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Abstract
Let q be an odd prime and f(x), g(x) be polynomials with integer coe�cients.
If the system of congruences f(x) ⌘ g(x) ⌘ 0 (mod q) has ` solutions, then
R (f(x), g(x)) ⌘ 0 (mod q`), where R (f(x), g(x)) is the resultant of the polyno-
mials. Using this result we give new proofs of some known congruences involving
the Lucas sequences.

1. Introduction

The resultant R (f, g) of two polynomials f(x) = anxn + · · · + a0 and g(x) =
bmxm + · · · + b0 of degrees n and m, respectively, with coe�cients in a field F is
defined by the determinant of the (m + n)⇥ (m + n) Sylvester matrix [10]

R (f, g) =

������������������

an an�1 · · · · · · · · · a0

an an�1 · · · · · · · · · a0

· · ·
an an�1 · · · · · · · · · a0

bm bm�1 · · · · · · b0

bm bm�1 · · · · · · b0

· · ·
· · ·

bm bm�1 · · · · · · b0

������������������

. (1)

Let f, g, h and v be the polynomials below. Some important properties of the
resultant are:

(i) If f(x) = an
Qn

i=1(x� ↵i) and g(x) = bm
Qm

j=1(x� �j), then

R (f, g) = am
n

nY
i=1

g(↵i) = (�1)mnbn
m

mY
i=1

f(�i) = am
n bn

m

nY
i=1

mY
j=1

(↵i � �j),
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where ↵i and �j are the roots of f(x) and g(x), respectively, in some extension of
F , each repeated according to its multiplicity. This property is often taken as the
definition of the resultant.

(ii) f and g have a common root in some extension of F if and only if R (f, g) = 0.

(iii) R (f, g) = (�1)nmR (g, f).

(iv) R (fh, g) = R (f, g)R (h, g) and R (f, gh) = R (f, g)R (f, h).

(v) If g = vf + h and deg(h) = d, then R (f, g) = am�d
n R (f, h).

(vi) If p is a positive integer, then R (f(xp), g(xp)) = R (f(x), g(x))p.

All these properties are well-known [1, 7]. More details concerning the resultant
can be found in [3, 4]. Another important classical result is (see [4]):

Lemma 1. Let f =
Pn

i=0 aixi and g =
Pm

j=0 bjxj be two polynomials of degrees
n and m, respectively. Let, for k � 0, rk(x) = rk,n�1xn�1 + · · · + rk,0 be the
remainder of xkg(x) modulo f(x), i.e., xkg(x) = vk(x)f(x) + rk(x), where vk is
some polynomial and deg(rk)  n� 1. Then

R (f, g) = am
n

���������

rn�1,n�1 rn�1,n�2 · · · rn�1,0

rn�2,n�1 rn�2,n�2 · · · rn�2,0
...

...
r0,n�1 r0,n�2 · · · r0,0

���������
. (2)

In the next section we prove a theorem on the relationship between the number
of solutions of the congruence system f(x) ⌘ g(x) ⌘ 0 (mod q) and the resultant of
two polynomials R (f(x), g(x)). Then using this result we give new proofs of some
congruences involving the Lucas sequences.

2. Properties of the Resultant

A polynomial f(x) with integer coe�cients is called not identically zero in Zq if
at least one of its coe�cients is not divisible by q. Let A = (ai,j) be an arbitrary
matrix. Then by A<q> we will denote the matrix

�
a0i,j

�
over Zq of the same type

such that a0i,j is the residue of ai,j modulo q.

Theorem 1. Let q be a prime and f(x), g(x) be polynomials with integer coe�cients
that are not identically zero in Zq. If the system of congruences f(x) ⌘ 0 (mod q)
and g(x) ⌘ 0 (mod q) has ` solutions, then R (f(x), g(x)) ⌘ 0 (mod q`).
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Proof. Let deg f = n and deg g = m. Then we have that the system f(x) ⌘ g(x) ⌘
0 (mod q) has ` solutions by the theorem conditions and `  min[n,m] as the
polynomials are not identically zero in Zq. Let rk(x) = rk,n�1xn�1 + · · · + rk,0 be
the remainder of xkg(x) modulo f(x), i.e., xkg(x) = vk(x)f(x)+rk(x), where vk(x)
is some polynomial and deg(rk)  n� 1. Then we get the system of congruences0

BBB@
rn�1,n�1 rn�1,n�2 · · · rn�1,0

rn�2,n�1 rn�2,n�2 · · · rn�2,0
...

...
r0,n�1 r0,n�2 · · · r0,0

1
CCCA

0
BBB@

xn�1

xn�2

...
1

1
CCCA ⌘

0
BBB@

0
0
...
0

1
CCCA (mod q). (3)

This system has at least ` solutions, since each congruence of (3) is derived from
f(x) ⌘ 0 (mod q) and g(x) ⌘ 0 (mod q). Let A = (ai,j) be a matrix of the system
(3). With the help of the procedure analogous to row reduction using operations of
swapping the rows and adding a multiple of one row to another row, we can reduce
A to a matrix A1 with integer coe�cients such that det (A) = ±det (A1) and A<q>

1

is an upper triangular matrix. We can see that each solution of the system (3) is
also a solution of the following system over Zq:

�
A<q>

1

�
0
BBB@

xn�1

xn�2

...
1

1
CCCA ⌘

0
BBB@

0
0
...
0

1
CCCA (mod q), (4)

so (4) has at least ` solutions. Note that the last ` congruences of (4) have degrees
less than `. On the other hand, these congruences have at least ` solutions. Hence
all these congruences must be congruences with zero coe�cients, i.e., the last `
rows of A<q>

1 are zero rows. Therefore, all elements of the last ` rows of A1 are
divisible by q, so det (A) = ±det (A1) is divisible by q`. Thus, by Lemma 1 we have
R (f, g) ⌘ 0 (mod q`).

Remark. If one or both polynomials equal zero in Zq, then by property (i) we
obtain that either R(f, g) ⌘ 0 (mod qn) or R(f, g) ⌘ 0 (mod qm). We do not
consider this trivial case in Theorem 1.
Example. Let f(x) = x6 + 1, g(x) = (x + 1)6 + 1. The system of congruences
x6 + 1 ⌘ 0 (mod 13) and (x + 1)6 + 1 ⌘ 0 (mod 13) has three solution in Z13:
x = 5, 6, 7. The matrix of the system (3) for these polynomials is:

A =

0
BBBBBB@

1 �6 �15 �20 �15 �6
6 1 �6 �15 �20 �15
15 6 1 �6 �15 �20
20 15 6 1 �6 �15
15 20 15 6 1 �6
6 15 20 15 6 1

1
CCCCCCA

. (5)
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Since the resulting echelon form of matrices after row reduction is not unique, we
obtain the reduced row echelon form of the matrix A, which is unique:

A<13>
1 =

0
BBBBBB@

1 7 11 6 11 7
0 1 9 11 1 11
0 0 1 8 3 11
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1
CCCCCCA
�!

0
BBBBBB@

1 0 0 7 4 8
0 1 0 4 0 3
0 0 1 8 3 11
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1
CCCCCCA

. (6)

So we get detA ⌘ 0 (mod 133) and R
�
x6 + 1, (x + 1)6 + 1

�
⌘ 0 (mod 133). This

resultant is actually equal to 24 ⇥ 5⇥ 133.

Corollary 1. Let q be a prime and f(x), g(x) be polynomials of degrees n and m,
respectively, with integer coe�cients that are not identically zero in Zq. Let A be
a matrix of the system (3) for f(x), g(x). If RankA = p in Zq, then R (f, g) ⌘ 0
(mod qn�p). If the system f(x) ⌘ g(x) ⌘ 0 (mod q) has ` solutions, then n�p � `.
Moreover, if M is any k ⇥ k minor of the matrix A and k > p, then M ⌘ 0
(mod qk�p).

Proof. This follows from Theorem 1.

The question about the relation of the multiplicity of q as a factor of R(f, g) and
the degree of common factor of the polynomials f and g modulo q was studied in
[2]. This question is closely related to Theorem 1 and first appeared in [5].

3. The Congruences Involving the Terms of the Lucas Sequences

Theorem 2. Let f(x) = anxn + · · · + a0 be a polynomial of degree n with integer
coe�cients and q be an odd prime. Let a0 6⌘ 0 (mod q) and let the congruence
f(x) ⌘ 0 (mod q) have ` solutions. Then

R(f(x), xq�1 � 1) ⌘ aq�1
n

nY
i=1

(↵q�1
i � 1) ⌘ 0 (mod q`), (7)

where ↵i are the roots of f(x), each repeated according to its multiplicity.

Proof. Consider R(f(x), xq�1 � 1). Since f(x) = an
Qn

i=1(x� ↵i), then

R
�
f(x), xq�1 � 1

�
= aq�1

n

nY
i=1

(↵q�1
i � 1). (8)

We know that q is an odd prime, so the congruence xq�1 � 1 ⌘ 0 (mod q) has
q � 1 solutions (zero is not one of them). On the other hand, the congruence
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f(x) ⌘ 0 (mod q) has ` nonzero solutions, as a0 6⌘ 0 (mod q). Hence the system of
congruences f(x) ⌘ xq�1 � 1 ⌘ 0 (mod q) also has ` solutions. Then by Theorem
1 we have R(f(x), xq�1 � 1) ⌘ 0 (mod q`).

Theorem 3. Let f(x) = anxn + · · · + a0 be a polynomial of degree n with integer
coe�cients and q be an odd prime. Let a0 6⌘ 0 (mod q) and let the congruence
f(x) ⌘ 0 (mod q) have ` solutions. If b solutions of them are quadratic residues
modulo q, then

R(f(x), x
q�1
2 � 1) ⌘ a

q�1
2

n

nY
i=1

(↵
q�1
2

i � 1) ⌘ 0 (mod qb) (9)

and

R(f(x), x
q�1
2 + 1) ⌘ a

q�1
2

n

nY
i=1

(↵
q�1
2

i + 1) ⌘ 0 (mod q`�b), (10)

where ↵i are the roots of f(x), each repeated according to its multiplicity.

Proof. Consider R(f(x), x
q�1
2 � 1). Since f(x) = an

Qn
i=1(x� ↵i), then

R
⇣
f(x), x

q�1
2 � 1

⌘
= a

q�1
2

n

nY
i=1

(↵
q�1
2

i � 1). (11)

We know that f(x) ⌘ 0 (mod q) has b nonzero solutions which are quadratic
residues modulo q. Hence the system of congruences f(x) ⌘ x

q�1
2 � 1 ⌘ 0 (mod q)

has b solutions. Then by Theorem 1 we have R(f(x), xq�1�1) ⌘ 0 (mod qb). Since
` � b solutions of f(x) ⌘ 0 (mod q) are quadratic nonresidues modulo q, then by
analogy we prove that R(f(x), x

q�1
2 + 1) ⌘ 0 (mod q`�b).

As an illustration of applications of Theorem 1 we consider the following theorem.

Theorem 4. Let q be an odd prime and P , Q be any integers such that Q 6⌘ 0
(mod q). If the Legendre symbol

⇣
P 2�4Q

q

⌘
is equal to 1, then

Vq�1(P,Q) ⌘ Qq�1 + 1 (mod q2), (12)

V 2
q�1
2

(P,Q) ⌘
⇣
Q

q�1
2 + 1

⌘2
(mod q2), (13)

where Vn(P,Q) is the n-th term of the Lucas sequence defined by the recurrence
relation

V0 = 2, V1 = P, Vi = PVi�1 �QVi�2, i � 2. (14)

Proof. The roots of x2 � Px + Q are ↵1 = P�
p

P 2�4Q
2 , ↵2 = P+

p
P 2�4Q
2 . Hence

R(x2�Px+Q,xq�1�1) = (↵1↵2)q�1�(↵q�1
1 +↵q�1

2 )+1 = 1+Qq�1�Vq�1(P,Q).
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Since we know
⇣

P 2�4Q
q

⌘
= 1 and Q 6⌘ 0 (mod q), then the system of congruences

x2 � Px + Q ⌘ xq�1 � 1 ⌘ 0 (mod q) has two solutions. So by Theorem 1 we have
1 + Qq�1 � Vq�1(P,Q) ⌘ 0 (mod q2), thus we get (12). Now using the identity
V2n(P,Q) = V 2

n (P,Q)� 2Qn, we obtain (13).

Note that the congruences (12) and (13) are well-known [6, 8, 9], but here we
give an alternative completely independent proof of these results.

Corollary 2. Let q be an odd prime and k, P , Q be any integers such that k2 +
Pk + Q 6⌘ 0 (mod q). If

⇣
P 2�4Q

q

⌘
= 1, then

Vq�1(P + 2k, k2 + Pk + Q) ⌘ (k2 + Pk + Q)q�1 + 1 (mod q2), (15)

V 2
q�1
2

(P + 2k, k2 + Pk + Q) ⌘
⇣
(k2 + Pk + Q)

q�1
2 + 1

⌘2
(mod q2). (16)

Proof. Since (P + 2k)2 � 4(k2 + Pk + Q) = P 2 � 4Q, this corollary follows from
Theorem 4.

3.1. The Congruences Involving the Lucas Numbers

Let P = 1, Q = �1 and
⇣

5
q

⌘
= 1, i.e., by the Quadratic Reciprocity Law q ⌘ ±1

(mod 5). Let an integer k satisfy k2 + k � 1 6⌘ 0 (mod q), then by Corollary 2

Vq�1(1 + 2k, k2 + k � 1) ⌘ (k2 + k � 1)q�1 + 1 (mod q2), (17)

V 2
q�1
2

(1 + 2k, k2 + k� 1) ⌘ (k2 + k� 1)q�1 + 2(k2 + k� 1)
q�1
2 + 1 (mod q2). (18)

If k = 0, then
Lq�1 ⌘ 2 (mod q2), (19)

L2
q�1
2
⌘ 2 + 2(�1)

q�1
2 (mod q2), (20)

where Ln is the n-th Lucas number.

3.2. The Congruences Involving the Pell-Lucas Numbers

Let P = 2, Q = �1 and
⇣

8
q

⌘
= 1, i.e., by the Quadratic Reciprocity Law q ⌘ ±1

(mod 8). Let an integer k satisfy k2 + 2k � 1 6⌘ 0 (mod q), then by Corollary 2

Vq�1(2 + 2k, k2 + 2k � 1) ⌘ (k2 + 2k � 1)q�1 + 1 (mod q2), (21)

V 2
q�1
2

(2+2k, k2+2k�1) ⌘ (k2+2k�1)q�1+2(k2+2k�1)
q�1
2 +1 (mod q2). (22)

If k = 0, then ePq�1 ⌘ 2 (mod q2), (23)



INTEGERS: 16 (2016) 7

eP 2
q�1
2
⌘ 2 + 2(�1)

q�1
2 (mod q2), (24)

where ePn is the n-th Pell-Lucas number defined by:

eP0 = 2, eP1 = 2, ePi = 2 ePi�1 + ePi�2, i � 2. (25)
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