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Abstract
Andrews, Lewis and Lovejoy introduced the partition functions PD(n) and PDO(n)
defined by the number of partitions of n with designated summands and the number
of partitions of n with designated summands in which all parts are odd, respectively.
They found several generating function identities and congruences modulo 3, 4, and
24 satisfied by the functions. In this paper, we find generating function identities
and congruences modulo 4, 9, 12, 36, 48, and 144 for PD3(n), which represents the
number of partitions of n with designated summands, whose parts are not divisible
by 3.

1. Introduction

Andrews, Lewis and Lovejoy [1] introduced a new class of partitions, partitions
with designated summands which are constructed by taking ordinary partitions
and tagging exactly one part among parts with equal size. Fifteen partitions of 5
with designated summands are

50, 40+10, 30+20, 30+10+1, 30+1+10, 20+2+10, 2+20+10,
20 + 10 + 1 + 1, 20 + 1 + 10 + 1, 20 + 1 + 1 + 10, 10 + 1 + 1 + 1 + 1,

1 + 10+ 1 + 1 + 1, 1 + 1 + 10+ 1 + 1, 1 + 1 + 1 + 10+ 1, 1 + 1 + 1 + 1 + 10.
The concept of partitions with designated summands goes back to MacMahon [10].
He considered partitions with designated summands and with exactly ` di↵erent
sizes, see also Andrews and Rose [2]. The authors [1] derived the following gener-
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ating function of PD(n):

1X
n=0

PD(n)qn =
f6

f1f2f3
.

Throughout the paper, we use the standard q-series notation, and fk is defined as

fk := (qk; qk)1 = lim
n!1

nY
m=1

(1� qmk), |q| < 1.

For |ab| < 1, Ramanujan’s general theta function f (a, b) is defined as

f (a, b) :=
1X

n=�1
an(n+1)/2bn(n�1)/2. (1)

Using Jacobi’s triple product identity [5, Entry 19, p.35], (1) becomes

f (a, b) = (�a; ab)1 (�b; ab)1 (ab; ab)1 .

The most important special cases of f (a, b) are

 (q) := f
�
q, q3

�
=

1X
n=0

qn(n+1)/2 =
(q2; q2)1
(q; q2)1

=
f2
2

f1

and

f(�q) := f(�q,�q2) =
1X

n=�1
(�1)nqn(3n�1)/2 = f1.

Andrews et al. [1] derived the generating functions for PD(2n) and PD(2n + 1)
and they proved Ramanujan type congruences modulo 3 and powers of 2 for PD(n).
In particular, they proved that for n � 0,

PD(3n + 2) ⌘ 0 (mod 3). (2)

Chen, Ji, Jin and Shen [7] established a Ramanujan type identity for the partition
function PD(3n + 2) which implies the congruence (2) and they also gave a combi-
natorial interpretation of (2) by introducing a rank for partitions with designated
summands. Xia [11] extended the work of deriving congruence properties of PD(n)
by employing the generating functions of PD(3n) and PD(3n + 2) due to Chen et
al. [7].

The authors [1] also studied PDO(n), the total number of partitions of n with
designated summands in which all parts are odd, and the generating function is
given by

1X
n=0

PDO(n)qn =
f4f2

6

f1f3f12
.
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Thus PDO(5) = 8 are
50, 30 + 10 + 1, 30 + 1 + 10, 10 + 1 + 1 + 1 + 1, 1 + 10 + 1 + 1 + 1,

1 + 1 + 10 + 1 + 1, 1 + 1 + 1 + 10 + 1, 1 + 1 + 1 + 1 + 10.
They also established generating functions for PDO(2n), PDO(2n+1), PDO(3n),
PD(3n + 1), PD(3n + 2) by using q-series and modular forms and later Baruah
and Ojah [4] proved the same by using theta function dissections. Baruah and Ojah
also obtained generating functions for PDO(4n), PDO(4n + 1), PDO(4n + 2),
PDO(4n + 3), PDO(6n), PDO(6n + 2), PDO(6n + 3), PDO(6n + 5), PDO(9n +
3), PDO(9n + 6), PDO(12n), PDO(12n + 2), PDO(12n + 3), PDO(12n + 6),
PDO(12n + 9), PDO(12n + 10) and Ramanujan like congruences for PDO(n).

Motivated by the above work, in this paper, we study PD3(n), the total number
of partitions of n with designated summands, whose parts are not divisible by 3
and the generating function is given by

1X
n=0

PD3(n)qn =
f2
6 f9

f1f2f18
. (3)

Thus PD3(5) = 12 are
50, 40+ 10, 20+ 2 + 10, 2 + 20+ 10, 20+ 10+ 1 + 1, 20+ 1 + 10+ 1,
20 + 1 + 1 + 10, 10 + 1 + 1 + 1 + 1, 1 + 10 + 1 + 1 + 1, 1 + 1 + 10 + 1 + 1,

1 + 1 + 1 + 10 + 1, 1 + 1 + 1 + 1 + 10.
In Section 3, we prove the following theorems.

Theorem 1. We have
1X

n=0

PD3(2n)qn =
f3f3

6

f3
1 f18

, (4)

1X
n=0

PD3(2n + 1)qn =
f2
2 f3

3 f18

f4
1 f6f9

, (5)

1X
n=0

PD3(3n)qn =
f4
3 f2

6

f4
1 f2

2

✓
1

⌫2(q)
� 2q⌫(q)

◆
, (6)

1X
n=0

PD3(3n + 1)qn =
f4
3 f2

6

f4
1 f2

2

✓
1

⌫(q)
+ 4q⌫2(q)

◆
, (7)

1X
n=0

PD3(3n + 2)qn = 3
f4
3 f2

6

f4
1 f2

2

, (8)

1X
n=0

PD3(4n)qn =
f6
2 f6

3

f9
1 f2

6 f9
, (9)

1X
n=0

PD3(4n + 2)qn = 3
f2
2 f4

3 f2
6

f7
1 f9

, (10)
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1X
n=0

PD3(6n + 2)qn = 3
f9
2 f7

3

f13
1 f3

6

+ 9q
f2f3

3 f5
6

f9
1

, (11)

1X
n=0

PD3(6n + 5)qn = 12
f5
2 f5

3 f6

f11
1

, (12)

where
⌫(q) =

f1f3
6

f2f3
3

. (13)

Theorem 2. For each n � 0,

PD3(6n + 3) ⌘ 0 (mod 4), (14)
PD3(6n + 5) ⌘ 0 (mod 12), (15)

PD3(12n + 8) ⌘ 0 (mod 48), (16)
PD3(24n + 4) ⌘ 0 (mod 9), (17)

PD3(24n + 20) ⌘ 0 (mod 144), (18)
PD3(24n + 22) ⌘ 0 (mod 36), (19)
PD3(48n + 38) ⌘ 0 (mod 12). (20)

Theorem 3. For each nonnegative integer n and ↵ � 0, we have

PD3 (4⇥ 3↵n + 2⇥ 3↵) ⌘ PD3(4n + 2) (mod 9), (21)
PD3

�
4⇥ 3↵+1n + 10⇥ 3↵

�
⌘ 0 (mod 9). (22)

In the process of proving the above results, we find the congruence modulo 9 con-
necting PD3(n) and a3(n),

PD3(6n + 2) ⌘ 3a3(n) (mod 9), (23)

where a3(n) denotes the number of partitions of n that are 3-cores. The generating
function for a3(n) is given by

1X
n=0

a3(n)qn =
f3
3

f1
.

Theorem 4. Let p be a prime with
⇣
�3
p

⌘
= �1. Then for any nonnegative integer

↵,
1X

n=0

PD3

�
4p2↵n + 2p2↵

�
qn ⌘ 3 (q) (q3) (mod 9), (24)

and for n � 0, 1  j  p� 1,

PD3

�
4p2↵+1(pn + j) + 2p2↵+2

�
⌘ 0 (mod 9). (25)
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Theorem 5. If p � 5 is a prime such that
⇣
�6
p

⌘
= �1, then for all integers ↵ � 0,

1X
n=0

PD3

�
48p2↵n + 14p2↵

�
qn ⌘ 6f1f6 (mod 12). (26)

Theorem 6. Let p � 5 be prime and
⇣
�6
p

⌘
= �1. Then for all integers n � 0 and

↵ � 1,
PD3

�
48p2↵n + p2↵�1(14p + 48j)

�
⌘ 0 (mod 12), (27)

where j = 1, 2, . . . , p� 1.

2. Preliminaries

We recall 2-dissection identities for certain quotients of theta functions and p-
dissection identities of f(�q) and  (q) which play key roles in proving our main
results.

Lemma 1. [5, Corollory, p. 49] We have

 (q) = f(q3, q6) + q (q9). (28)

Lemma 2. The following 2-dissections hold:

1
f2
1

=
f5
8

f5
2 f2

16

+ 2q
f2
4 f2

16

f5
2 f8

, (29)

f4
1 =

f10
4

f2
2 f4

8

� 4q
f2
2 f4

8

f2
4

, (30)

1
f4
1

=
f14
4

f14
2 f4

8

+ 4q
f2
4 f4

8

f10
2

. (31)

Lemma 2 is a consequence of Ramanujan’s dissection formulas, collected by
Berndt [5, Entry 25, p. 40].

Lemma 3. The following 2-dissection holds:

f3

f1
=

f4f6f16f2
24

f2
2 f8f12f48

+ q
f6f2

8 f48

f2
2 f16f24

. (32)

Xia and Yao [14] proved (32) by employing Jacobi triple product identity.
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Lemma 4. The following 2-dissections hold:

1
f1f3

=
f2
8 f5

12

f2
2 f4f4

6 f2
24

+ q
f5
4 f2

24

f4
2 f2

6 f2
8 f12

, (33)

f3
1

f3
=

f3
4

f12
� 3q

f2
2 f3

12

f4f2
6

, (34)

f3
3

f1
=

f3
4 f2

6

f2
2 f12

+ q
f3
12

f4
, (35)

f3

f3
1

=
f6
4 f3

6

f9
2 f2

12

+ 3q
f2
4 f6f2

12

f7
2

. (36)

Equation (33) was proved by Baruah and Ojah [3], and (34) and (35) was proved
by Hirschhorn, Garvan, and Borwein [9]. Replacing q by �q in (34) and using the
relation

(�q;�q)1 =
f3
2

f1f4
,

we obtain (36).

Lemma 5. [12, p. 93, Eq. (2.14)] The following 2-dissection holds:

f2
3

f2
1

=
f4
4 f6f2

12

f5
2 f8f24

+ 2q
f4f2

6 f8f24

f4
2 f12

. (37)

Lemma 6. The following 2-dissection holds:

f9

f1
=

f3
12f18

f2
2 f6f36

+ q
f2
4 f6f36

f3
2 f12

. (38)

Lemma 6 was proved by Xia and Yao [13].

Lemma 7. [6, Eq. (13)] We have

1
f1f2

=
f3
9 f3

18

f4
3 f4

6

⇢
1

⌫2(q3)
� 2q3⌫(q3) + q

✓
1

⌫(q3)
+ 4q3⌫2(q3)

◆
+ 3q2

�
. (39)

Lemma 8. [8, Theorem 2.1] For any odd prime p,

 (q) =

p�3
2X

m=0

q
m2+m

2 f

✓
q

p2+(2m+1)p
2 , q

p2�(2m+1)p
2

◆
+ q

p2�1
8  (qp2

). (40)

Furthermore, m2+m
2 6⌘ p2�1

8 (mod p) for 0  m  p�3
2 .

Lemma 9. [8, Theorem 2.2] For any prime p � 5,

f1 =

p�1
2X

k=� p�1
2

k 6=(±p�1)/6

(�1)kq
3k2+k

2 f

✓
�q

3p2+(6k+1)p
2 ,�q

3p2�(6k+1)p
2

◆
+ (�1)

±p�1
6 q

p2�1
24 fp2 .

(41)
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Furthermore, for �(p� 1)/2  k  (p� 1)/2 and k 6= (±p� 1)/6,

3k2 + k

2
6⌘ p2 � 1

24
(mod p).

3. Proofs of Main Results

Proof of Theorem 1. Substituting (38) into (3), we find that

1X
n=0

PD3(n)qn =
f2
6

f2f18

✓
f3
12f18

f2
2 f6f36

+ q
f2
4 f6f36

f3
2 f12

◆
.

Extracting the terms involving even and odd powers of q from the above equation,
we obtain (4) and (5), respectively.

Invoking (3) and (39),

1X
n=0

PD3(n)qn =
f4
9 f2

18

f4
3 f2

6

⇢
1

⌫2(q3)
� 2q3⌫(q3) + q

✓
1

⌫(q3)
+ 4q3⌫2(q3)

◆
+ 3q2

�
.

(42)

Extracting the terms involving q3n, q3n+1, and q3n+2 from (42), we arrive at (6),
(7), and (8), respectively.

Substituting (36) into (4),

1X
n=0

PD3(2n)qn =
f3
6

f18

✓
f6
4 f3

6

f9
2 f2

12

+ 3q
f2
4 f6f2

12

f7
2

◆
,

which yields (9) and (10).
Applying (35) and (36) in (8), we obtain

1X
n=0

PD3(3n + 2)qn =3
f2
6

f2
2

✓
f3
4 f2

6

f2
2 f12

+ q
f3
12

f4

◆✓
f6
4 f3

6

f9
2 f2

12

+ 3q
f2
4 f6f2

12

f7
2

◆
.

Extracting the terms involving q2n and q2n+1 from both sides of the above equation,
we arrive at (11) and (12), respectively.
Proof of Theorem 2. From the Binomial Theorem, for any positive integer, k,

f2
k ⌘ f2k (mod 2), (43)

f4
k ⌘ f2

2k (mod 4), (44)
f3

k ⌘ f3k (mod 3), (45)
f9

k ⌘ f3
3k (mod 9). (46)
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Using (44), (5) can expressed as

1X
n=0

PD3(2n + 1)qn ⌘ f3
3 f18

f6f9
(mod 4). (47)

Equating the coe�cients of q3n+1 from both sides of (47), we obtain (14).
From (12), we easily arrive at (15).
Substituting (30) and (31) into (8), we find that

1X
n=0

PD3(3n + 2)qn =3
f2
6

f2
2

✓
f10
12

f2
6 f4

24

� 4q3 f2
6 f4

24

f2
12

◆✓
f14
4

f14
2 f4

8

+ 4q
f2
4 f4

8

f10
2

◆
,

which yields
1X

n=0

PD3(6n + 2)qn ⌘ 3
f14
2 f10

6

f16
1 f4

4 f4
12

(mod 48). (48)

Using (31) in (48),

1X
n=0

PD3(6n + 2)qn ⌘ 3
f14
2 f10

6

f4
4 f4

12

✓
f14
4

f14
2 f4

8

+ 4q
f2
4 f4

8

f10
2

◆4

(mod 48),

which implies

1X
n=0

PD3(6n + 2)qn ⌘ 3
f52
4 f10

6

f42
2 f16

8 f4
12

(mod 48). (49)

Equating the coe�cients of q2n+1 from (49), we arrive at (16).
However, from (46),

f6
2 f6

3

f9
1 f2

6 f9
⌘ f6

2 f3
3

f2
6 f9

(mod 9). (50)

Using (50) in (9), we obtain

1X
n=0

PD3(4n)qn ⌘ f6
2 f3

3

f2
6 f9

(mod 9). (51)

Replacing q by q3 in (34) and then substituting the resulting equation into (51),

1X
n=0

PD3(4n)qn ⌘ f6
2

f2
6

✓
f3
12

f36
� 3q3 f2

6 f3
36

f12f2
18

◆
(mod 9),

which implies
1X

n=0

PD3(8n + 4)qn ⌘ �3q
f6
1 f3

18

f6f2
9

(mod 9). (52)
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From (45),
f6
1 f3

18

f6f2
9

⌘ f2
3 f3

18

f6f2
9

(mod 3). (53)

Substituting (53) into (52), we find that

1X
n=0

PD3(8n + 4)qn ⌘ �3q
f2
3 f3

18

f6f2
9

(mod 9). (54)

Equating the coe�cients of q3n from (54), we arrive at (17).
From (54),

PD3(24n + 20) ⌘ 0 (mod 9). (55)

Replacing n by 2n + 1 in (16), we find that

PD3(24n + 20) ⌘ 0 (mod 48). (56)

Combining (55) and (56), we arrive at (18).
From (7), it is easy to see that

1X
n=0

PD3(3n + 1)qn ⌘ f4
3 f2

6

f4
1 f2

2

1
⌫(q)

(mod 4). (57)

However, from (44),
f4
3 f2

6

f4
1 f2

2

⌘ f2
12

f2
4

(mod 4). (58)

Substituting (13) and (58) into (57), we obtain

1X
n=0

PD3(3n + 1)qn ⌘ f2f3
3 f2

12

f1f3
6 f2

4

(mod 4). (59)

Invoking (35) and (59),

1X
n=0

PD3(3n + 1)qn ⌘ f2f2
12

f3
6 f2

4

✓
f3
4 f2

6

f2
2 f12

+ q
f3
12

f4

◆
(mod 4),

which yields
1X

n=0

PD3(6n + 4)qn ⌘ f1f5
6

f3
2 f3

3

(mod 4). (60)

From (44),
f1f5

6

f3
2 f3

3

⌘ f3
6 f3

f2f3
1

(mod 4). (61)
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Following (61), we can express (60) as

1X
n=0

PD3(6n + 4)qn ⌘ f3
6 f3

f2f3
1

(mod 4). (62)

Substituting (36) into (62), we find that

1X
n=0

PD3(6n + 4)qn ⌘ f3
6

f2

✓
f6
4 f3

6

f9
2 f2

12

+ 3q
f2
4 f6f2

12

f7
2

◆
(mod 4).

Extracting those terms containing q2n+1, dividing throughout by q and then replac-
ing q2 by q from the above

1X
n=0

PD3(12n + 10)qn ⌘ 3
f2
2 f4

3 f2
6

f8
1

(mod 4)

⌘ 3
f4
6

f2
2

(mod 4). (63)

Equating the coe�cients of q2n+1 from (63), we obtain

PD3(24n + 22) ⌘ 0 (mod 4). (64)

From (45),
f2
2 f4

3 f2
6

f7
1 f9

⌘  (q) (q3) (mod 3). (65)

Invoking (10) and (65),

1X
n=0

PD3(4n + 2)qn ⌘ 3 (q) (q3) (mod 9). (66)

Using (28) in (66), we find that

1X
n=0

PD3(4n + 2)qn ⌘ 3 (q3)
�
f(q3, q6) + q (q9)

�
(mod 9), (67)

which yields
PD3(12n + 10) ⌘ 0 (mod 9). (68)

From (64) and (68), we arrive at (19).
Using (44), (8) can be expressed as

1X
n=0

PD3(3n + 2)qn ⌘ 3
f2
12

f2
4

(mod 12). (69)
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Replacing q by q4 in (37) and then using the resulting equation in (69), we obtain

1X
n=0

PD3(3n + 2)qn ⌘ 3
f4
16f24f2

48

f5
8 f32f96

+ 6q4 f16f2
24f32f96

f4
8 f48

(mod 12),

which implies

1X
n=0

PD3(24n + 14)qn ⌘ 6
f2f2

3 f4f12

f4
1 f6

(mod 12). (70)

From (43),
f2f2

3 f4f12

f4
1 f6

⌘ f2f12 (mod 2). (71)

Following (71), we can express (70) as

1X
n=0

PD3(24n + 14)qn ⌘ 6f2f12 (mod 12). (72)

Equating the coe�cients of q2n+1 from the above, we arrive at (20).
Proof of Theorem 3. Extracting the terms involving q3n+1 from (67),

1X
n=0

PD3(12n + 6)qn ⌘ 3 (q) (q3) (mod 9). (73)

Invoking (66) and (73), we find that

1X
n=0

PD3(12n + 6)qn ⌘
1X

n=0

PD3(4n + 2)qn (mod 9),

which yields, for each n � 0,

PD3(12n + 6) ⌘ PD3(4n + 2) (mod 9). (74)

The congruence (21) follows from (74) and by mathematical induction.
Replacing n by 3n + 2 in (21) and then using (68), we arrive at (22).
From (11), it is easy to see that

1X
n=0

PD3(6n + 2)qn = 3
f9
2 f7

3

f13
1 f3

6

(mod 9). (75)

However, from (45),
f9
2 f7

3

f13
1 f3

6

⌘ f3
3

f1
(mod 3). (76)
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Substituting (76) into (75), we find that

1X
n=0

PD3(6n + 2)qn ⌘ 3
f3
3

f1
⌘ 3

1X
n=0

a3(n)qn (mod 9). (77)

Equating the coe�cients of qn from (77), we arrive at (23).
Proof of Theorem 4. Equation (66) is the ↵ = 0 case of (24). If we assume that
(24) holds for some ↵ � 0, then, substituting (40) in (24),

1X
n=0

PD3

�
4p2↵n + 2p2↵

�
qn

⌘ 3

 p�3
2X

m=0

q
m2+m

2 f

✓
q

p2+(2m+1)p
2 , q

p2�(2m+1)p
2

◆
+ q

p2�1
8  (qp2

)

!

⇥
 p�3

2X
m=0

q3 m2+m
2 f

✓
q3 p2+(2m+1)p

2 , q3 p2�(2m+1)p
2

◆
+ q3 p2�1

8  (q3p2
)

!
(mod 9).

(78)

For any odd prime, p, and 0  m1,m2  (p� 3)/2, consider the congruence

m2
1 + m1

2
+ 3

m2
2 + m2

2
⌘ 4p2 � 4

8
(mod p),

which implies that

(2m1 + 1)2 + 3(2m2 + 1)2 ⌘ 0 (mod p). (79)

Since
⇣
�3
p

⌘
= �1, the only solution of the congruence (79) is m1 = m2 =

p� 1
2

.

Therefore, equating the coe�cients of qpn+ 4p2�4
8 from both sides of (78), dividing

throughout by q
4p2�4

8 and then replacing qp by q, we obtain

1X
n=0

PD3

✓
4p2↵

✓
pn +

4p2 � 4
8

◆
+ 2p2↵

◆
qn ⌘ 3 (qp) (q3p) (mod 9). (80)

Equating the coe�cients of qpn on both sides of (80) and then replacing qp by q,
we obtain

1X
n=0

PD3

�
4p2↵+2n + 2p2↵+2

�
qn ⌘ 3 (q) (q3) (mod 9),

which is the ↵+ 1 case of (24).
Extracting the terms involving qpn+j for 1  j  p� 1 in (80), we arrive at (25).
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Proof of Theorem 5. Extracting the terms involving q2n from (72) and then replacing
q2 by q,

1X
n=0

PD3(48n + 14)qn ⌘ 6f1f6 (mod 12). (81)

For a prime p � 5 and �(p� 1)/2  k,m  (p� 1)/2, consider

3k2 + k

2
+ 6⇥ 3m2 + m

2
⌘ 7p2 � 7

24
(mod p),

therefore,
(6k + 1)2 + 6(6m + 1)2 ⌘ 0 (mod p).

Since
⇣
�6
p

⌘
= �1, the only solution of the above congruence is k = m = (±p�1)/6.

Therefore, from Lemma 9,
1X

n=0

PD3

✓
48
✓

p2n + 7⇥ p2 � 1
24

◆
+ 14

◆
qn ⌘ 6f1f6 (mod 12). (82)

Using (81), (82), and induction on ↵, we arrive at (26).
Proof of Theorem 6. From Lemma 9 and Theorem 5, for each ↵ � 0,

1X
n=0

PD3

✓
48p2↵

✓
pn + 7⇥ p2 � 1

24

◆
+ 14p2↵

◆
qn ⌘ 6fpf6p (mod 12).

That is,
1X

n=0

PD3

�
48p2↵+1n + 14p2↵+2

�
qn ⌘ 6fpf6p (mod 12). (83)

Since there are no terms on the right of (83) where the powers of q are congruent
to 1, 2, . . . , p� 1 modulo p,

PD3

�
48p2↵+1(pn + j) + 14p2↵+2

�
⌘ 0 (mod 12),

for j = 1, 2, . . . , p�1. Therefore, for j = 1, 2, . . . , p�1 and ↵ � 1, we arrive at (27).
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