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Abstract
Suppose a finite semi-regular continued fraction (abbreviated as SRCF) is given,
and we have to find a regular continued fraction, an even continued fraction or
an odd continued fraction whose value is same as that of the given SRCF. In this
article, we discuss an algorithm to convert the given SRCF to each of these three
types of continued fractions without finding the value of the given SRCF. We also
compare the complexity of our algorithms in each case with the direct method which
requires computing the actual value of the given SRCF.

1. Introduction

Suppose ✏i 2 {±1}, ai 2 N, for i 2 N, and a0 2 Z. A pair of finite sequences {✏i}n
i�1

and {ai}n
i�0 is called a finite semi-regular continued fraction when ✏i+1 + ai � 1.

A pair of infinite sequences {✏i}1i�1 and {ai}1i�0 is called an infinite semi-regular
continued fraction when ✏i+1 +ai � 1 and ai � 2 for infinitely many values of i (see
[2]). A finite semi-regular continued fraction is expressed as

a0 +
✏1

a1+
✏2

a2+
✏3

a3+
· · · ✏n

an
(1)

and n is called its length. An infinite semi-regular continued fraction is expressed
as

a0 +
✏1

a1+
✏2

a2+
✏3

a3+
· · · ✏n

an+
· · · ; (2)

it is called eventually constant if there exists m 2 N such that ✏i = ✏m and ai =
am for every i > m. For an eventually constant semi-regular continued fraction,
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the smallest m satisfying the above property is treated as its length. We use the
abbreviation SRCF for ‘semi-regular continued fraction’.

Every ai (i � 1) is called a partial denominator, the integer a0 is called the
integral part, and every ✏i (i � 1) is called a partial numerator of the continued
fraction. The rational number

pk

qk
= a0 +

✏1
a1+

✏2
a2+

✏3
a3+

· · · ✏k

ak

is called the k-th convergent of the continued fraction and the sequence {pk/qk}k�0 is
called the sequence of convergents of this continued fraction. In fact, the sequence
of convergents of a finite continued fraction is a finite sequence. The continued
fraction

ai +
✏i+1

ai+1+
· · ·

is called the tail at the i-th stage. The expression

yi =
✏i

ai+
✏i+1

ai+1+
· · · (3)

is referred to as the fin at the i-th stage ([6]). Observe that ✏i = sign(yi) and the
length of the continued fraction is n if yn+1 = 0.

The semi-regular continued fraction expressed in (1) or (2) is known as a regular
continued fraction (abbreviated as RCF) if ✏i = 1 for every i � 1. If ✏i = ±1, ai is
an even positive integer for i � 1, and a0 2 2Z, then the SRCF is known as an even
continued fraction (abbreviated as ECF). If ✏i = ±1, ai is an odd positive integer
for i � 1, and a0 is an odd integer, then the SRCF is known as an odd continued
fraction (abbreviated as OCF) (see [8]). One may refer to [1] for more on continued
fractions.

Every rational number has a unique RCF expansion having the last partial de-
nominator greater than 1, a unique ECF expansion except when it is a quotient of
two odd integers, and a unique OCF expansion except when the last partial quo-
tient is 1/1 or �1/1. In fact, for a rational number which is a quotient of two odd
integers, there are two eventually constant ECF expansions. The non-uniqueness
of an ECF or an OCF expansion of a rational number is clear from the following
identities:

1
2r

=
1

(2r � 1)+
1
1

=
1

(2r + 1)+
�1
1

;

1
2r + 1

=
1

2r+
1
1

=
1

2(r + 1)+
�1
1

;

±1
1

=
±1
2+

�1
2+

�1
2+

· · · .

Suppose a finite SRCF is given and we have to find an RCF (or ECF or OCF)
which has the same value as the given SRCF. One way to do it is by finding the value
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x of the given SRCF and then expanding x using the expansion algorithm to find
the desired type of continued fraction. We propose in this article that we can bypass
finding the value of the given SRCF and convert the SRCF more e�ciently into a
desired type of continued fraction. Here, the desired types of continued fraction
expansion are restricted to RCF, ECF and OCF.

While finding the ECF having the same value as that of the given SRCF, we
may find an infinite continued fraction which is eventually constant. The following
proposition (c.f. [6, Proposition 6.1]) guarantees that an eventually constant con-
tinued fraction whose value is a rational number, can neither be an RCF nor an
OCF.

Proposition 1. Suppose x 2 R has an eventually constant semi-regular contin-
ued fraction expansion. Then x 2 Q if and only if all but finitely many partial
numerators are �1 and all but finitely many partial denominators are 2.

The conversion of a semi-regular continued fraction into a regular continued frac-
tion is well known and it goes back to Lagrange [3]. An algorithm for conversion is
described in Section 40 of Oskar Perron’s classical book [5]. In the proof of Theorem
1, step 1(b) occurs in the foregoing reference to get rid of a partial numerator which
is equal to �1. In the method of [5], a couple of identities (cf. [4]) are used to
convert an SRCF into an RCF, but one of the identities may produce a zero par-
tial denominator and the other removes a zero partial denominator. However, we
did not use any transformation which produces zero as a partial denominator. C.
Kraaikamp [2] has defined a process called “singularization” by which a continued
fraction can be transformed into another continued fraction by removing 1/1. In
fact, the singularization process has been very useful in the conversion algorithms
(c.f. [7]).

In the next section, we discuss algorithms to convert an SRCF into a desired type
(ECF, OCF or RCF) of continued fraction without finding the value of the given
continued fraction. In fact, we do not use expansion algorithms to find the desired
type of continued fraction. In each case, we find the maximum number of basic
operations required to perform the complete conversion process (up to a constant
independent of the length of the given SRCF). In the last section, we compare the
complexity of our algorithms with that of the direct method.

2. Conversion Algorithms

The process of transforming an SRCF into a continued fraction of certain type is
by repairing its partial numerators and partial denominators one by one. Repairing
is done by applying a set of identities in the forthcoming lemma in certain order.
Proving the identities in this lemma is not di�cult.
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Lemma 1. Let a,m 2 Z, m � 0, b 2 N, y 2 R and let ✏, ✏0 2 {±1}. Then we have
the following identities.

(1) a + ✏
b+y = a + ✏ + �✏

1+
1

b�1+y .

(2) a + ✏
1+

1
b+y = a + ✏ + �✏

b+1+y .

(3) a + ✏
2+

�1
2+

· · · �1
2+| {z }

m-times

✏0

b+y = a + ✏ + �✏
m+2+

�✏0

b+✏0+y .

(4) a + ✏
2+

�1
2+

· · · �1
2+| {z }

m-times

�1
1+

1
b+y = a + ✏ + �✏

(m+2+b)+y .

(5) ±1 = ±1
2+

�1
2+

�1
2+ · · · .

Writing s/t, where s, t 2 R and t 6= 0, as a column
✓

s
t

◆
, the first two identities can

be reformulated into the following matrix identities respectively:
✓

a 1
1 0

◆✓
b 1
✏ 0

◆✓
1
y

◆
=

✓
a + ✏ 1

1 0

◆✓
1 1
�✏ 0

◆✓
b� 1 1

1 0

◆✓
1
y

◆
,

✓
a 1
1 0

◆✓
1 1
✏ 0

◆✓
b 1
1 0

◆✓
1
y

◆
=

✓
a + ✏ 1

1 0

◆✓
b + 1 1
�✏ 0

◆✓
1
y

◆
.

In the process of conversion, finding a sequence of identities to be applied involves
certain number of operations. Applying an identity may involve one or more number
of basic operations. In fact, while applying the first, the second or the fourth
identity, it involves four operations; the third identity requires six operations and
the fifth requires only one operation.

Theorem 1. Every finite SRCF can be converted into an RCF without computing
the value of the given SRCF. Further, if n is the length of the given SRCF, then the
conversion requires at most 5n operations.

Proof. Suppose the given SRCF is

a0 +
✏1

a1+
✏2

a2+
✏3

a3+
· · · ✏n

an
.

Denote its value (which we may not know) by x. Suppose k � 1 is the smallest
positive integer such that ✏k = �1.

1. Let yk+1 = 0 so that k = n.
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(a) If an = 1, by a rearrangement, we have

x = a0 +
1

a1+
1

a2+
· · · 1

(an�1 � 1)
.

(b) If an > 1, using identity (1) of Lemma 1, we have

x = a0 +
1

a1+
1

a2+
· · · 1

(an�1 � 1)+
1

1+
1

an � 1
.

2. Let yk+1 > 0 so that ak � 1.

(a) If ak = 1, by using identity (2) of Lemma 1, we have

x = a0 +
1

a1+
1

a2+
· · · 1

(ak�1 � 1)+
1

(ak+1 + 1)+
· · · ✏n

an
.

(b) If ak > 1, then by identity (1) of Lemma 1, we have

x = a0 +
1

a1+
1

a2+
· · · 1

(ak�1 � 1)+
1

1+
1

(ak � 1)+
· · · ✏n

an
.

3. Let yk+1 < 0 so that ak � 2.

(a) If ak = 2, suppose s is the smallest positive integer with s � k such that
✏s+1
as+1

6P �1/2. Then

x = a0 +
1

a1+
· · · 1

ak�1+
�1
2+

· · · �1
2+| {z }

s�k+1-times

✏s+1

as+1+
· · · ✏n

an
.

If ys+1 6= 0 and ✏s+1
as+1

6= �1
1 , by using identity (3) of Lemma 1, we have

x = a0 +
1

a1+
· · · 1

(ak�1 � 1)+
1

(s� k + 2)+
�✏s+1

(as+1 + ✏s+1)+
· · · ✏n

an
.

If ✏s+1
as+1

= �1
1 and ys+2 6= 0, by using identity (4) of Lemma 1, we have

x = a0 +
1

a1+
· · · 1

(ak�1 � 1)+
1

(s� k + 2) + as+2+
✏s+3

as+3+
· · · ✏n

an
.

If ✏s+1
as+1

= �1
1 and ys+2 = 0, by using identity (4) of Lemma 1, we have

x = a0 +
1

a1+
· · · 1

(ak�1 � 1)
.

If ys+1 = 0, we have

x = a0 +
1

a1+
1

a2+
· · · 1

(ak�1 � 1)+
1

s� k + 2
.
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(b) If ak > 2, then by identity (1) of Lemma 1, we have

x = a0 +
1

a1+
1

a2+
· · · 1

(ak�1 � 1)+
1

1+
1

(ak � 1)+
· · · ✏n

an
.

Observe that if the k-th partial numerator ✏k is �1, then the next partial numer-
ator, namely, ✏k+1 either vanishes or gets repaired in each step except in sub-case
3(b). To perform a step di↵erent from 3(b), it requires at most 8 operations which
yields corrections in two consecutive partial numerators at a time. In fact, per-
forming 3(b) successively requires maximum number of operations and each time it
involves five operations which yields only one correction at a time. Thus the maxi-
mum number of operations to convert an SRCF into an RCF requires 5n operations,
where n is the length of the given SRCF.

Theorem 2. Every finite SRCF can be converted into an ECF without computing
the value of the given SRCF. Further, if n is the length of the given SRCF, then the
conversion requires at most 6n operations.

Proof. Suppose the given SRCF is

a0 +
✏1

a1+
✏2

a2+
· · · ✏n

an
.

Denote its value by x. Suppose k is the smallest non-negative integer such that ak

is an odd integer.

1. Let yk+2 > 0 so that ak+1 � 1.

(a) If ak+1 = 1, use identity (2) of Lemma 1 to get

x = a0 +
✏1

a1+
✏2

a2+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

(ak+2 + 1)+
✏k+3

ak+3+
· · · ✏n

an
.

(b) If ak+1 > 1, then by identity (1) of Lemma 1, we have

x = a0 +
✏1

a1+
✏2

a2+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

1+
1

(ak+1 � 1)+
✏k+2

ak+2+
· · · ✏n

an
.

Further, applying identity (1) of Lemma 1 successively (ak+1 � 1)-times
and then applying identity (2) of Lemma 1, we get

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

2+
�1
2+

�1
2+

· · · �1
2+| {z }

ak+1�2-times

�✏k+2

(ak+2 + ✏k+2)+
✏k+3

ak+3+
· · · ✏n

an
.
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2. Let yk+2 < 0 so that ak+1 � 2.

(a) If ak+1 = 2, suppose s is the smallest positive integer with s � k+1 such
that ✏s+1

as+1
6P �1/2. Then

x = a0 +
✏1

a1+
· · · ✏k

ak+
✏k+1

2+
�1
2+

· · · �1
2+| {z }

s�k�1-times

✏s+1

as+1+
· · · ✏n

an
.

i. Let ys+1 6= 0 and ✏s+1
as+1

6= �1
1 , use identity (3) of Lemma 1 to get

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

(s� k + 1)+
�✏s+1

as+1 + ✏s+1+
· · · ✏n

an
.

If ✏s+1
as+1

= �1
1 and ys+2 6= 0, using identity (4) of Lemma 1, we have

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

(s� k + 1) + as+2+
✏s+3

as+3+
· · · ✏n

an
.

If ✏s+1
as+1

= �1
1 and ys+2 = 0, then

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)
.

ii. If ys+1 = 0 then s = n, so that

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

(n� k + 1)
.

(b) If ak+1 = 3, by using identity (1) of Lemma 1, we get

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

1+
1

2+
�1

ak+2+
· · · ✏n

an
.

For this SRCF, the (k + 1)-th partial denominator is 1, the (k + 2)-
th partial denominator is 2 and the fin at the ((k + 1) + 2)-th stage is
negative; so we follow step 2(a) to get an SRCF having at most (n�k�2)
odd partial denominators.

(c) If ak+1 > 3, by using identity (1) of Lemma 1 successively (ak+1 � 4)-
times, we get

x = a0+
✏1

a1+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

2+
�1
2+

· · · �1
2+| {z }

(ak+1�4)-times

�1
1+

1
2+

�1
ak+2+

· · · ✏n

an
.
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For this SRCF, the (k + ak+1 � 2)-th partial denominator is 1, the (k +
ak+1�1)-th partial denominator is 2 and the fin at the ((k+ak+1�2)+2)-
th stage is negative; so we follow step 2(a) to get an SRCF having at
most (n� k � 2) odd partial denominators.

3. Let yk+2 = 0 so that k = n� 1.

(a) If an = 1, then by a rearrangement, we have

x = a0 +
✏1

a1+
✏2

a2+
· · · ✏n�1

(an�1 + ✏n)
.

(b) If an > 1, then from identities (1) and (2) of Lemma 1, we see that

x = a0 +
✏1

a1+
✏2

a2+
· · · ✏n�1

(an�1 + ✏n)+
�✏n

2+
�1
2+

�1
2+

· · · �1
2+| {z }

an�2-times

.

4. Finally, if k = n, then an = 2r + 1 for some r 2 Z, so that

x = a0 +
✏1

a1+
✏2

a2+
· · · ✏n�1

an�1+
✏n

(2r + 1 ± 1) + (⌥1)
.

So we apply identity (5) of Lemma 1 and get an eventually constant ECF.

If n is the length of the SRCF, we get an ECF of x by repeating the above steps at
most n/2 times.

Observe that if the k-th partial denominator ak is odd, then the next partial
denominator, namely, ak+1, gets repaired automatically in each of the four cases
above. Observe that the maximum number of operations are required in case (2)
when occurrence of 2(c) is followed by occurrence of 2(a) of the algorithm. In
fact, the number of operations in this is 12. Hence the maximum number of basic
operations to convert an SRCF of length n to an ECF is 6n.

Theorem 3. Every finite SRCF can be converted into an OCF without computing
the value of the given SRCF. Further, if n is the length of the given SRCF, then the
conversion requires at most 7n operations.

Proof. Suppose the given SRCF is

a0 +
✏1

a1+
✏2

a2+
· · · ✏n

an
.

Denote its value by x. Suppose k is the smallest non-negative integer such that ak

is an even integer.

1. Let yk+2 > 0 so that ak+1 � 1.
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(a) First suppose ak+1 = 1. Using identity (2) of Lemma 1, we have

x = a0 +
✏1

a1+
✏2

a2+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

(ak+2 + 1)+
✏k+3

ak+3+
· · · ✏n

an
.

(b) Now suppose ak+1 > 1. Then by identity (1) of Lemma 1, we have

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

1+
1

(ak+1 � 1)+
1

ak+2+
· · · ✏n

an
.

2. Let yk+2 < 0 so that ak+1 � 2.

(a) Let ak+1 = 2. Suppose s is the smallest positive integer with s � k + 1
so that ✏s+1

as+1
6P �1/2. Then

x = a0 +
✏1

a1+
· · · ✏k

ak+
✏k+1

2+
�1
2+

· · · �1
2+| {z }

s�k�1-times

✏s+1

as+1+
· · · ✏n

an
.

i. If ys+1 6= 0 and ✏s+1
as+1

6= �1
1 , using identity (3) of Lemma 1, we obtain

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

(s� k + 1)+
�✏s+1

as+1 + ✏s+1+
· · · ✏n

an
.

If ✏s+1
as+1

= �1
1 and ys+2 6= 0, using identity (4) of Lemma 1, we have

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

(s� k + 1) + as+2+
✏s+3

as+3+
· · · ✏n

an
.

If ✏s+1
as+1

= �1
1 and ys+2 = 0, then

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)
.

ii. If ys+1 = 0 then s = n and we have

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

(n� k + 1)
.

(b) Now let ak+1 > 2. Then by identity (1) of Lemma 1, we have

x = a0 +
✏1

a1+
· · · ✏k

(ak + ✏k+1)+
�✏k+1

1+
1

(ak+1 � 1)+
✏k+2

ak+2+
· · · ✏n

an
.

3. Let yk+2 = 0 so that k = n� 1.
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(a) If an = 1, by a suitable rearrangement, we have

x = a0 +
✏1

a1+
✏2

a2+
· · · ✏n�1

(an�1 + ✏n)
.

(b) If an > 1, we use identity (1) of Lemma 1 to obtain

x = a0 +
✏1

a1+
✏2

a2+
· · · ✏n�1

(an�1 + ✏n)+
�✏n

1+
1

an � 1
.

4. Let k = n. Then,

x = a0 +
✏1

a1+
✏2

a2+
· · · ✏n�1

an�1+
✏n

(an ± 1)+
⌥1
1

.

If n is the length of the SRCF, we get the OCF of x by repeating the above steps
at most n times.

Observe that if the k-th partial denominator ak is even, yk+2 > 0 and ak+1 > 1,
then repairing requires seven operations whereas all the other cases involve a fewer
number of operations. Thus, the number of operations to convert an SRCF into an
OCF is at most 7n, where n is the length of the given SRCF.

3. Concluding Remarks

Suppose n is the length of the given SRCF. To find the value x of the SRCF, it
requires 3n operations. If m is the length of the desired type (RCF, ECF, OCF) of
SRCF expansion of x, then the expansion requires 5m operations. Thus, to convert
the given SRCF into the desired type of SRCF by finding (the value of) x and then
expanding x, it requires 3n + 5m basic operations.

The algorithm in Theorem 1, which converts an SRCF of length n into an RCF
(having the same value), requires at most 5n operations. Thus, our algorithm is
e�cient if 5n < 3n + 5m or m > 0.4n. Further, the algorithm in Theorem 2, which
converts an SRCF of length n into an RCF (having the same value), requires at most
6n operations. So our algorithm is e�cient provided 6n < 3n+5m or m > 0.6n. To
find an OCF corresponding to a given SRCF of length n, the algorithm in Theorem 3
requires at most 7n operations. So the algorithm is e�cient whenever 7n < 3n+5m,
that is, m > 0.8n.

If the length m of the resulting continued fraction is smaller than the length n of
the given SRCF, it is clear in the proof of the theorems that the conversion process
will follow certain steps each of which repairs several undesired partial numerators
or partial denominators in one step. Thus, the number of steps required for the
conversion will decrease proportionately.
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We have used identities in Lemma 1 to convert an SRCF into an RCF, an ECF
and an OCF, expecting a more e�cient way than the direct method. Note that a
finite SRCF is a rational number and every rational number has an ECF expansion,
an OCF expansion and an RCF expansion. By utilizing identities in Lemma 1, we
believe one can write an algorithm to convert a finite SRCF to any other type of
SRCF provided the value of the given SRCF has an expansion of the desired type.

Acknowledgement The authors are grateful to the anonymous referee for his/her
helpful comments.
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