is no more any move available in
the X component. In the first case, either he moved the H component to a position
H ′ that is an option of G, and she can assume he played that move and resume
her strategy, or G is an option of H ′, so Left can just move the H component to
G and resume her strategy. In the second case, her strategy recommends her to
move the G component to some G′ that is also an option of H , so she can move
the H component to G′ and resume her strategy. In the third case, as G and H are
I-equivalent, they have the same outcome, hence as Left was winning G, she wins
H a priori. Therefore, we have H !−

D G, and so H ≡−
D G by Observation 4.5.

Note that the converse is obviously true since I ⊂ D.

Unfortunately, it is quite unlikely that we can extend this result much more, as
we now give several counterexamples to some ‘extensions’ that would have been
natural to consider.

The first potential extension we considered is: Do we have G !−
I H ⇒ G !−

D H
whenever G is dicot and H is impartial? Unfortunately, even reducing H to only
be 0 is not enough if we want G to be able to range over all dicot games.

Proposition 4.7. a) I !−
I 0,

b) I "−
D 0.

Proof. Theorem 2.5 tells us that whichever impartial game you add to I, the re-
sulting game has outcome L, so modulo impartial games, I is greater than or equal
to any game. Hence we have I !−

I 0.

To see b), one needs only see that o−(I + Io) = P while o−(0 + Io) = L. Hence
I "−

D 0.

The second potential extension we considered is: Do we have G ≡−
I H ⇒ G ≡−

D
H whenever G and H are dicot? Unfortunately, we again found counterexamples.

Proposition 4.8. a) I ≡−
I {I|I},

b) I '≡−
D {I|I}.

Proof. By Theorem 2.5, we know that for any impartial game X , we have o−(I +
X) = L. Hence, to prove a), we only need to prove the same for {I|I}, which we
do by induction. Let X be an impartial game. From {I|I}+X , Left can move to
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I + X , which is a misère L-position. From {I|I} + X , Right can either move to
I+X , a misère L-position, or to some {I|I}+X ′, which is also a misère L-position
by induction. Hence {I|I}+X is a misère L-position.

To see (b), one need only see that o−(I + Io) = P , by Proposition 2.3, while
o−({I|I}+ Io) = N , both players having a move to I + Io. Hence I '≡−

D {I|I}.

Another potential extension, for which we have no answer yet, would be the
following.

Question 4.9. Do we have G ≡−
I H ⇒ G ≡−

D H whenever G is dicot and H is
impartial?

The last potential extension we considered was to find a bigger set of games U
such that G ≡−

I H ⇒ G ≡−
U H whenever G and H are both impartial. Unfortu-

nately, as Allen pointed out [2], any universe U containing 1 = {0|·} or 1 = {·|0}
verifies ∗+ ∗ '≡−

U 0. As 1 and 1 are the simplest non-dicot position, this could make
one think that a set having the required property and strictly containing all dicot
positions would not be closed under addition and followers. However, we here give
an example of a universe satisfying these conditions.

First, we prove the following property.

Lemma 4.10. Let X be an impartial game and n a positive integer. We have
o−(X + n{·|I}) = L.

Proof. We prove the result by induction on n and X . Assume first Left starts
playing in X + n{·|I}. If X is not 0, then Left can play in the X component and
leave a misère L-position by induction. Otherwise, she cannot play at all and wins
immediately.

Assume now Right starts playing in X+n{·|I}. If he plays in the X component,
he leaves a misère L-position by induction. Otherwise, he moves toX+(n−1){·|I}+
I. If n = 1, this is a misère L-position by Theorem 2.5. Otherwise, Left can answer
to X+(n−1){·|I}+∗, and as X+∗ is an impartial game, leave a misère L-position.

Hence X + n{·|I} is a misère L-position.

The universe we consider is DI = c!(D ∪
{
{·|I}, {I|·}

}
). It is closed under

addition and followers as it is the closure of a set, and it is closed by conjugates as
D is closed under conjugates and {·|I} and {I|·} are each other’s conjugates. As I
and I are dicot games, the only non-dicot games in DI are sums of games including
{·|I} or {I|·}.

We now extend Theorem 4.6 to comparison modulo DI .

Theorem 4.11. Let G and H be two impartial games such that G ≡−
I H. Then

G ≡−
DI

H.
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Proof. For the same reason as in the proof of Theorem 4.6, we can consider every
option of G is an option of H , and every option of H that is not an option of G has
G as one of its options.

Now consider a gameX ∈ DI such that Left wins G+X playing first (respectively
second). In H +X , she can follow the same strategy until either Right plays in H ,
or her strategy recommends a move in G, or she has no more moves available in the
X component. In the first case, either he moved the H component to a position
H ′ that is an option of G, and she can assume he played that move and resume
her strategy, or G is an option of H ′, so Left can just move the H component to
G and resume her strategy. In the second case, her strategy recommends her to
move the G component to some G′ that is also an option of H , so she can move
the H component to G′ and resume her strategy. In the third case, as she has
no move in X , we have X = n{·|I} for some natural integer n. If n is positive,
then the position is a misère L-position by Lemma 4.10. If n = 0, as G and H are
I-equivalent, they have the same outcome, hence as Left was winning G, she wins
H a priori. Therefore, we have H !−

DI
G, and so H ≡−

DI
G by Observation 4.5.

Though this universe is somewhat artificial, it is interesting to see that there is
still some hope in finding universes bigger than the universe of dicot games, perhaps
some not so artificial, sharing this property.
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