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Abstract
Beatty sequences are used to solve certain inequalities involving the tangent and
sine functions. Fraenkel’s theorem on nonhomogeneous Beatty sets is then used to
determine integers for which certain products of sines are positive (or negative).
Pairs of complementary nonhomogeous Beatty sets are recast as two pairs of com-
plementary nonhomogeneous Beatty sequences. The final section poses a general
question regarding the underlying connections between a broad class of functions
and Beatty sequences.

1. Introduction

Beatty sequences occur in pairs in accord with Beatty’s theorem that if r > 1 is an
irrational number, then the pair (bnrc)n2N and (bnr/(r � 1)c)n2N partition the set
N of positive integers. As a first glimpse of a relationship between such a pair and
a trigonometric function, let t(k) = k tan(1/k). Since t(k) > 1 on [1,1) and t(k)
! 1 as k !1, it is natural to consider the function

k(n) = least k 2 N such that t(k) < 1 + 1/n2.

Let a be the sequence of numbers n for which k(n + 1) = k(n) + 1, and let b be the
sequence for which k(n +1) = k(n). The first few terms of a and b are shown here:

a = (1, 3, 5, 6, 8, 10, 12, 13, 15, 17, 19, 20, 22, 24, 25, 27, 29, 31, . . .),
b = (2, 4, 7, 9, 11, 14, 16, 18, 21, 23, 26, 28, 30, 33, 35, 37, 40, 42, . . .),

We shall show in Section 2 that a and b are the Beatty sequences for r =
p

3 and
r/(r�1) = (3+

p
3)/2, indexed in the Online Encyclopedia of Integer Sequences [2]

as A022838 and A054406, respectively. In Section 2 a similar inequality involving
the sine function is solved using Beatty sequences for

p
6 and (6 +

p
6)/5.
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In Section 3, nonhomogeneous Beatty sequences (bnr + hc), in which the domain
is the set Z of all integers rather than N, are proved to have connections with certain
products involving the sine function. For example, if

f(x) = sin(
x⇡p

2
+

⇡

4
) sin(

(x + 1)⇡p
2

+
⇡

4
),

then the integers n for which f(n) < 0, and those for which f(n) > 0, are, respec-
tively, these sets:

{
�
(n� 1

4
)
p

2)
⌫
}n2Z = {. . . ,�8,�7,�5,�4,�2,�1, 1, 2, 3, 5, 6, . . .}

{
�
(n +

1
4
)(2 +

p
2)

⌫
}n2Z = {. . . ,�13,�10,�6,�3, 0, 4, 7, 11, 14, . . .}.

2. The Tangent Inequality and (
jp

3n
k
)

We begin with a lemma, an easy proof of which is omitted. Thoughout Sections 3
and 4, the letters n, k, and h represent numbers in N.

Lemma 1. Suppose that t in (0, 1) is irrational, and let s(n) = dnte or s(n) = bntc .
Let a be the sequence of numbers n such that s(n+1) = s(n), and b the sequence of
those n such that s(n + 1) = s(n) + 1. Then a is the Beatty sequence of 1/(1� t),
and b is the Beatty sequence of 1/t).

Theorem 1. Let k(n) be the least k such that k tan(1/k) < 1 + 1/n2. Then
k(n) =

⌃
n/
p

3
⌥

=
⌅
n/
p

3
⇧

+ 1.

Proof. Throughout, let k =
⌃
n/
p

3
⌥

and f(x) = tanx. First, if n = 1, then k = 1,
as asserted. For n � 2, the proof is in two parts: (i) k tan(1/k) � 1 < 1/n2, and
(ii) (k� 1) tan(1/(k� 1))� 1 > 1/n2. Part (i) depends on five lemmas, stated here
and proved later: 2

Lemma 2. If n � 2, then
1
k2

<
3
n2

� 5
n4

.

Lemma 3. If n � 1, then
1

5k4
<

2
n4

.
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Lemma 4. If 0 < u  1, then

u > tan
u

1 + u2
.

Lemma 5. If x � 8, then
xf (6)(1/x) < 300.

Lemma 6. If n � 6, then
5

4k6
<

1
n4

.

Assuming the lemmas, for h � 1 and x in (0, 1/h], we have

tanx = x + x3/3 + 2x5/15 + R5(x), (1)

where
R5(x)  M

6!
x6,

M = sup{f (6)(x), 0 < x  1/h}. Let u = secx and v = tanx. Then

f (6)(x) = 272u6v + 416u4v3 + 32u2v5

is strictly increasing on (0, 1/h], so that M = f (6)(1/h). In (1), put x = 1/h and
multiply by h to get

h tan
1
h

= 1 +
1

3h2
+

2
15h4

+
f (6)(1/h)

6!h5
. (2)

Now putting h = k =
⌃
n/
p

3
⌥
, by (2) it su�ces to prove that

1
3k2

+
2

15k4
+

f (6)(1/k)
6!k5

<
1
n2

, (3)

or equivalently, that
1
k2

+
2

5k4
+

f (6)(1/k)
240k5

<
3
n2

. (4)

By Lemmas 2-6, for k � 8 (and equivalently, for n � 13), the left side of (4) is
bounded above by

3
n2

� 5
n4

+
4
n4

+
1
n4

=
3
n2

,

so that by (3), k tan(1/k) � 1 < 1/n2 for n � 13, and it is easy to check that this
inequality also holds for n < 13.

We turn next to the proof of part (ii) of the theorem. Let {} denote fractional
part. Trivially,

{ np
3
}2  np

3
{ np

3
}
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for n � 1. Consequently,
3(

np
3
� { np

3
})2 < n2,

so that
3(k � 1)2 = 3

j
n/
p

3
k2

< n2,

and
1 +

1
n2

< 1 +
1

3(k � 1)2
.

Since
(k � 1) tan

1
k � 1

= 1 +
1

3(k � 1)2
+

2
15(k � 1)4

+ · · · ,

we have (k � 1) tan(1/(k � 1))� 1 > 1/n2, so that all that remains is to prove the
lemmas.

To prove Lemma 2, we start with two easily verified facts: 3k2 � n2 > 0, and
3k2 � n2 is not congruent to 1 mod 3. Thus, 3k2 � n2 � 2, so that

k2 � n2

3
� 2

3
. (5)

Now suppose that n � 4. Then n2 > 10, whence 6(3n2� 5) > 15n2, so that by (5),

k2 � n2

3
>

5n2

3(3n2 � 5)
.

This implies (3n2 � 5)k2 > n4 + 5n2 � 5n2/3 > n4, so that 1/k2 < 3/n2 � 5/n4. It
is easy to check that this also holds for n = 2 and n = 3.

Lemma 3 follows from

n4 < 10n4/9 = 10(n/
p

3)4 < 10k4.

To prove Lemma 4, for 0  u  1, let

g(u) = arctanu� u

1 + u2
.

Then g(0) = 0, and

g0(u) =
2u2

(1 + u2)2
> 0

on (0, 1). Thus, g(u) > 0 on (0, 1), so that

u > tan
u

1 + u2

on (0, 1), and this inequality holds also for u = 1.
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For the proof of Lemma 5, let g(x) = xf (6)(1/x). Let s = sec(1/x) and t =
tan(1/x). Then

g0(x) = �16s2

x
(17s6 � 17xs4t + 180s4t2 � 26xs2t3 + 114s2t4 � 2xt5 + 4t6) (6)

Putting u = tan(1/x) in Lemma 4 gives

tan
1
x

> tan
u

1 + u2
,

so that s2 � xt > 0. Consequently,

17s6 � 17xs4t > 0,
180s4t2 � 26xs2t3 > 0,

114s2t4 � 2xt5 + 4t6 > 0,

so that by (6), g0(x) < 0 for all x satisfying 0 < tan(1/x) < 1, hence for x � 8.
Therefore, g is strictly decreasing on [8,1), so that g(x) < 8f (6)(1/8) < 300 for
x � 8.

A proof of Lemma 6 follows:

5
4k6

<
5

4(n/
p

3)6
<

1
n4

for n � 6.

Corollary 1. Let t(k) = k tan(1/k), and let k(n) be the least k for which t(k) <
1+1/n2. Let a be the sequence of numbers n such that k(n+1) = k(n), and let b be
the sequence such that k(n + 1) = k(n) + 1. Then a and b are the Beatty sequences
given by a(n) =

⌅
n(3 +

p
3)/2

⇧
and b(n) =

⌅
n
p

3
⇧
.

Proof. Apply Lemma 1 to the result in Theorem 1. 2

3. A Sine Inequality and (
jp

6n
k
)

Theorem 2. Let k(n) be the least k such that 1 � k sin(1/k) < 1/n2. Then
k(n) =

⌃
n/
p

6
⌥
.
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Proof. Throughout, let k = k(n) =
⌃
n/
p

6
⌥
. Let h � 1, and put x = 1/h in the

Maclaurin series for sinx to find that

1� h sin
1
h

=
1

6h2
� 1

h4
(
1
5!
� 1

7!h2
)� 1

h8
(
1
9!
� 1

11!h2
)� · · ·

<
1

6h2
.

The least h such that 1/(6h2) < 1/n2 is clearly k, so that 1 � k sin(1/k) < 1/n2.
Now, to show that k is the least number k0 such that 1 � k0 sin(1/k0) < 1/n2, we
shall show that

1
n2

< 1� (k � 1) sin
1

k � 1
for k � 2. (For k = 1, note that n = 1 or n = 2, and in both cases, k = 1 is
the least number satisfying 1 � k sin(1/k) < 1/n2.) Suppose that k � 2, and let
k1 =

⌅
n/
p

6
⇧

= k � 1. The Maclaurin series for sine gives

1� k1 sin
1
k1

>
1

6k2
1

� 1
120k4

1

.

Also, n2 � 6k2
1 + 1, so that

n2(1� k1 sin
1
k1

) > (6k2
1 + 1)(

1
6k2

1

� 1
120k4

1

) > 1,

as desired. 2

Corollary 2. Let t(k) = k sin(1/k), and let k(n) be the least k for which 1�t(k) <
1/n2. Let a be the sequence of numbers n such that k(n + 1) = k(n), and let b be
the sequence such that k(n + 1) = k(n) + 1. Then a and b are the Beatty sequences
A022840 and A138235 given by a(n) =

⌅
n(6 +

p
6)/5

⇧
and b(n) =

⌅
n
p

6
⇧
.

Proof. Apply Lemma 1 to the result in Theorem 2.
2

4. Fraenkel’s Theorem and Sine Products

In the preceding sections, the notation (bn↵c) is used for the Beatty sequence of
a number ↵, where n 2 N. A set of the form {bn↵ + �c}, where � 6= 0 and n
ranges through Z, is called a nonhomogenous Beatty set. The definitive version of
Beatty’s theorem for complementary pairs of such sets (Fraenkel [1], Theorem XI,
p. 10) can be stated as follows:
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Theorem 3 (Fraenkel’s theorem.). Let ↵ and � be positive irrational numbers.
The Beatty sets {bn↵ + �c}n2Z and {bn� + �c}n2Z are complementary in Z if and
only if the following three conditions hold:

(i)
1
↵

+
1
�

= 1;

(ii)
�

↵
+

�

�
2 Z;

(iii) if n 2 Z, then n� + � /2 Z.

Theorem 4. Suppose that r > 1 is an irrational number and that t is a real number
not in Z. Let

f(x) = sin(
x⇡

r
� t⇡) sin(

(x + 1)⇡
r

� t⇡).

Then for every m 2 Z,

f(m) < 0 if and only if m 2 {b(n + t)rc}n2Z;

f(m) > 0 if and only if m 2 {
�
(n� t)

r

r � 1

⌫
}n2Z

Moreover, either 1 = b(n + t)rc where n = b2/r � tc or else 1 = b(n� t)r/(r � 2)c
where n = b2 + t� 2/rc .

Proof. Let ↵ = r, � = r/(r � 1), and � = tr. With � = �tr/(r � 1), Fraenkel’s
theorem implies that the resulting nonhomogeneous Beatty sets are complementary.
The zeros of f form the chain

· · · < (�2 + t)r < (�1 + t)r � 1 < (�1 + t)r < tr � 1 < tr < 2tr � 1 < 2tr < · · ·

Since each interval
((n + t)r � 1, (n + t)r)

has length 1, it contains exactly one integer, specifically b(n + t)rc . By Fraenkel’s
theorem, the set of integers complementary to {b(n + t)rc} is {b(n� t)r/(r � 1)c},
so that the latter integers are in the intervals ((n + t)r, (n + 1 + t)r).

The integer 1 must be in one of the two sets. Consider first the possilbility that,
for some n,

(n + t)r � 1 < 1 < (n + t)r.

Then
nr < 2� tr < nr + 1,

so that n = b2/r � tc. On the other hand, if 1 = b(n� t)r/(r � 1)c , we find
n = b2 + t� 2/rc . 2
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Example 5. Taking r = ⇡ and t = 1/2 gives

f(x) = sin(x� ⇡/2) sin((x + 1)� ⇡/2)
= cos(x) cos(x + 1).

By Theorem 11, the integers k satisfying f (k) < 0 are given by the nonhomogeneous
Beatty set

{b(n + 1/2)⇡c}n2Z = {. . . ,�11,�8,�5,�2, 1, 4, 7, 10, 14, . . .}

and those satisfying f(k) > 0, by the complementary nonhomogeneous Beatty set

{b(n� 1/2)⇡/(⇡ � 1)c}n2Z = {. . . ,�10,�9,�7,�6,�4,�3,�1, 0, 2, 3, 5, 6, 8, 9 . . .}.

If t = 0 in Theorem 4, then � = 0, so that (iii) in the hypothesis of Fraenkel’s the-
orem does not hold. Nevertheless, a separate proof very similar to that of Theorem
4, using Beatty’s theorem instead of Fraenkel’s, gives the following theorem.

Theorem 6. Suppose that r > 1 is an irrational number. Let

f(x) = sin
x⇡

r
sin

(x + 1)⇡
r

.

Then f(m) < 0 or f(m) > 0 according as m 2 {bnrc} or m 2 {bnr/(r � 1)c},
respectively. Moreover, either 1 = bnrc where n = b2/rc or else 1 = bnr/(r � 1)c ,
where n = b2� 2/rc .

5. Nonhomogeneous Beatty Sequences

A distinction between (homogeneous) Beatty sequences and (nonhomogeneous)
Beatty sets has already been made. We turn now to nonhomogeneous Beatty
sequences, (nr + h), where n 2 N. The basic idea is that a pair of sets that par-
tition all the integers contain two subsets that partition the positive integers, and
also two other subsets that partition the negative integers – and that the latter can
be modified to yield a partition of the positive integers. These four subsets can be
expressed as sequences indexed by N.

Lemma 7. Suppose that B1 = {bn↵ + �c}n2Z and B2 = {bn� + �c}n2Z are a
complementary pair of nonhomogeneous Beatty sets (as in Theorem 4, so that � =
��/(↵� 1)). Then 1 2 B1 if and only if

b(2� �)/↵c < 1� �/↵, (7)

in which case 1 = bn1↵ + �c , where n1 = b(2� �)/↵c .
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Proof. First, assume (7). Then the integer n1 = b(2� �)/↵c satisfies

1� �

↵
< n1 <

2� �

↵
,

so that 1 = bn1↵ + �c 2 B1. The converse clearly holds. 2

In the next theorem, we assume without loss of generality that 1 2 B1, because
otherwise 1 2 B2, by Fraenkel’s theorem, so that the roles of B1 and B2 could be
reversed in the statement and proof of the theorem. 2

Theorem 7. Suppose that B1 = {bn↵ + �c}n2Z and B2 = {bn� + �c}n2Z are a
complementary pair of nonhomogeneous Beatty sets and that 1 2 B1. If 0 2 B2, let
1 = bn1↵ + �c and 0 = bn0� + �c ; then

(dn↵� n1↵� �e)n2N and (dn� � n0� � �e)n2N (8)

are a pair of complementary nonhomogeneous Beatty sequences. On the other hand,
if 0 2 B1, let n2 be the least integer satisfying bn2� + �c > 0; then

(dn↵� n1↵ + ↵� �e)n2N and (dn� � n2� � �e)n2N (9)

are a pair of complementary nonhomogeneous Beatty sequences.

Proof. In this first case, the sequences (bn↵ + �c)n>n1 and (bn� + �c)n>n0+1 parti-
tion N. Equivalently, (bn↵ + (n1 � 1)↵ + �c)n>1 and (bn� + n0 + �c)n>1 partition
N. Consequently, the sets

(bn↵ + n1↵� ↵ + �c)n0 and (bn� + n0 + �c)n�1

partition �N. Multiplying all terms by �1, using the identity �bxc = dxe for
irrational x, and using d e instead of b c, we conclude that the sequences in (8)
are as claimed.

A proof for the second case is slightly di↵erent. The sequences (bn↵ + �c)n>n1

and (bn� + �c)n>n2 partition N. Consequently,

(b(n + n1 � 1)↵ + �c)n�1 and (b(n + n2 � 1)� + �c)n0

partition �N. Equivalently,

(d�n↵� n1↵ + ↵� �e)n�1 and (d�n� � n2� + � � �e)n0

partition N. Consequently,

(dn↵� n1↵ + ↵� �e)n>1 and (dn� � n2� + � � �e)n>0
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partition N, so that, after adjusting the index in the second sequence, the sequences
in (9) are as claimed. ⌅

The condition given in Lemma 7 for 1 2 B1 can be supplemented by a condition
for 0 2 B2, as in the first case in Theorem 7. We have 0 = bn� + �c for some
integer n, and necessarily, ��/� < n < (1 � �)/�, which is equivalent to ��/� <
b(1� �)/�c . Replacing � by ↵/(↵� 1) and � by ��/(↵� 1) yields

�

↵
<

⇠
� � 1

↵

⇡
. (10)

The steps are reversible, so that if (10) fails, then 0 2 B1, as in the second case in
Theorem 7. 2

Example 8. Taking ↵ =
p

2 and � =
p

1/2 gives � = 2+
p

2 and � = �1�
p

1/2.
The sequences in (8) are

(
l
n
p

2�
p

2�
p

1/2
m
)n2N = (1, 2, 4, 5, 7, 8, 9, . . .),

(
l
n(2 +

p
2) + 1 +

p
1/2

m
)n2N = (3, 6, 10, 13, 17, . . .),

these being essentially A258833 and A258834. The sets B1 and B2 of Theorem
7 are represented at the end of Section 1; viz., changing the signs of the negative
numbers in B1 and B2 gives the sequences in Example 16. The trigonometric
connection is as follows. Let

g(x) = f(�x) = sin(
⇡

4
� x⇡p

2
) sin(

⇡

4
� (x� 1)⇡p

2
).

Then the positive integers n such that g(n) < 0 are given by A258833, and those
such that g(n) > 0, by A258834.

Example 9. Taking ↵ =
p

2 and � = 1/2 gives � = 2+
p

2 and � = �1/2�
p

1/2.
The inequality (10) fails, so that 0 2 B1, as in the second case in Theorem 7. We
have

B1 = {. . . ,�7,�6,�4,�3,�1, 0, 1, 3, 4, 6, 7, 8, . . .}
B2 = {. . . ,�15,�9,�5,�2, 2, 5, 9, 12, 15, 19, . . .},

and the sequences in (9) are

(
l
n
p

2� 1/2
m
)n2N = (1, 3, 4, 6, 7, 8, 10, . . .);

(
l
n(2 +

p
2)� 3/2�

p
2 +

p
1/2

m
)n2N = (2, 5, 9, 12, 15, . . .),

these being A022846 and A063957.
Note that for fixed irrational ↵ > 1, the integers � that satisfy (10) comprise the

nonhomogeneous Beatty sequence (dn↵/(↵� 1e)n2N.
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6. Concluding Remarks

The author thanks the referee for suggesting a general setting for the results in
Sections 2 and 3, as follows. Suppose that f is a function such that asymptotically

f(h)� ahm = o(hm) as h ! 0 (11)

for some a > 0 and m 2 N. Let k(n) be the least k 2 N such that

f(
1
x

) <
1

nm

for every x � k.

Problem 10. Under what conditions does k(n) ultimately identify with the Beatty
sequence (

⌅
na1/m

⇧
)n2N?

In Section 2,
tan(h)

h
� 1� 1

3
h2 = O(h4),

and in Section 3,

1� sin(h)
h

� 1
6
h2 = O(h4).

In both cases, the identification with corresponding Beatty sequences starts from
n = 1. In both cases, the coe�cient a1/m, which is 1/

p
3 or 1/

p
6, is algebraic of

degree 2, and the residue grows asymptotically as h4 = h2m. In these special cases,
perhaps Theorems 2 and 9 can be proved using Liouville’s Approximation Theorem.

Finally, (11) can serve as a recipe for finding a wide variety of examples in answer
to the Question, using trigonometric, exponential, logarithmic, and other functions.
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