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Abstract
In this paper, we establish a number of new estimates concerning the prime counting
function 7(z), which improve the known results. As an application, we deduce a
new result concerning the existence of prime numbers in small intervals.

1. Introduction

After Euclid [8] proved that there are infinitely many primes, the question arose of
how fast the prime counting function

m(z) = Zl

p<z
increases as x — oo. In 1793, Gauss [9] conjectured that

odt
~ 1. = —
w) ~ ) = | s o),

which is equivalent to
x

wo) o (a 0a), (1)

In 1896, Hadamard [10] and de la Vallée-Poussin [24] proved, independently, the
relation (1), which is actually known as the Prime Number Theorem. A more
accurate well-known asymptotic formula for 7(z) is given by

ra)= 2 O +...+M+O<L>. 2)

= +
logz  log?z log’z log*z log" x log" ™ &

Panaitopol [15] provided another asymptotic formula for 7(z), by proving that

71'(.1?) = k1 ko _ kn(Atay, (2)) (3>

T log™ x
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for every n € N, where lim,_,, () = 0 and positive integers ki, ko, ..., k, are
given by the recurrence formula

kn+ Uk, 1+2%k, o+...4+(n—1)k =n-nl

For instance, we have k1 = 1, ko = 3, ks = 13, ky = 71, ks = 461 and kg = 3441.
Since, up to now, no efficient algorithm has been found for computing 7 (x) for
large z, we are interested in upper and lower bounds for 7(z). The first remark-
able estimates for the prime counting function are due to Rosser [18]. He used an
explicit zero-free region for the Riemann zeta-function {(s) and the verification of
the Riemann hypothesis to some given height to estimate Chebyshev’s functions

o) =Y logp, ()= > 0")
n=1

p<z

Using these estimates for 6(x) and the well-known fact that w(z) and 6(z) are

related by the equation
0 oot
n(e) = 20 / © (4)
log x o tlog®t

which holds for every © > 2, Rosser [18, Theorem 29] proved that the inequalities
x < (z) < x
" ()< —
logz + 2 logx — 4

hold for every « > 55. Up to now the sharpest estimates for 7(x) are due to Berkane
and Dusart [2]. In 2015, they proved that the inequality

< 2 x 2z n 7.57x
~logz  log?z  log®z log'z

holds for every x > 110118914 and that

7(x)

()

T T 2x 5.2z

m(x) >
()_1ogx log?z  log®z  log'z

(6)

for every x > 3596143. According to (2), we prove the following upper and lower
bound for 7(z), which improve the estimates (5) and (6) for large x.

Theorem 1.1. If x > 1, then
(z) < T n T 2x 6.35x 24.3bx 121.75x 730.5x¢ 6801.41:.
logz log’z log®z log*z log’z log® z log” log® «
Theorem 1.2. If x > 1332450001, then

lz) > x n x n 2z 5.6bx  23.65x  118.25x  709.5x  4966.5x
logz  log?z log®z log'z  log’z log® x log” log®z

(7)
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Further, in view of (3), we find the following estimates for ().

Theorem 1.3. If x > e384 then

a 8
m(z) < loow — 1 — L _ 335 _ 12.65 _ 717 _ 466.1275 _ 3489.8225 " (8)
2 log x log? x log3 x logt « log® x log® =
Theorem 1.4. If x > 1332479531, then
T
m(x) > logw —1— L _ 265 _ 1335 _ 703 _ 45b.6275 _ 3404.4235° 9)
2 log x log? x log3 x logt log® x log® =

As an application of these estimates for m(z), we obtain the following result con-
cerning the existence of a prime number in a small interval.

Theorem 1.5. For every x > 58837 there is a prime number p such that

1.1817)
log®z )~

x<p§:n<1+

2. Skewes’ Number

One of the first estimates for w(x) is due to Gauss. In 1793, he computed that
m(x) < li(x) for every 2 < x < 3000000 and conjectured that 7(z) < li(z) for every
x > 2. However, in 1914, Littlewood [14] proved that m(z) — li(x) changes the sign
infinitely many times by showing that there is a positive constant K such that the

sets
K/zloglogl
{x22|7r(:z:)—li(x)> ﬁogogogm}
log x
and Ky/zloglogl
{x>27r(x)—li(x)<— \/Eogogogx}
log x

are nonempty and unbounded. However, Littlewood’s proof is nonconstructive and
there is still no example of with m(x) > li(z). Let

= =min{z € Rxy | 7(z) > li(x)}.

The first upper bound for = which was found without the assumption that the of
Riemann hypothesis is true is due to Skewes [22] in 1955, namely
10963
=< 10"
The number on the right-hand side is known as the Skewes number. In 1966, Lehman
[13] improved this upper bound considerably by showing that = < 1.65-10115%. After
some further improvements the current best upper bound,

=< 6727.951336105 S 1.398 - 10316’
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was found by Saouter, Trudgian and Demichel [20]. The first lower bound was given
by the calculation of Gauss, namely = > 3000000. This lower bound was improved
in a series of papers. For details see for example [3], [4], [16], and [19]. For our
further inverstigation we use the following improvement:

Proposition 2.1 (Kotnik, [12]). We have = > 104,

3. New Estimates for the Prime Counting Function

Before we give our first new estimate for 7(z), we mention a result [6] about the
distance between x and 6(z), which plays an important role below.

Proposition 3.1 (Dusart, [6]). Let k € {1,2,3,4}. Then for every x > zo(k),

" (10)

where

k 1 2 3 4
Mk 0.001 0.01 0.78 1300

xo(k) || 908994923 | 7713133853 | 158822621 2

By using Tables 6.4 and 6.5 from [6], we obtain the following result.
Proposition 3.2. If z > ¢39, then
0.35z
log3 z
Proof. We set a = 3600 and e, = 6.93 - 107'2. Then we have
1.00007(a + )3 n 1.78(a +1)3
Vit (enti)2/3

for every integer i ranging from 0 to 75. By [7], we can choose

0(z) — 2| <

+epla+14+14)% <035 (11)

£y =6.49-107"2
for every €307 < g < €390 and therefore the inequality (11) holds with &4 =
6.49 - 102 for every integer i ranging from 75 to 100 as well. From Tables 6.4 and

6.5 in [6], it follows that we can choose 73 = 0.35 and zo(3) = 3% in (10). O

Now let k € {1,2, 3,4}, and choose 7, and z1 (k) so that the inequality

kT
logk z

0(z) — x| < (12)

holds for every « > 21 (k). To prove their estimates for (), Rosser and Schoenfeld
[19] introduced the following function, which also plays an important role below.
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Definition. For every x > 1, we define

0(z1(k)) x N
J, = k)) —
kank,x1(k)(x) 7T(.T1( )) logacl(k) + logx 10gk+1 -
! 1 Mk )

+ + dt ). 13
/xl(k) <1og2 t loght?t (13)

Proposition 3.3. If x > x1(k), then
Jk,*nk,wl(k) (l‘) < 7T(.T}) < Jk,nk,érl(k) (Z‘) (14)
Proof. The claim follows from (4), (12) and (13). O

3.1. Some New Upper Bounds for the Prime Counting Function

In this section we give the proofs of Theorem 1.1 and Theorem 1.3.

Proof of Theorem 1.1. We denote the term on the right-hand side of (7) by a(x)
and set

_ n 2x n 6x n 24.35x  121.75x n 730.5x  6801.4x
Clog’y  log’y log'y  log’y  log’y  log’y  logfy

B(z,y)

Let z1 = 10'*. We have

_ 16879logz — 54112

0/(33) - J§,0.35,zl(95) = (15)

log? «

for every © > x7. Since 6(x1) > 99999990573246 by [6], logz; < 32.2362, and
m(x1) = 3204941750802, we obtain

0(x1)

B log x1

m(z1) < 102839438084. (16)

It follows that
ar1) — J3.0.35.2, (11) > B(x1,e22352) — 102839438084 > 0.

Using (14) und (15), we get a(z) > m(x) for every = > 1.
We have

_0.35log” x — 1.05log"  + 1687.9log x — 54411.2 -

/ _ l'l
o/(2) = 1 (x) -

for every x > 5-10°. If we also use a(5-10%) —1i(5-10%) > 2.4 > 0 and Proposition
2.1, we get a(z) > w(x) for every 5-10° < z < 1014
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For every & > 47, we have o/(z) > 0. To obtain the required inequality (7) for
every 47 < z < 5-10°, it suffices to check with a computer that a(p;) > m(p;) holds
for every integer i ranging from 7(47) to 7(5 - 10°) + 1, which is really the case.

Since m(46) < a(46) and o/(z) < 0 is fulfilled for every 1 < z < 46, we obtain
a(x) > m(x) for every 1 < x < 46.

It remains to consider the case where 46 < x < 47. Here a(x) > 15 > m(x), and
the theorem is proved. O

Remark. The inequality in Theorem 1.1 improves Berkane’s and Dusart’s estimate

(5) for every z > 221,

By using Proposition 2.1, we prove our third result.

Proof of Theorem 1.3. We denote the right-hand side of the inequality (8) by £(x).
Let ; = 10'* and let

g(t) =t — 1% — 5 — 3.35t* — 12.65t> — T1.7t% — 466.1275¢t — 3489.8225.
Then ¢(t) > 0 for every t > 3.804. We set

h(t) = 2947010 4+ 11770t + 39068% + 1642387 4 712906¢° + 3255002t°
+ 12190826t* + 88308t> 4 385090t + 846526t — 12787805.

Since h(t) > 0 for every t > 1, we obtain

h(log x)

— >0 17
g?(logz)log*z ~ (a7)

fl(x) - ‘]2,3,0.35,1'1 (z) >

for every x > 3804,

Let K7 = 102839438084, a = 32.23619, and b = 32.236192. We set

f(s,t) = K1t + (K1 4 8)t° + (3.35 K + s)t° + (12.65K + 3s)t*
+ (717K, 4 138)® + (466.1275 K, 4 72.055)t2
+ (3489.8225K + 467.35)t 4 3494.255

and obtain f(z1,a) > b¥K;. Since a < logx; < b, we have f(x1,logz1) > K, log® 21
and therefore

1 log6 T+ 21 1og5 z1 + 317 log4 r1 + 1321 log3 x1 + 72.05z4 log2 T
+ 467.3z1 log x1 + 3494.25x4
> K; 1og8 1 — K4 log7 r1 — K4 log6 r1 — 3.35K; 1og5 T
—12.65K log* 21 — 7T1.7K log® z1 — 466.1275K log® 1
— 3489.8225 K1 log 7.
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It immediately follows that

T log9 T+ 21 1og8 1 + 371 log7 x1 + 1321 log6 x1 + 72.052 log5 T
+ 467.3x1 log4 x1 + 3494.25x, log3 x1 + 25.09524 log2 T
+ 163.144625x1 log x1 + 1221.437875x,
> Kig(logzy)log* ;.

Since the left-hand side of the last inequality is equal to xl(loglo T — (log3 1 +
0.35)g(log 1)), we have

z11og!® 21 > (K log* z1 + x1(10g3 x1 4+ 0.35))g(log x1).
Moreover, K7 > m(x1) — 6(x1)/logz1 by (16), and g(logx1) > 0. Hence,

0
1 log10 T > <<7r(:c1) — loiji) log4 T+ xl(log?’ T+ 0.35)) g(log ).

We divide both sides of this inequality by the positive value g(log 1) log? 21, and,
by (17) and Proposition 3.2, we get

§(x) > J3035,2, (v) > 7(2)
for every x > x7.
Now let 140000 < z < 7. We compare &(z) with li(z). We set
r(t) = 0.35t — 1.75¢1° + 1.75¢Y — 0.6° — 1.3t — 294925
—11917¢° — 40316t* — 155136t — 717716t> — 3253405t — 12178862.

Then r(t) > 0 for every t > 10.9, and we obtain

. log x)
(@)~ W (2) > —U%BL) - 18
for every z > 199, We have £(140000) — 1i(140000) > 0.0024. It remains to use
(18) and Proposition 2.1.

Now we consider the case where ¢*%3 < 2 < 140000. We set

s(t) =8 —2t7 — 1% — 4.35¢5 — 19.35¢* — 109.65t> — 752.9275t2 — 5820.46t — 20938.935.
Since s(t) > 0 for every ¢t > 4.53, we get

1 2¢1
log” x
for every > e*%3. Since g(logz) > 0 for every x > 3894 using (19) we obtain that
&' (x) > 0 holds for every z > %53, So we check with a computer that &(p;) > 7(p;)

for every integer i ranging from 7(e*3) to 7(140000) + 1.
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Next, let 45 < 2 < e*%2. Since we have s'(t) > 0 for every ¢t > 3.48 and
$(4.52) < —433, we get s(logz) < 0. From (19), it follows that '(z) < 0 for
every €380 < g < %52, Hence £(z) > £(e*??) > 26 > m(e*??) > () for every
03804 < 4 < 452

Finally, £(z) > 26 > nw(z) for every e*%? < x < %53 and the theorem is

proved. O

Remark. Theorem 1.3 leads to an improvement of Theorem 1.1 for every suffi-
ciently large x.

Corollary 3.4. For every x > 21.95, we have

T
() < 1 3.35 12.65 89.6
logx —1- logz ~ logZz logiz  logix
If x > 14.36, then
() :
e 1 3.35 15.43
logz —1— logz = logZz logdz
and for every x > 9.25 we have
T
(z) < 1 3.83
IOg(E —1- logz log? x
If x > 5.43, then
T
m(x)
loge —1— 110';;

Proof. The claim follows by comparing each expression on the right-hand side with
the right-hand side of (8) and with li(x). For small = we check the inequalities with
a computer. [

3.2. Some New Lower Bounds for the Prime Counting Function

Here we prove the theorems about the lower bounds for 7(z) .

Proof of Theorem 1.4. We denote the denominator on the right-hand side of (9) by
(). Then p(x) > 0 for every x > e>7. Let 2; = 10™. We set

and

r(t) = 287140 + 11244¢° + 36367t + 146093t + 691057t + 3101649t°
+ 11572765t* — 77484t% — 365233t% — 799121t + 12169597.
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Obviously r(t) > 0 for every ¢ > 1. Hence
log x)
Jy z) — ¢/ (z) > r( >0 20
o ()~ 6 0) 2 T > (20
for every z > €79, Since 6(10'*) < 99999990573247 by Table 6.2 of [6], 7(101*) =
3204941750802, and 32.23619 < log 1014 < 32.2362, we get

0(z1)

log a1

m(z1) — > 102838475779.

Hence, by (13),

1014 0.35- 104 1014
32.2362  32.23619%  (e32:23619)

J37_0‘35’I1 (C(Jl) — ¢($1) > 102838475779 +

> 322936.

Using (20) and Proposition 3.2, we obtain w(z) > ¢(z) for every x > ;.
Next, let £ = 8-10° and 25 < 2z < z;. We set

h(t) = —0.01¢% + 0.39¢ — 1.7813 4 1.763t'2 + 0.033t11 — 2.997¢10.
For every 29 <t < 33, we get h(t) > 0.443t12 —2.997¢10 > 0. For every 23 <t < 29,
we obtain h(t) > 13.723t12 — 2.997¢10 > 0. Therefore,
h(log x)
(¢(z)log® z)2log*z —

for every €23 < xy < < a1 < €33, Since 0(z2) < 7999890793 (see Table 6.1 of [6]),
m(xe) = 367783654 and 22.8027 < log 2, we obtain

0 7999890793
m(xe) — lo(gxxzi > 367783654 — 998027 > 16952796.

Using 22.8 < logxo < 22.8028, we get

J£7,0,01’x2 (r) — d)’(m) > (21)

i) 0.011‘2 To

Jo—0.01.2, (72) — > 16952796 - -
220012 (72) = (2) 2 T 328008 228 | p(e2®)

> 2360.

Using (21) and Proposition 3.3, we prove the required inequality for every zo < z <
1.
It remains to consider the case where 1332479531 < x < x9. We set

s(t) =8 —2t7 — 1% — 3.65t° — 18.65t* — 110.35t> — 736.8275t% — 5682.56t — 20426.535.
Since s(t) > 0 for every t > 4.6, we obtain
§(a) = Slos)log’s

(p(x) log” x)?
for every x > e And again we use a computer to check that the inequality
m(pi) > ¢(pit1) for every integer ¢ ranging from m(1332479531) to w(x2) +1. O

4.6
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Using a computer and Theorem 1.4, we obtain the following weaker estimates for
m(x).

Corollary 3.5. If x > xq, then

m(z) > i
logx— 1— @ - logaZw - logbBw - 10gc493 - losf’w7
where
a 2.65 2.65 2.65 2.65 2.65 2.65
b 13.35 13.35 13.35 13.35 13.35 13.1
c 70.3 70.3 45 34 5 0
d 276 69 0 0 0 0
xo || 1245750347 | 909050897 | 768338551 | 547068751 | 374123969 | 235194097
a 2.65 2.65 2.65 2.62 2.1 0
b 8.6 7.7 4.6 0 0 0
c 0 0 0 0 0 0
d 0 0 0 0 0 0
xo || 93811339 | 65951927 | 38168363 | 16590551 | 6690557 468049

Proof. By comparing each right-hand side with the right-hand side of (9), we see
that each inequality holds for every x > 1332479531. For smaller x we check the
asserted inequalities using a computer. O

Now we prove Theorem 1.2 by using Theorem 1.4.

Proof of Theorem 1.2. For y > 0 we set

1 2 565 2365 11825 709.5 & 4966.5
Ry) =1+ 4+ 5+ + + +

y3 y4 y5 yG y7
and
S(y) —y_1_ L 205 1335 703 4556275 34044225
vyt oy y° v

Then S(y) > 0 for every y > 3.79, and moreover, y'3R(y)S(y) = y** — T(y), where

T(y) = 11017.9625y° 4 19471.047875y° + 60956.6025y* + 250573.169y>
+ 1074985.621875y% + 4678311.7425y + 16908064.34625.

Using Theorem 1.4, we get

z 1 T(logz)\ xR(logx)
S(logz) = S(logx) log*z ) logz

m(z) >
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for every x > 1332479531. So it remains to check the required inequality for every
1332450001 < = < 1332479531. Let

xR(log )

Ulz) = log x

and u(y) = y® — 0.35y° + 1.05y* — 39732. Since u(y) > 0 for every y > 3.8, it
follows that U’(z) = u(logx)/log” x > 0 for every = > €38. So we use a computer
to check that the inequality 7(p;) > U(p;4+1) holds for every integer i ranging from
7(1332450001) to 7(1332479531). O

Remark. Obviously, Theorem 1.2 yields an improvement of Dusart’s estimate (6).

4. On the Existence of Prime Numbers in Short Intervals

Let m € Ny and 7 > 0. This section deals with finding an explicit constant x¢y =
xo(m, ) so that for every & > x( there exists a prime number in the interval

oo )]

Remark. The prime number theorem guarantees the existence of such an xg.

Before proving Theorem 1.5, we mention some known results starting from m = 0.
The first result is due to Schoenfeld [21]. He gave the value ((0,1/16597) =
2010759.9. In 2003, this was improved as follows:

Proposition 4.1 (Ramaré and Saouter, [17]). For every x > 10726905041 the

interval )
14— .
<$’x ( * 28313999)]

In 2014, Kadiri and Lumley [11, Table 2] found a series of improvements of Propo-
sition 4.1. For the proof of Theorem 1.5, we need the following result which easily
follows from the last row of Table 2 in [11].

contains a prime number.

Proposition 4.2 (Kadiri and Lumley, [11]). For every x > e'%° the interval

1
(x’ v (1 - 2442159713)]

contains a prime number.
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For m = 2, Dusart [5] proved, that for every x > 3275 there exists a prime number

p such that
1
r<p<z|(l+ .
P < 210g2z>

In 2010, Dusart [6] improved his own result by finding x¢(2,1/25) = 396738. For
m =2 and r = 1/111, we have the following

Proposition 4.3 (Trudgian, [23]). For every x > 2898239 the interval
1
(5 (i)
111log” x

Now let a,b € R. We define z;(a), z2(b) € NU {oo} by

contains a prime number.

z1(a) =min< k € N | 7(z) > a:l — for every x > k
logx—l—@—logzx
and
ZQ(b)_min{k€N|7r(x)< xl v foreveryzzk}.
log‘rililogxilogzx

To prove Theorem 1.5, we start with

Lemma 4.4. Let zp € RU{—o00} and let c: (z9,00) — [1,00) be a map. Then,

m(c(z)x) — 7(x)
z((c(z) — 1)(logz — 1 — —) —log c(x) — cxloscle)tbelr)—a)

log log? =

a b
(log(c(x)x) -1- log(cl(r)x) - Iog"’(c(ac)x))(logw —1- 10;;90 - @)

.T,( 2bc(z) log c(x) + be(z) log? c(x) )

log3 x log? =

>

(log(c(x)x) 1= log(cl(z)a:) B logz(g(w)z))(logx -1- @ - IOng"F)

for every x > max{|z0] + 1, 22(b), 23(a)}, where z3(a) = min{k € N | ke(k) >

z1(a)}.
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Proof. For every x > max{|z0]| + 1, 22(b), z3(a)}, we have
m(c(z)z) — ()
c(x)x x

1L __b
log z log? x

> 1 a o
log(c(2)2) — 1 = aemm ~ bete@s) 1087 —
c(z)—1 c(z) log c(x) be(xz)—a
(C(Z‘) - 1)(1Og$ - 1) — log C(l‘)  Tog(e(z)x) logwlog%c(w)w) T Tog2(c(z)x)
a b
(log(c(z)x) —1- log(cl(at)x) B logz(c(w)w))(logx —1- 10;}37 o lOg—Q»L)
2bc(z) log c(z + be(z) log? e(x)
log z log?(c(z)x) log? z log?(c(z)x)
1 b

(log(c(z)z) —1— log(cl(a;)iv) - logz(::l(m)a;))(logx — 1l — log—%).

— X

Since c¢(x) > 1, the lemma is proved. O

Now we prove Theorem 1.5, where for the first time for m = 3 we find an explicit

value z(m,r) and which leads to an improvement of Proposition 4.3 for every

x> 6131'1687.

Proof of Theorem 1.5. We set a = 2.65 and b = 3.83. By Corollary 3.5 and Corol-
lary 3.4, we obtain z;(a) < 38168363 and z2(b) = 10. As in the proof of Theorem
1.4, we check with a computer that z;(a) = 36917641. Further, we define

1.1817

log3 z

and zgp = 1. Then z3(a) = 36909396. We consider the function

5.707611 ~9.051822 1.39641489

clx)y =1+

g(x) = 0.00172* — 2.3634x — 1.1817 — 5 n
x x

x
10.6965380574  5.3482690287  6.32004951121479
a x® a 0 a x?
and get g(x) > 0.056 for every x > 1423.728. We set

)

f(x) = (c(z) — 1)(log® z — log* x — log® ) — log®* x log ¢(x)
— (c(z) log e(z) + 3.83¢(z) — 2.65) log® z
—2-3.83¢(x) log ¢(x) log & — 3.83¢(z) log? ¢(x)
and substitute ¢(z) = 1+1.1817/log® z in f(z). Using the inequality log(1+1t) <t

which holds for every t > —1, we get f(x) > g(logz) > 0.056 for every z > e!423-728,
By Lemma 4.4, we obtain
f(x)/log (x)

1.1817
w(:c(1+ 3 >)—7r(a:)
log” x
2.65 i 3.83

log(c(x)x) —1- log(cl(z)z) " log2(c(z)x) )(log:u - 1= logz ~ log? 3:)

>
(
>0
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for every x > e'423728_ For every !0 < x < €!423:728 | the theorem follows directly
from Proposition 4.2. Then we use Propositions 4.1 and 4.3 to obtain the result for
every 2898239 < z < e!%0. Next we check with a computer that

1.1817
Pn 1 + —3 > Pn+1
log” pn,

for every integer n ranging from 7(58889) to 7(2898239) + 1. Finally, we confirm

that 1.1817.
7 (x + —3”3) > 5949 = ()
log” x
is true for every 58837 < x < 58889. O
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