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Abstract
Given three positive integers a, b, ¢, a proportionally modular Diophantine inequality
is an expression of the form ax mod b < cz. Our aim is to give a recursive formula
for the least solution to such an inequality. We then use the formula to derive
an algorithm. Finally, we apply our results to a question of Rosales and Garcia-
Sanchez.

1. Introduction
A proportionally modular Diophantine inequality is an expression of the form
(ax mod b) < cz,

where the positive integers a,b, ¢ are called respectively the factor, modulus and
proportion. It is well-known that the set of the non-negative integer solutions of
this inequality is a numerical semigroup (cf. [8], [9]), i.e. a submonoid S of (N, +)
with finite complement in it. Denoting by S(a, b, ¢) the set of solutions, the structure
of this set (called a proportionally modular semigroup) has been widely studied, but
is not completely understood yet. In particular, it is an open problem (cf. [8]) to
find explicit formulas for several classical invariants of these numerical semigroups.
Several works in literature focused on the multiplicity of these numerical semigroup,
which is the smallest positive solution of the inequality (az mod b) < cx. Although
some partial results are known (cf. [9], [11], [12]) as of today the main problem of
finding a formula for this invariant still remains unsolved. Notably, this particular
invariant pops up in other problems: it has been proved (cf. [8]) that each propor-
tionally modular numerical semigroups is exactly the set of numerators of fractions
belonging to a certain bounded rational interval. Thus, another formulation for this
problem asks for the least possible numerator of a rational number in a given inter-
val, or , equivalently, for the least possible denominator of such rational numbers.
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This formulation also highlights a connection with continued fractions and Farey
sequences (cf. [2], [6]). Moreover, Bullejos and Rosales showed that this problem is
strictly related to that of finding the common ancestor of two rational numbers in
the Stern-Brocot tree (cf. [4]). These equivalences lead to different approaches and
formulas, based on the context in which the problem is studied. Using elementary
number theory we will provide a recursive formula for the smallest positive solution
of the inequality (ax mod b) < cx a,b € Z*, ¢ € QF, and thus an algorithm for its
computation (with similar complexity to the Euclidean algorithm).

Our work is structured as follows: in the first section we prove our main theorem,
and provide the recursive formula for the computation of the multiplicity of S. In
Section 2 we describe the algorithm that can be derived from our main theorem. In
the final section we explain how our result can be applied to a question of Rosales
and Garcia-Sénchez ([8, Problem 5.20]).

2. Main Result

Given two integers m and n with n > 0 we define the remainder operator [m],, as
follows
[m], =min{i e N |i=m (modn)}.

Notice that, if m and n are positive integers such that m < n, then m = [m],,. The
following properties follow from the definition of floor and ceiling function, and we
will use them extensively.

Proposition 1. Let a,b € ZT. Then:

1. V)J a+[bla = b,

a

2 M 0 [=ba = b.

a

Let a,b € Z", and let ¢ € QT. Consider the inequality (ax mod b) = [az], < cw,
and define

L(a,b,c) = min{z € Z" | [az], < cx} = min{S(a,b,c) \ {0}}.

Clearly, if a > b, then [az], = [[a]px]p, and hence L(a,b,c) = L([als, b, ¢), so the
condition a < b that we will impose in the next results is not restrictive. Moreover,
if d = ged(a,b) and a = da’ and b = db/, we have [a], = d[a’]y; therefore [ax], <

cz if and only if [d'z]y < ga?, which implies S(a,b,c) = S(%, g, 9). Conversely,
if d is a positive integer, then S(a,b,c¢) = S(ad,bd,cd). Furthermore, if ¢ = 2

n
is a positive rational number, then S(a,b,c¢) = S(an,bn,cn) is a proportionally
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modular numerical semigroup: thus the set of numerical semigroups S(a, b, ¢), with
¢ a positive rational number, equals the set of proportionally modular numerical
semigroups.

Proposition 2. Let a,b € Z* be such that a < b, and let ¢ € QV be a positive
rational number. Then:

1. If ¢ > a, then L(a,b,c) =1,
2. Ifc<aanda | b, then L(a,b,c) = L.

Proof. The first part is obvious. If z < g, then az < b and [ax], = ax > cx; hence
the inequality is false for 2 < 2. Since for z = % we have az = b and [az], = 0 < cz,
O

ISYISS

we conclude that L(a,b,c) =

With these premises we can reduce our problem to the case ¢ < a < b, a [ b.

Proposition 3. Let a,b € Z* and c € QT be such that c < a <b and a [ b. Then
there exists 1 € Z such that

Lot = | 4],

a

Proof. If x < {ﬂ is a positive integer, then ax < b and [az]y, = az > cz, so
L(a,b,c) > {ﬂ From this bound it follows that there exists y € Z* such that

2] <twbor < [L£22],

Suppose now that L(a,b,c) # [%b—‘, this is equivalent to saying that there exists
r € N, r # 0 such that

2|5

aer= [22] r i < [£20]  [19]

a

Therefore al(a,b,¢c) = a P—b

_

+ar<a [@—‘ — a, and by Proposition 1

a [@—‘ =(p+1)b+[~(u+1)bla-
Hence, if r # 0 we have
ub<a leb—‘ <al(a,b,c) = (n+1)b+ [—(pu+ 1)bla —a < (4 1)b.
By definition of remainder, we have ub < al(a, b, ¢) < (i + 1)b, implying

b > [aL(a,b,c)]y = al(a,b,¢) — ub = (a {——‘ - ,ub> +ar >ar>a.



INTEGERS: 16 (2016) 4

Thus b > [aL(a, b, c)]p > a, and we obtain that [aL(a,b,c)], —a = [aL(a, b, c) — alp.
Now consider = L(a,b,c) — 1. We get

[ax]b = [a(L(aa b, C) - 1)]17 = [aL(a>b7 C) - a}b = [aL(aa b,C)]b —a
and cx = cL(a, b, c) — c¢. Hence we have

[ax]p = [aL(a,b,c)]y — a < [aL(a,b,c)]y — ¢ < cL(a,b,c) — ¢ = cz,

leading to = L(a,b,c) — 1 € S(a, b, ¢), which is a contradiction. O
Note that by definition it is clear that L(a,b,¢) < b, and hence 1 < p < a.
Define, for every p =1,...,a, R, as the unique positive integer satisfying
(R, —1)a << Rﬂa.
[b}a [b]a

Lemma 4. Leta,b € Z1 and c € Q" be such thatc <a <banda [b. Let p € Z".
Then we have:

1. [%b—‘ =pula]+ Ry
2. [a [%ﬂ]b = Rua— plb]..
Proof.

1. By using Proposition 1 we have that b = LgJ a + [b]a, and then

[Mﬂ B P(L%Jzﬂblﬂ _ [M EJ +@}

Since LgJ € Z*, we can deduce easily from the definition of R, that R, =
[%—‘ Then it follows that:

ERATIES

(Ry—1)a

2. From the definition of R, we know that L < M This implies R, a —
pbla < a < b, and consequently [R,a — p[bl.], = Rua — p[b],, which is our
thesis. m

In order to find a recursion, we will prove that R,, itself is the smallest solution
of another proportionally modular Diophantine inequality with smaller values of
factor, modulus and proportion, and then we will compute p from R,,.
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Theorem 5. Let a,b € Z', c € Q" be such thatc < a <b anda | b. Let p € Z*
be such that L(a,b,c) = [%—‘ Then

_ cb _ | Rula—o)
R, = L([a][b]a,[b]a:m) r= {m—‘ '

Proof. Using Lemma 4 we have that cL(a,b,¢) = cpu | 2| + R, and [aL(a, b, c)], =
R,a — p[bl,. Then, from cL(a,b,c) > [aL(a,b,c)]y it follows that cL(a,b,c) >
[aL(a, b, ¢)]p, which leads, by substitution, to

b
cp {EJ + R,c > Rya — plbla.

Solving the inequality in p we have

R,(a—c)
2 bl

However, by definition of R,,, we also have p < ﬁTa. Therefore, we proved that

R,(a—c) <u< R,a
T

: (1)

Then, the interval L}f‘;j%[;), %] contains at least one integer. Let N be the

smallest positive integer such that

N(a—c¢) Na
L{gﬁma’[b}a nezo

let o < p be the smallest integer in this interval, and assume that N < R,. From

s Na . Rs(a—c) N(a—c)
the definition of R,, 0 < ol implies that R, < N and o[ 41, < AT

However, the last inequality affirms that o is actually contained in the interval

{ Ro(a—c) R"“]; hence R, = N.

c|t]+0bla’ Pla
By Lemma 4, we have

EERE

Ry (a—c) N(a—c) _ b
Moreover oIt [ bin < BED < o, and hence Rya—olbla < c (0| 2| + R,) . Thus

we obtain the inequality
L[5l =elE
a|— <c|—|,
a |, a
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which implies that [%b] € S(a,b,c). However, since ¢ < p and a < b, we have

{U—b—‘ < [u—bw = L(a, b, ¢), which is a contradiction. Therefore, we deduce that
a a

zla—c)  za
2]+ bl Tl

From the definition of R, we further deduce that

,u—min{ QN}—

which proves the second part of our thesis. In order to prove the first part, by
simple calculations we see that

e

By recalling Proposition 1, we get the two identities {ﬁJ = % and LEJ =
b=[bla
a

Ruzmin{zEZ'w

mN;AQ)}. (2)

R.,(a—c) Rua
cl 2]+ bl [l

a

3)

Ryu(a—c) —‘
c[2]+bla)|’

a

AN#Q if and only if {ﬁchfﬁ—lc{;}a

. Plugging these equations in our last inequality we obtain that

if and only if 2z | —————— | > [2a]p, -
(ct%JHb}a) !

Finally, plugging this condition in Eq. (2), we obtain

' b cb
R, = min {z €zt | 2 <m> > [za][b]a} =L ([a][b}a7 0] m) )

which proves our thesis. O

za — [za]p), ,_a-c
bla = el +[bla

a

Combining Proposition 3 and Theorem 5, we obtain the promised recursive for-
mula for L(a, b, c).

Corollary 6. Let a,b€ Z", c € Q" be such that c <a <b anda fb. Then
Li(a—¢) | b cb
L(a,b,c) = | | ———=—| = |, where Ly =L | [a]p,, [bla, ——— | -
HCLEJ - [b]j J ( P50 2] + bl

3. The Algorithm

The main result of the previous section gives rise to the following algorithm, which
computes L(a, b, c) for any given triple (a, b, c) such that a,b € Z" and ¢ € Q*.
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Algorithm 1 Algorithm for L(a, b, c)

: if ¢ > a then return 1;

. if alb then return 3;

1

2

3: den := ¢*Floor(b/a)+(b mod a);
4: L1 := L(a mod (b mod a),b mod a,c*b/den);
5: return Ceiling(b/a*Ceiling(L1*(a-c)/den));

Proposition 7. Algorithm 1 stops after a finite number of steps.

Proof. Consider the three sequences of integers a;, b; and ¢; defined recursively as

@ — apg=a
v a; = [ai,l]bi if 4 > 0,

, [ =0
Y bi = [bicta,., ifi>0,

Cop = ¢C
ci—1bi—1
bi_
Ci-1 {aflJ + [bi-1]a;

1

It is obvious that a;11 < a; if a; > 2 and that ¢; > 1 for any ¢ > 1. Therefore,
after a finite number of steps we will have a; < 1 and ¢; > a;, thus meeting the
condition for termination. O

4. Applications

The given algorithm has an application in the context of numerical semigroups.
Given two coprime integers a; and as, consider the numerical semigroup

S = <a1,a2> = {)\10,1 + Aoaso | A, Ag € N}

We define the quotient of a numerical semigroup S by a positive integer d as follows:

%::{xeNMdeS}.

The quotient % is a numerical semigroup, but it does not have necessarily the same
structure as S; actually, little is known about the existence of a relation between
the invariants of S and %. In particular, given three positive integers a1, as, d, it is
an open problem (cf. [8, Problem 5.20]) to find a formula for the smallest multiple
of d that belongs to (a1, as) and for the largest multiple of d that does not belong
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to (a1, as); these problems ask for invariants of the quotient semigroup %.
Moreover, this class of quotients of numerical semigroups is tightly related to the
Diophantine inequalities we have studied, as it has been proved that a numerical
semigroup is proportionally modular if and only if it is the quotient of an embedding
dimension two numerical semigroup. In particular, the numerical semigroup (ay, as)
is proportionally modular, and the next result provides its related proportionally
modular Diophantine inequality.

Lemma 8 ([12, Lemma 18]). Let a1, as be relatively prime positive integers and
let u be a positive integer such that uaz =1 (mod a1). Then

<a17a2> = {33 eN | [uagx](alaz) < q;}

This lemma directly implies that

(a1, a2) = {x €N | [u]a, < 3}.

ag

Consider now the quotient

(a1,az)
d

— (e eN|ad € (a1, a5} = {xeN | [uzd], < Z_d}
2

Its multiplicity is

m (M) = min{x €N | [uzd]q, < x_d} =L ([ud]aNCLl7 i) )
d az ag

and therefore it can be obtained by applying Algorithm 1.

The second application regards the set S(a, b, ¢) itself. Since this set is a numerical
semigroup, it has finite complement in N; the greatest integer not belonging to
S(a, b, c) is called the Frobenius number of S(a, b, ¢), which we will denote here with
F(a,b,c). In [13] the authors give a relation between F'(a,b, 1) and the multiplicity
of a particular proportionally modular numerical semigroup. Given p,q € Q" such
that p < ¢, denote by [p, ¢] and {([p, q]) the sets

P ={x€Q|p<az<q} and

([p,q]) = {Aa1+A2aa+. . .+ nan| A, .20 €N aq,...,a, € [p,q], n€N\{0}},

respectively. It is known that, for any p,q € Q% such that p < ¢, the set S([p, q]) =
([p, ¢]) NN is a proportionally modular numerical semigroup, as the next proposition
shows:

Proposition 9 ([13, Proposition 1]). Letay,b1,az,by € Z1 be such that 2—1 < Z—z.
Then S([bl b*Q]) = S(Cllbg7 blbg, albg — a2b1).

ay’ az
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A direct consequence of Proposition 9 is that m(S([2t, 22])) = L(a1bs, b1b2, arbo—

17 az
agby). Furthermore, we can divide each term by bs, obtaining

() en ).

Theorem 10 ([213, Theorem 18]). Let a,b € ZT be such that 2 < a < b and
2
S =S(P54" sta1y))- Then F(a,b,1) = b—m(S).

By Theorem 10 and Eq. (4) we have

3 _
F(wb’w=b—m<s>=b—L(zb,2bz+Lw>7

202 +1

and hence we can apply Algorithm 1.
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