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Abstract
We give bounds on the Lind-Lehmer constant for groups of the form

Ly X Ly, ptm

that are in many cases sharp. In particular we obtain the Lind-Lehmer constant
for groups of the form Zs x Zy, p > 3.

1. Introduction
For a polynomial F in Z[z1,..., 2] and a finite abelian group
G=2Zp, X+ XL, (1)
one defines the Lind-Mahler measure [4] of F' with respect to G by
Ma(F) = | Pa(F)[V19,

where Pg(F) is the integer

ni N

Pg(F) = H H F(e2m'j1/n17'..,627rijk/nk).

ji=1 Je=1
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That is, instead of the classical logarithmic Mahler measure

1 1
log M (F) :/ / log |F(e2™ ... e*™k)|dxy - - - doy,
0 0

one defines

1 ni Nk 4 ,
log Mg(F) = @ Z Z 10g|F(e2mx1/n17“.,eQTrz:ck/nk)'_

11:1 ZL’)CII

Mirroring the Lehmer problem for the classical measure, one can ask for the minimal
positive logarithmic Lind-Mahler measure, and define a Lind-Lehmer constant for

G
b

AG) ]

log PGa
where
Po = min{|PG(F)| . |Po(F)| =2, FeZa,... ,xk]}.
For cyclic groups G = Z,, Kaiblinger [2] gave the bounds
min {min g, min q‘”‘l} <Pz, <min {min q, min qqa} , (2)
atm = q*[lm atm = q*[lm

with equality in these upper and lower bounds when 420 { m (see [5] for A(Zy,)
when 892371480 4 m). Here p and ¢ will always denote primes. Writing

j—1

M :={a?  —tp) : 1<a<p, tel} (3)

and

M*

Gi=min{[b] > 2 : be M;}, (4)

the second author showed in [1] that for G = Zj;, we have
Pa =M.

In his thesis [7, Theorem 2.1.5] the third author extended this to general p-groups
Gp =Ty X+ X Ly, <o <lyy N=Y1; (5)
i=1

showing the bounds

M;, < Pa, < My. (6)

In this note we obtain the counterpart of (2) and (6) for G = Z,,, x Gp, pt m. When
Gy =17y (i.e., N = n) we seem to have equality in many cases, including m = 2.
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2. Results

We define

M7 (r) :=min{b>1 : be Mj, (br)#1},

J

M (r) :==min{b>1 : be My, (br)=1}.
Note that —1 + mp’ is in M; so that
. .
M (r) < mp! —1. (7)

Theorem 1. If G = Z,, x G, with G, as in (5) and p{m¢o(m), then

min {M:{(m), min M, (¢)**, pB(G")} < Pg < min { M (m), My™}, (8)

q*||m
where my = H q* and
q®|lm,q| My
n—1
B(Gp) = (ll + 1) + Z([Z—Jrl — 1 + 1)pl1+"'+li. (9)
i=1

In view of (7) we can drop the pP(©r) from the lower bound if m < pB(@)—" and
we also recover the trivial bound

e R

If G, = Zy; and M (m) < p2+p+---+p"’1 and p{ me(m) we have

M (m) < |G| -1 =

ME(m) < M:? implies Pg = M (m). (10)
If Gp = Z; and m = 2 we clearly have equality in our upper and lower bounds (8):

Corollary 1. If G =Zy x Z;; and p > 3, then
P = min {M;(2) , M, (2)*}.

The lower bound in Theorem 1 will come from observing that if p | Pg(F’) then
pP@r) | Pg(F), and that if p { Pg(F) then Pg(F) must be a product of d(m)
elements of M,, (which includes 1); moreover that if ¢ | Pg(F) and ¢“ || m, then
at least (aw+ 1) of them are divisible by ¢g. The upper bounds are constructive. We
can drop the assumption p f ¢(m) in Theorem 1 if we replace the M3 (m) in our
upper bound by the smallest element of My which is coprime to m and a p™~'st
power mod m and add to my any ¢* || m, ¢ = 1 mod p, such that M3} is not a

p™~1 power mod q.
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3. Proofs

The bound Pg < M};(m) follows at once from the following lemma and the obser-
vation that if p{ ¢(m) and (s,m) = 1 then s is a p’¥ ~!st power mod m.

Lemma 1. Let G = Zp, x Gp, ptm. If s = a? - tpN has (s,pm) = 1 and
is a pN~"lst power mod m then there is a polynomial F in Z[z,x1,...,z,] with
PG(F) = S.

Proof. The proof is entirely constructive and similar to Lemma 2.2 of [1].
N-—-1
Suppose that s = af) mod m. Since p { m we can find an integer A such that
a + p) is a positive integer satisfying a + pA = ag mod m. Hence we can write

N-—1

s=aP —tpN = (a+>\p)pN

- tip"
for some t; which must satisfy m | t;. Thus we can assume that a is a positive
integer and that m | t. Notice also that (s,pm) = 1 ensures that (a,pm) = 1.

We define Hy(z,y),..., Hy-1(z,y) in Z[z,y| by

i—1
a—1 p

(L4 (2g) + -+ )y = [ D29 +piH(z,y) mod y? — 1. (11)
j=0

To see (11) for i = 1 we have

(L () oo (29) )7 = 1 ()P 4 4 (2y)"* 7 + pH(2,9)
= (14274 +220) 4+ pHy(2,y) mod ¥ — 1,

and for 7 > 1 successively

pifl p

a—1
> o +p'Hi(z,y) | mody? —1
=0

i+1

1+ (zy) + -+ (z)* )P

i

p

a—1
=] P i)
§=0

We define «(1),...,a(N) by 1,...,1,2,...,2 ,....n,...,n, and G(1),...,B(N) by
—_—— —— ——

I 15 In

, D PR ..o 1, ..., pl»TL .. 1. Recalling the pth cyclotomic poly-

11 lo In

P —1

@) =1ta+ g = 0L
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we take a positive integer r such that rp = 1 mod m and set

‘17 l1—1 a—1
F(z,x1,...,0p) = <1+<zxfl 1)+...+(2$11)' ) >+

= P BGH1 oty (e
Hj(Z’ ]+1))H(I)( ) m<z—1)ilj[1<;i_1>'

Suppose that w is a primitive p''th root of unity and z is an mth root of unity
11—1

which is a primitive [th root of unity. Then w’ = wP'  is a primitive pth root of

unity and, since (a,pm) =1 and (m,p) = 1, both zw’ and (zw’)* are primitive plth

j=1

roots of unity. Thus 1 — (zw’)* and 1 — (zw’) have the same norm and

1— Na
F(Z7w7"') = 1—|—(ZU)/) +"'+(Zw/)a71 - %
is a unit of norm 1.
Similarly, suppose z;, = w is a primitive p'* ~th root of unity with 0 < j <1, —1
(withj >1lifk=1)anda; =1forany 1 <i< k. Weset J =11+ -+lp_1+1+].

Then o)) = 1 and ®, (2} = p for all the i < J, and w' = 27} = w?* ™" is

a primitive pth root of unity and @, (xg g;) = 0. Hence

a—1 J—2
F(z,. . Lw, )= 20+ Y p Hi(2" 1) +p" T H (27 )
j=0 i=1
a—1 ;
-1
= | G +pH(E 1) +ZpH p T (7 )
§=0
p
ol 2\ PJ J—1
_ <Zr) +ZPH J 1HJ,1 (ZT ,’U}/)
7=0
J—2
ol J pJ ! J—1
(S e
7=0
J_1 - al p’t
a1< . /)j b 1-— (z’"J 1w’)
= VA w =
= 1— (")

is again a unit of norm 1. Finally, if z # 1 is an mth root of unity, then

pN-t N_1

ol -1 1—2:("’1\171 g
P =S e - (S0 ) - ()
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is a unit of norm 1,

N-1

F(17 13 ceey 1) =a+ Z szz(]-v 1)_tpN = (1+1+ ' '+1)pN71_tpN = aprl —tpN,
i=1
and Pg(F(z,21,...,2,)) =a?  —tpV. O

We observe that if p divides a G, measure then a high power of p divides the
measure.

Lemma 2. Suppose that p™ || Pg,(F). Then m =0 or

n—1
m > (li+1)+ Z(li+1 — 1+ ph Tttt (12)

i=1
We can also replace this by a more precise but less digestible bound; if I4,...,1,
take the values k1 < --- < kr with multiplicities mq,...,my and kg = 0, then the

right-hand side of (12) can be replaced by

L—1 kp1—kp—1—1—1 mp+-+mp_;—1
1+§ E E pmlkl+~~~+mL—l—1l€L—z—1+(mL+"'+mL—l,*1)(kL—l*j)*i'
=0 j=0

i=0

(13)
Either bound (12) or (13) can be used for B(G)) in Theorem 1. When G, = Z
both give the bound 2+p+---+p" 1 =1+ p;:
B(G)) is given in [7, Theorem 2.1.3].

L used in [1]. A simpler bound on

Proof. Observe that if w,; denotes a primitive p’th root of unity, then

pS
Normgw, . )/@F (Wps1s -, Wpsn ) = F (wfjsl Yo JUZSTL) €7z,
j=1
(jjp):l

where
s =max{s1,...,5n},

and Mg, (F') can be written as a product of such integer norms. Moreover, extending
the p-adic absolute value to Q(wy:), we have |wps; — 1|, < 1 and so plainly

Normgy, ) /@ F (Wps1s -, wpen ) = F(1,..., 1)¢(ps) mod p.

Hence if p | Pg,(F), then p | F'(1,...,1) and p divides all the norms. Thus the
bounds (12) and (13) represent a bound on the number of integer norms that make
up Mg,. For (12) we proceed by induction on n; for n = 1 we have I; + 1 norms,
namely the value F'(1) and the norms of F'(wy;), j = 1,...,l;. Forn > 1 and a



INTEGERS: 16 (2016) 7

primitive p/th root of unity wp; with I,y < j <1, the F(x1,...,2p_1,wp,) pro-
duce a different norm for each choice of z1, ..., x,_1, giving (I,, —l,_1+1)pir+Fln-
norms. Discarding any terms F(z1,...,2n—1,wp;) with 1 < j < [,,_;, the remain-
ing terms in (12) come from the n — 1 variable Z,, x --- x Ly, -, measure of
F(.’El, oy Tp—1;, 1).

Retaining the terms F(z1,...,2p—1,wp) with 1 < j < [,_; gives (13); taking
Tn = wyr, we have the prikitetme ikt (mr—bkL chojces of the other x;. The
remaining norms then have a ky, replaced by kz —1. When my > 1 one successively
reduces the remaining k7, to k;, — 1 contributing p2- (5 maket(me—1kr—i for ; — () to
my — 1. When kr, — 1 > k;_1 one continues to reduce all the my, exponents kr — 1
until one has my, + my_q values kr,_1 (the j sum). One repeats (the [ sum) until
left with mq + - - - + my, exponents k; and finally the single term F'(1,...,1). O

Proof of Theorem 1. Let w, denote a primitive rth root of unity. For the lower
bound observe that we can write

Pg(F) = Pg,(F1) = HPGp(fd),
dlm

where .
F = H F(wl xy,...,x,) = H fa(x1, ... zp)
j=0 dlm
with
d .
falxy, ... mp) = F(w),z1,...,x,) € Zlxy, ..., 2y
(id=1

From Lemma 2 if p | Pg, (f4) then pB(&») | Pg (f4). It was shown in [1, Lemma
2.1] for G, = Zj; and in [7, Theorem 2.1.2] for general G, that if p { Pg,(fa) then
Pg,(fa) lies in M,,. Since for a prime ¢ and ([,q) = 1 we can write w;y; = wiwg,
with |wg — 1], < 1, we have

J
flqj = fl¢(‘1 ) mod q

and |
Pe,(figi) = Pe,(f)*?) mod q.

Hence if ¢® || m has q | Pg(F'), then q | Pg,(fiqs) for some I with ¢ { [ and
0<j<a and q| Pg,(fig) for all 0 < i < o, and |Pg, (fi41)] > M, (q) for all i.
So |Pg(F)| > M., (q)*™* and the lower bound is plain.

From Lemma 1 we have Pg < Mﬁ(m) For the remaining upper bound observe
that if @ is in M y and we write m = mmo, where m; = Hq”\\waa q* and (ma,a) =
1, then we know that for Gy := Z,, x Zj, there is an f(z, 1, ..., 2;) with Pg,(f) =
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a. Hence F(z,x1,...,x,) = f(z™,21,...,2) will have Pg(F') = Pg,(f)™ = a™.
Taking a = M, gives the bound stated. Note, taking the polynomial F'(z1,...,zy)
achieving Pg,, we similarly have the trivial bound Pg < ”Pglp. O

4. Examples

Notice that the smallest possible value of Pz2ng is 3, achievable exactly when
37~! = 1 mod p2. The only known such Mirimanoff primes (Wieferich primes base
3) are p = 11 and p = 1006003; see for example [3, p.150] or [6, p.347]. The two
known Wieferich primes, p = 1093 and 3511, have Py, 72 = M3 (2)? = 4.

The following tables give the M;, and M} (m) for G = Z,, x Z}, with 3 < p <
103, n = 2, 3,4, and m of the form 2%, 3% 5% 2438 7% 2°55 or 11%. For p { m¢(m)
we have Mt (m) < M*? and P = M (m) except for the following few unresolved
cases:

| G | Pa | ¢ | Ps |
Zoa.3 X 231, a >0, 9 or 27 Za2 X 23, | 27 or 40
Zigo g2 X Z31, a>1, | 27,81 or 161 || Zs x Z3; | 324 or 437
Dgags X 231, a>1, 81 or 161

Since 8 is a cube, the restriction p  ¢(m) only affects Z7 x Z%, n = 3,4 and Z11 X Z2,
n=23,4.

TABLE OF M;:

| Hn=2|n:3‘n=4|‘ ‘n:2|n:3| n=4 |
p=3 8 26 80 p =47 53 295 224444
p=>5 7 57 182 p=>53 338 1468 189323
p="7 18 18 1047 p=>59 53 2511 11550
p=11 3 124 1963 p =61 264 15458 | 397575

p=13 19 239 239 p =67 143 3859 201305
p=17 38 158 4260 p="T1 11 6372 15384

p=19 28 333 2819 p="73 306 923 840838
p=23 28 42 19214 || p=179 31 1523 | 1372873
p=29 14 1215 2463 p=283 99 5436 | 1576656
p=31 115 513 15714 || p=89 184 1148 278454
p =237 18 691 51344 || p=97 53 412 1721322
p=41 51 1172 | 20677 || p =101 181 4943 48072

p=43 19 3038 3038 || p=103 43 4432 281007

TABLE OF Pg FOR G = Zaa X Z7, n = 2,3,4, p < 103. In all these cases Pg = M} (2):

Yo
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| ||n:2‘n:3| n=4 || |n:2‘n:3| n=4 ‘
p=3 17 53 161 p =47 53 295 225947
p=>5 7 57 443 p=>53 413 9283 189323
p="7T 19 19 1047 p=>59 53 2511 111529
p=11 3 161 1963 p =61 601 28743 | 397575
p=13 19 239 239 p =67 143 3859 201305
p=17 65 399 15541 p="T1 11 8327 557381
p=19 69 333 2819 p="T3 527 923 1551509
p=23 63 803 60793 p="T9 31 1523 | 1372873
p=29 41 1215 2463 p =83 99 6509 | 2864371
p=31 115 513 126279 p =289 605 1485 | 6251225
p=37 117 691 216739 p=97 53 34557 | 6313037
p=41 51 9325 20677 p =101 181 4943 571075
p =43 19 3623 | 162637 || p =103 43 26319 | 281007

TABLE OF M} (3) # M}, FOR G = Zza x Z7, n = 2,3,4, p < 103:

D

| [n=2 [ n=3 ] | n=14
p=17] 19 p=5 | 68 p=71 1048
p=11| 40 p=7 1| 19 p=17 | 15541
p=37| 7 | p=19| 623 | p=29 | 23174
p=41| 148 || p=23| 803 | p=31 | 51266
p=61| 572 || p=29| 4850 || p=59 | 111529
p=731| 368 || p=31] 5995 | p=61 | 846695
p=83| 161 || p=59 | 18511 || p="71 | 557381
p=711| 8327 || p=83 | 2864371
p=283| 6509 || p=89 | 381718
p =097 | 3464764
p=101 | 571075
p =103 | 4717448

TABLE OF M} (5) # M}, FOR G = Zsa X Z7%, n = 2,3,4, p < 103:

D

|n:2H |n—3H n=4
p=31 117 p=29 | 1872 p=3 161

p =47 | 4757 p=17 | 15541

p=>59 | 111529

p=61 | 648103

p =67 | 201306
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TABLE OF M, (6) # M;,, for primes such that 3 | M;} (2) # M, or 2 | M} (3) # M, for
G = Zga.3p X Ly, n=2,3,4, p < 103:

| [n=2 [ n=3] | n=4 |
p=11] 161 p=5 193 p= 2549

p=19| 127 || p=17 | 653 || p=29 | 78017

p=23| 263 || p=19 | 623 || p=31 | 298423
p=37| 437 || p=29 | 10133 || p=61 | 846695
p=41| 313 || p=31 | 5995 || p=289 | 6251225
p=61| 601 | p=59 | 18511 | p=97 | 6313037
p=73| 527 || p=61 | 38447 || p =103 | 6280381
p=283| 161 | p=289 | 24833
p=97 | 34675
p =103 | 50645

TABLE OF M} (7) # M}, FOR G = Zro X Z7, n = 2,3,4, p < 103:

[ [n=2] =] =1
p=5 18 [[p=23] 803 || p=5 | 443

p=19| 54 | p=43| 3623 | p=43 | 45922
p=23| 118 | p=89 | 1485 || p=59 | 111529
p=29 | 41

TABLE OF M, (10) # M, for primes such that 5 | M} (2) # M or 2 | M (5) # M
for G = Zya 55 X Zpy, n =2,3,4, p < 103:

| [n=2 | n=3 [ n=4 |
p=31] 117 || p=29] 2463 || p=61 | 548103
p=89 | 707 || p=41| 10399 || p=67 | 1057933
p=289 | 24833 || p=89 | 7552311
p=101 | 1358891

TABLE OF M} (11) # M;, FOR G = Zi1e X Z3, n = 2,3,4, p < 103:

| [n=2] | n=4 |
p=61 432 | p=47 | 225047
p=067| 248 || p=59 | 905953
p=T71| 26 || p=89 | 381718
p=283| 161
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Similarly, fixing p we can evaluate Pg for varying m:

Example 4.1. Suppose that G = Z,, x Z3 with 3t m. Then

Pa =8 Z‘fQTm,

Pe =17 if m=2n, 17tn, 31 ¢(n),

Pe =19 ifm=2-17n, 31 ¢(n),

Pg=64 ifm=2-5-17-19-37-53n orm=2-7-11-17-19-37-53n, 2{n.

Example 4.2. Suppose that G = Z, x Z2 with 51 mo(m). Then

P =7 if T{m,

Pe =18 if m="Tn, (6,n) =1,
Pe =26 ifm=3-Tn, (26,n) =1,
Pe =32 ifm=3-7-13n, 2{n,
Po =43 ifm=2-Tn, 431 n.

Form =2-7-43 we have Pg =49 or 51. Since 32 is a fifth power we can drop the
restriction 51 ¢(m) when m =3-7-13n, 21 n.

Example 4.3. Suppose that G = Z,, x Z2 with 71 mao(m). Then

Pe =18 if (6,m) = 1,

Pe =19 if m=2n or m =3n, 191{n,

Pe =31 ifm=2-19n orm =3-19n, 31 1n,

Pe =50 ifm=3-19-31n, (10,n) = 1,

Pe =67 ifm=2-19-31n orm=3-5-19-31n, 671n,

Pe =68 ifm=3-5-19-31-67n, (2-17,n) = 1,

Po =79 ifm=2-19-31-6Tn orm=23-5-17-19-31-67n, 79 fn,
P =97 ifm=2-19-31-67-79n orm=3-5-17-19-31-67-79n, 971 n,
Pe =99 ifm=2-19-31-67-79-97n, (3-11,n) = 1,

Pe =116 ifm=3-5-17-19-31-67-79-97n, 2tn,

P =117 ifm=2-11-19-31-67-79-97n, (3-13,n) = 1,

Pe =129 ifm=2-11-13-19-31-67-79-97n, 31{n,

Pe =197 ifm=2-3-19-31-67-79-97n.

Since 128 is a seventh power we can drop the restriction 71 ¢(m) and obtain Pg =
128 when m =3-5-17-19-29-31-67-79-97n, 2{n.
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