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Abstract

We prove several identities on parametric sums involving the Legendre symbol.

1. Introduction

Our work is motivated by several recent problems published in the American Mathe-
matical Monthly that dealt with sums involving the Legendre symbol, most notably
Problem 11728 from October 2013 [1]. Here we consider more general expressions.
We begin by recalling the well-known definition from any introductory number the-

ory textbook.

Definition 1. For an odd prime number p and an integer a, the Legendre symbol

(a) is defined as follows:
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if a =0 (mod p)
if a is a quadratic residue modulo p and a # 0 (mod p)

if @ is a quadratic non-residue modulo p.

Below we list several important properties of the Legendre symbol that are used
throughout the text. In all of them p denotes a prime.

Property 1 (Periodicity).

If a = b (mod p), then (%) = (g) .
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G)=G)G)

While it is clear from the definition that 1 is always a quadratic residue modulo any
prime p, that is not the case with 2 and p — 1 (usually —1 is used instead).

(—_1> _ ()= {_1 if p=1 (mod 4)

Property 2 (Multiplicity).

Property 3.

, if p =3 (mod 4),

1, if p=1or 7 (mod 8)
-1, if p=3or5 (mod 8).

, ifp=1or1l (mod 12)
, ifp=>5or7(mod 12).

When p # 5

5\ etz| ) 1, ifp=1or4(mod5)
<_)_(_1)L J_{—L if p=2or 3 (mod 5).

Property 4. For 1 <j < (p-—1),

-

Proof. By Property 1 and Property 2, we have

)-()-()6)

Now, the result follows from Property 3. U

if p=1 (mod 4)
, if p=3(mod 4).

ASAETRSEEN

In his original work [3], Legendre gave the explicit formula

(E) =a"7 (mod p).

p

Another fundamental result, due to Gauss [2], is the law of quadratic reciprocity.

Property 5 (Law of Quadratic Reciprocity). For any two odd primes p and

q,
(£)()-cn=
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2. Preliminaries
Lemma 1. For any a and b such that p 1 a,

”i(m;z;)& O

=0

Proof. First, notice that the numbers (al + b) for I =0,...,p — 1 form a complete
set of residues modulo p. Indeed, if I; # s are such that al; + b = alz + b (mod p),
then a(l; —I3) = 0 (mod p) which contradicts the fact that p t a. Hence, for the
given sum we find

p—1 p—1 p—1 p—1
5)26)-6)26)-26)

S-S (0)- () ()-S ().

1=0 < p =0 \P p =1 \P =1 \P
The last sum vanishes, since exactly half of the numbers 1,...,p — 1 are quadratic
residues modulo p while the other half are quadratic non-residues. Indeed, the

.2 — _ . 2 . . .
congruence j2 = (p — j)? (mod p) implies that the squares of the numbers in the
set {1,...,(p—1)/2} are the same, up to ordering and modulo p, as the squares of
the numbers in the set {(p+1)/2,...,p — 1}. On the other hand, 22 # 3? (mod p)
for any « and y in the first set. Thus, there are exactly (p —1)/2 quadratic residues

modulo p, and exactly (p—1)/2 quadratic non-residues modulo p among the numbers
1,...,p— 1 as claimed. O

Lemma 2. Let p be a prime congruent to 7 modulo 8. Then
p—1
47+ 1
> ()i ©)
=1 p
Proof. Let S denote the sum to be shown to vanish. Using Lemma 1, we find

p—1 p—1
41 +1 41 +1
45:Z<—l+ >4Z+Z<—l+ >
=0 p =0 p
p—1
47+ 1 l
= <+ > w+n= % () L (3)
1=0 p 0<i<4p p
I=1(mod 4)

In the last sum, we change summation index from [ to 4p — [, and use Property 3
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5(3) 5, Qs

to obtain

0<i<4p
1=3(mod 4)
”Z’l Al+3 5 I 5 !
=0 p 0<i<4p p 0<i<4p p
1=3(mod 4) 1=3(mod 4)

where for the last equality we used Lemma 1 again. After adding (3) and (4)

together, we find

l l l
= (2= ()= 2 (5)
o<li<4p p 0<i<4p p 0<i<4p p
l odd l even

:O<l2<2(<]l_)>l+ (HTZP> (z+2p)) -y (%) 2l

P 0<i<2p

=(-() Z6) e 2 0)

D 0<i<2p

RS (ONCOIR

p

2
because, by Property 3, <—) =1 and, by Lemma 1, the last sum vanishes.
p

3. Main Results

Definition 2. For any prime p and integers a and b, let

S, (a,b) = pi (“l + b) L

=1 p

Claim 1. For any odd prime p # 3, Sp(a,b) is divisible by p.

Proof. Let a # 0 be a number co-prime with the odd prime p # 3. Adding a zero

term for [ = 0, we have

E()

=0
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By Property 1, there is no loss of generality in assuming that a and b are reduced
modulo p. Multiplying both sides of the last identity by a, we obtain

cﬁ“m@—a?é(M;b>l—§f<d;b>d—3f<d;b)MHb%

1=0 =0

where the last step follows from Lemma 1. As discussed in the proof of Lemma
1, the numbers al + b, I = 0,1,...,p — 1, form a complete set of residues modulo
p. After proper reordering, we denote these numbers by ¢;p+ 4, 5 =0,...,p — 1.
Then,

1

a&xmwzzgf(%ijj> ) pp0<-)qj+§:(.>

j=0 J j=0

Thus

’ p—1 .
J\ .
aSp(a,b) = Z (> j (mod p).
j=0 \P
In the case p = 4n + 1, using Property 4, we obtain
p—1 j (p—1)/2 j _j (p—1)/2
X ()= 5 |G+ () oa]=2 2 (5)=0tmin
= \p = L\ p

In the case p = 4n + 3, using Property 4 again, we can pair the terms in the sum
in the following fashion

IR [(%)H(’%j)@—fﬂ

(5)=1

As discussed in the proof of Lemma 1, the indices j for which <
12,22,...,((p —1)/2)? (mod p), up to ordering. Therefore,

) = 1 are exactly

Ty (p—Dp(p+1)
) — ;2 = = s 7 =
2 Z j=2 Z j° (mod p) = 15 (mod p) =0 (mod p).
OENEEE
The last step is justified by the fact that p is co-prime with 12 when p # 3. O

Claim 2. Ifp is prime and p 1 a, then

%mwz—(i)&mﬂ—w (6)

p
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Proof. Changing summation index in Sy(a,b) from ! to p — 1 — I, we obtain

O

Claim 3. For any integers a, b, and c,
S, (ca, cb) = (g) S, (a,b). (7)
Proof. The claim follows directly from Definition 2 and Property 2. O

The last claim indicates that it suffices to study the values of S,(a,b) only for
co-prime pairs (a, b).
To reduce even further the set of uncharted pairs, we introduce the following result.

Claim 4. For any integers a and b, the following formula holds

Sy(a,a+b) = S,(a,b) + (%) p. 8)

Proof. By changing the summation index from [ to [ — 1, we obtain

(@a+b) = p_1<al+a+b>lz(al+b> (-1

z;:<a ) IZP;(CLH_I))

2 () (50 G2 (57) ()

o+ (2.

where for the last equality we used Lemma 1. O

'UN
>—ANJ

|
n
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Corollary 1. For any integers a, b, and m > 1 the following formula is valid

m—1 .
B u ja+b
Sp(a,ma+b) = Sy(a,b) +p JE:O ( , ) . (9)

Proof. Apply Claim 4 inductively m times. O

Thus, for any fixed a, we only need to know the values of Sp,(a,b) for the set
b e {0,...,a—1}. By Claim 3, this set can be further reduced to those b’s that
are co-prime with a, assuming the sums S,(a,b) for smaller values of a are already
known.

It is evident from the above formula, as it is from Definition 2, that the sum
Sp(a, ma + b) is periodic in m with period of p. An interesting special case of
Claim 4 is @ = b. On one hand, we have S,(a,a) = Sp(a,0). On the other hand,

from Claim 2 we have Sp(a,a) = — <_1> Sp(a,0). Thus, Sp(a,a) = Sp(1,1) =0
p

whenever | — | = 1, which according to Property 3 is precisely when p = 4n + 1.

In the case wll)len p=4n+3, Sy(a,a) = Sy(a,0) is not necessarily zero as suggested
by the proof of Claim 1. These considerations are sufficient to compute S,(1,m)
for any m. We only need to know S,(1,0) or some S,(1,5) for that matter. Also
note that formula (9) can be applied “backwards”, i.e.

S, (a, —a+b) = S,(a,b) — (‘“p* b) », (10)

and therefore

(11)

Spla, —ma+b) = Sy(a,b) —p> (‘9“ b) |
=1

p

When a > 1, due to the periodicity, we need more initial values in order to compute
the values of Sp(a,b) for all b. In Claims 5 and 6 below, we provide the values of
Sp(a,b) for some other co-prime pairs (a, b).

Claim 5. For any prime p congruent to 1 modulo 4,
Sp(2,1)=0. (12)

Proof. From Claim 2, we have S,(2,1) = —5,(2,1), because (7) =1 O

Claim 6. For any prime p congruent to 7 modulo 8,

Sp(2,1) =0 (13)
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and

S,(4,1) = 0= S,(4,3) . (14)

Proof. We establish (13) as follows:

k=0 p k=0 p k=0
- 262602 6)
0<I<2p p 0<i<2p p 0<i<2p p
l odd l even
l l 21
-G () ) - 2 (5)e
0<i<p p p 0<i<p p
(=) () ) -0
p o<i<p p o<i<p p

2
because (—) =1.
p

In (14), Sp(4,1) = 0 by Lemma 2. The second equality follows from the first by
Claim 2.
[

The following procedure summarizes our findings:

Theorem 1. Let p be an odd prime, and let a be an integer, relatively prime to p.
For any integer b, relatively prime to a, the value of Sp(a,b) can be computed in the
following way:

1. Let k be the smallest (positive) integer such that ka = b (mod p). Then, by
Property 1,

Sp(a,b) = Sp(a,ka) . (15)
2. Using Claim 8, reduce Sp(a,ka) by

Sy (a, ka) = (%) S, (1, k). (16)

3. Further reduce Sp(1,k) according to

k—1 .
Sp(1,k) = S,(1,0) + J (17)
26

which is a particular case of (9), the Corollary of Claim 4.
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Or, summarizing 1-3 in a single formula,

Sp(a,b):<%> Sp(l,O)—Fka:(:l)(%) . (18)

Below, we illustrate the use of Theorem 1.
Example. Compute S53(7,13).

Following the steps outlined above, we solve the linear congruence 7k = 13 (mod
53). The smallest positive integer solution is £ = 17 and

553(7, 13) = (%) 553(1, 17) = 553(1, 17), for (%) =1

Thus, we need to find Ss3(1,17). Since 53 is of the form 4n + 1, the sum Ss3(1,0)

vanishes. Therefore L6
J
1,17) = E = ].

Among the integers from 1 to 16, quadratic residues modulo 53 are 1, 4, 6, 7, 9, 10,
11, 13, 15, 16. Hence, the last sum above has one zero term, 10 positive terms and
6 negative terms. Thus, Ss3(1,17) =53 -4 = 212. O

In Table 1 we show the relatively prime pairs (a,b) with 1 < a < 16 and |b| < 25 for
which the value of Sy(a, b) is either 0, £p, or +2p for every prime p of the specified
form.

P h+1 8n+3 8n+5 8n+T7
S,(1,—2) —2p 0
S,(1,0) 0 0
Sp(lvz) p p
Sp(1,3) 2p 0
Sp(2,-1) —p —p p
S,(2,1) 0 0 0
Sp(2,3) P p p
S,(4,1) 0
S,(6,1) 0 0

Table 1: Relatively prime pairs (a,b) whose value of Sp(a,b) =0, £p, +2p.

Note that for p = 8n + 3 the values of S,(a,b) do not follow any simple pattern.
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