

THE LIND-LEHMER CONSTANT FOR $\mathbb{Z}_m \times \mathbb{Z}_p^n$

Vincent Pigno

 $\label{eq:continuous} Department \ of \ Mathematics \ \ &\ Statistics, \ University \ of \ California, \ Sacramento, \\ California$

vincent.pigno@csus.edu

Chris Pinner

Department of Mathematics, Kansas State University, Manhattan, Kansas pinner@math.ksu.edu

Wasin Vipismakul

Department of Mathematics, Burapha University, Chonburi, Thailand wvipismakul@gmail.com

Received: 12/21/15, Accepted: 6/12/16, Published: 7/7/16

Abstract

We give bounds on the Lind-Lehmer constant for groups of the form

$$\mathbb{Z}_m \times \mathbb{Z}_p^n, p \nmid m$$

that are in many cases sharp. In particular we obtain the Lind-Lehmer constant for groups of the form $\mathbb{Z}_2 \times \mathbb{Z}_p^n$, $p \geq 3$.

1. Introduction

For a polynomial F in $\mathbb{Z}[x_1,\ldots,x_k]$ and a finite abelian group

$$G = \mathbb{Z}_{n_1} \times \dots \times \mathbb{Z}_{n_k},\tag{1}$$

one defines the Lind-Mahler measure [4] of F with respect to G by

$$M_G(F) = |P_G(F)|^{1/|G|},$$

where $P_G(F)$ is the integer

$$P_G(F) := \prod_{j_1=1}^{n_1} \cdots \prod_{j_k=1}^{n_k} F\left(e^{2\pi i j_1/n_1}, \dots, e^{2\pi i j_k/n_k}\right).$$

That is, instead of the classical logarithmic Mahler measure

$$\log M(F) = \int_0^1 \cdots \int_0^1 \log |F(e^{2\pi i x_1}, \dots, e^{2\pi i x_k})| dx_1 \cdots dx_k,$$

one defines

$$\log M_G(F) = \frac{1}{|G|} \sum_{x_1=1}^{n_1} \cdots \sum_{x_k=1}^{n_k} \log |F(e^{2\pi i x_1/n_1}, \dots, e^{2\pi i x_k/n_k})|.$$

Mirroring the Lehmer problem for the classical measure, one can ask for the minimal positive logarithmic Lind-Mahler measure, and define a Lind-Lehmer constant for ${\cal G}$

$$\lambda(G) = \frac{1}{|G|} \log \mathcal{P}_G,$$

where

$$\mathcal{P}_G = \min \{ |P_G(F)| : |P_G(F)| \ge 2, F \in \mathbb{Z}[x_1, \dots, x_k] \}.$$

For cyclic groups $G = \mathbb{Z}_m$ Kaiblinger [2] gave the bounds

$$\min \left\{ \min_{q \nmid m} q, \min_{q^{\alpha} \mid |m} q^{\alpha+1} \right\} \le \mathcal{P}_{\mathbb{Z}_m} \le \min \left\{ \min_{q \nmid m} q, \min_{q^{\alpha} \mid |m} q^{q^{\alpha}} \right\}, \tag{2}$$

with equality in these upper and lower bounds when $420 \nmid m$ (see [5] for $\lambda(\mathbb{Z}_m)$ when $892371480 \nmid m$). Here p and q will always denote primes. Writing

$$\mathcal{M}_{i} := \{ a^{p^{j-1}} - tp^{j} : 1 \le a < p, \ t \in \mathbb{Z} \}, \tag{3}$$

and

$$\mathcal{M}_{j}^{*} := \min\{|b| \ge 2 : b \in \mathcal{M}_{j}\},\tag{4}$$

the second author showed in [1] that for $G = \mathbb{Z}_p^n$, we have

$$\mathcal{P}_G = \mathcal{M}_n^*$$
.

In his thesis [7, Theorem 2.1.5] the third author extended this to general p-groups

$$G_p := \mathbb{Z}_{p^{l_1}} \times \dots \times \mathbb{Z}_{p^{l_n}}, \quad l_1 \le \dots \le l_n, \quad N = \sum_{i=1}^n l_i,$$
 (5)

showing the bounds

$$\mathcal{M}_n^* \le \mathcal{P}_{G_n} \le \mathcal{M}_N^*. \tag{6}$$

In this note we obtain the counterpart of (2) and (6) for $G = \mathbb{Z}_m \times G_p$, $p \nmid m$. When $G_p = \mathbb{Z}_p^n$ (i.e., N = n) we seem to have equality in many cases, including m = 2.

2. Results

We define

$$\mathcal{M}_{j}^{-}(r) := \min\{b > 1 : b \in \mathcal{M}_{j}, (b, r) \neq 1\},\$$

 $\mathcal{M}_{j}^{+}(r) := \min\{b > 1 : b \in \mathcal{M}_{j}, (b, r) = 1\}.$

Note that $-1 + mp^j$ is in \mathcal{M}_j so that

$$\mathcal{M}_i^+(r) \le mp^j - 1. \tag{7}$$

Theorem 1. If $G = \mathbb{Z}_m \times G_p$ with G_p as in (5) and $p \nmid m\phi(m)$, then

$$\min \left\{ \mathcal{M}_{n}^{+}(m), \ \min_{q^{\alpha} \mid \mid m} \mathcal{M}_{n}^{-}(q)^{\alpha+1}, \ p^{B(G_{p})} \right\} \leq \mathcal{P}_{G} \leq \min \left\{ \mathcal{M}_{N}^{+}(m), \ \mathcal{M}_{N}^{* \ m_{1}} \right\}, \quad (8)$$

where
$$m_1 = \prod_{q^{\alpha}||m,q|\mathcal{M}_N^*} q^{\alpha}$$
 and

$$B(G_p) = (l_1 + 1) + \sum_{i=1}^{n-1} (l_{i+1} - l_i + 1) p^{l_1 + \dots + l_i}.$$
 (9)

In view of (7) we can drop the $p^{B(G_p)}$ from the lower bound if $m \leq p^{B(G)-n}$, and we also recover the trivial bound

$$\mathcal{M}_{N}^{+}(m) \leq |G| - 1 = \left| P_{G} \left(-1 + \left(\frac{z^{m} - 1}{z - 1} \right) \prod_{i=1}^{n} \left(\frac{x_{i}^{p^{l_{i}}} - 1}{x_{i} - 1} \right) \right) \right|.$$

If $G_p = \mathbb{Z}_p^n$ and $\mathcal{M}_n^+(m) \leq p^{2+p+\dots+p^{n-1}}$ and $p \nmid m\phi(m)$ we have

$$\mathcal{M}_n^+(m) < \mathcal{M}_n^{*2} \quad \text{implies} \quad \mathcal{P}_G = \mathcal{M}_n^+(m).$$
 (10)

If $G_p = \mathbb{Z}_p^n$ and m = 2 we clearly have equality in our upper and lower bounds (8):

Corollary 1. If $G = \mathbb{Z}_2 \times \mathbb{Z}_p^n$ and $p \geq 3$, then

$$\mathcal{P}_G = \min \left\{ \mathcal{M}_n^+(2) , \, \mathcal{M}_n^-(2)^2 \right\}.$$

The lower bound in Theorem 1 will come from observing that if $p \mid P_G(F)$ then $p^{B(G_p)} \mid P_G(F)$, and that if $p \nmid P_G(F)$ then $P_G(F)$ must be a product of d(m) elements of \mathcal{M}_n (which includes 1); moreover that if $q \mid P_G(F)$ and $q^{\alpha} \mid \mid m$, then at least $(\alpha + 1)$ of them are divisible by q. The upper bounds are constructive. We can drop the assumption $p \nmid \phi(m)$ in Theorem 1 if we replace the $\mathcal{M}_N^+(m)$ in our upper bound by the smallest element of \mathcal{M}_N which is coprime to m and a p^{n-1} st power mod m and add to m_1 any $q^{\alpha} \mid \mid m$, $q \equiv 1 \mod p$, such that \mathcal{M}_N^* is not a p^{n-1} power mod q.

3. Proofs

The bound $\mathcal{P}_G \leq \mathcal{M}_N^+(m)$ follows at once from the following lemma and the observation that if $p \nmid \phi(m)$ and (s, m) = 1 then s is a p^{N-1} st power mod m.

Lemma 1. Let $G = \mathbb{Z}_m \times G_p$, $p \nmid m$. If $s = a^{p^{N-1}} - tp^N$ has (s, pm) = 1 and is a $p^{N-1}st$ power mod m then there is a polynomial F in $\mathbb{Z}[z, x_1, \ldots, x_n]$ with $P_G(F) = s$.

Proof. The proof is entirely constructive and similar to Lemma 2.2 of [1].

Suppose that $s \equiv a_0^{p^{N-1}} \mod m$. Since $p \nmid m$ we can find an integer λ such that $a + p\lambda$ is a positive integer satisfying $a + p\lambda \equiv a_0 \mod m$. Hence we can write

$$s = a^{p^{N-1}} - tp^N = (a + \lambda p)^{p^{N-1}} - t_1 p^N$$

for some t_1 which must satisfy $m \mid t_1$. Thus we can assume that a is a positive integer and that $m \mid t$. Notice also that (s, pm) = 1 ensures that (a, pm) = 1.

We define $H_1(z, y), \ldots, H_{N-1}(z, y)$ in $\mathbb{Z}[z, y]$ by

$$(1+(zy)+\dots+(zy)^{a-1})^{p^i} = \left(\sum_{j=0}^{a-1} z^{pj}\right)^{p^{i-1}} + p^i H_i(z,y) \bmod y^p - 1.$$
 (11)

To see (11) for i = 1 we have

$$(1+(zy)+\cdots+(zy)^{a-1})^p = 1+(zy)^p+\cdots+(zy)^{p(a-1)}+pH_1(z,y)$$

$$\equiv (1+z^p+\cdots+z^{p(a-1)})+pH_1(z,y) \bmod y^p-1,$$

and for $i \geq 1$ successively

$$(1+(zy)+\dots+(zy)^{a-1})^{p^{i+1}} \equiv \left(\left(\sum_{j=0}^{a-1} z^{pj}\right)^{p^{i-1}} + p^i H_i(z,y)\right)^p \mod y^p - 1$$
$$= \left(\sum_{j=0}^{a-1} z^{pj}\right)^{p^i} + p^{i+1} H_{i+1}(z,y).$$

We define $\alpha(1),\ldots,\alpha(N)$ by $\underbrace{1,\ldots,1}_{l_1},\underbrace{2,\ldots,2}_{l_2},\ldots,\underbrace{n,\ldots,n}_{l_n}$, and $\beta(1),\ldots,\beta(N)$ by $\underbrace{p^{l_1-1},p^{l_1-2},\ldots,1}_{l_1},\underbrace{p^{l_2-1},\ldots,1}_{l_2},\ldots,\underbrace{p^{l_n-1},\ldots,1}_{l_n}$. Recalling the pth cyclotomic polynomial

$$\Phi_p(x) = 1 + x + \dots + x^{p-1} = \frac{x^p - 1}{x - 1}$$

we take a positive integer r such that $rp \equiv 1 \mod m$ and set

$$F(z, x_1, ..., x_n) = \left(1 + \left(zx_1^{p^{l_1-1}}\right) + \dots + \left(zx_1^{p^{l_1-1}}\right)^{a-1}\right) + \sum_{j=1}^{N-1} H_j\left(z^{r^j}, x_{\alpha(j+1)}^{\beta(j+1)}\right) \prod_{i=1}^j \Phi_p\left(x_{\alpha(i)}^{\beta(i)}\right) - \frac{t}{m}\left(\frac{z^m - 1}{z - 1}\right) \prod_{i=1}^n \left(\frac{x_i^{p^{l_i}} - 1}{x_i - 1}\right).$$

Suppose that w is a primitive p^{l_1} th root of unity and z is an mth root of unity which is a primitive lth root of unity. Then $w' = w^{p^{l_1-1}}$ is a primitive pth root of unity and, since (a, pm) = 1 and (m, p) = 1, both zw' and $(zw')^a$ are primitive plth roots of unity. Thus $1 - (zw')^a$ and 1 - (zw') have the same norm and

$$F(z, w, ...) = 1 + (zw') + ... + (zw')^{a-1} = \frac{1 - (zw')^a}{1 - (zw')}$$

is a unit of norm 1.

Similarly, suppose $x_k = w$ is a primitive $p^{l_k - j}$ th root of unity with $0 \le j \le l_k - 1$ (with $j \ge 1$ if k = 1) and $x_i = 1$ for any $1 \le i < k$. We set $J = l_1 + \dots + l_{k-1} + 1 + j$. Then $x_{\alpha(i)}^{\beta(i)} = 1$ and $\Phi_p\left(x_{\alpha(i)}^{\beta(i)}\right) = p$ for all the i < J, and $w' = x_{\alpha(J)}^{\beta(J)} = w^{p^{l_k - 1 - j}}$ is a primitive pth root of unity and $\Phi_p\left(x_{\alpha(J)}^{\beta(J)}\right) = 0$. Hence

$$F(z,1,\ldots,1,w,\ldots) = \sum_{j=0}^{a-1} z^{j} + \sum_{i=1}^{J-2} p^{i} H_{i}(z^{r^{i}},1) + p^{J-1} H_{J-1}(z^{r^{J-1}},w')$$

$$= \left(\sum_{j=0}^{a-1} (z^{r})^{pj} + p H_{1}(z^{r},1)\right) + \sum_{i=2}^{J-2} p^{i} H_{i}(z^{r^{i}},1) + p^{J-1} H_{J-1}\left(z^{r^{J-1}},w'\right)$$

$$= \left(\sum_{j=0}^{a-1} \left(z^{r^{2}}\right)^{pj}\right)^{p} + \sum_{i=2}^{J-2} p^{i} H_{i}(z^{r^{i}},1) + p^{J-1} H_{J-1}\left(z^{r^{J-1}},w'\right)$$

$$= \left(\sum_{j=0}^{a-1} \left(z^{r^{J-1}}\right)^{pj}\right)^{p^{J-2}} + p^{J-1} H_{J-1}(z^{r^{J-1}},w')$$

$$= \left(\sum_{j=0}^{a-1} \left(z^{r^{J-1}}w'\right)^{j}\right)^{p^{J-1}} = \left(\frac{1 - \left(z^{r^{J-1}}w'\right)^{a}}{1 - \left(z^{r^{J-1}}w'\right)}\right)^{p^{J-1}}$$

is again a unit of norm 1. Finally, if $z \neq 1$ is an mth root of unity, then

$$F(z,1,\ldots,1) = \sum_{j=0}^{a-1} z^j + \sum_{i=1}^{N-1} p^i H_i(z^{r^i},1) = \left(\sum_{j=0}^{a-1} z^{jr^{N-1}}\right)^{p^{N-1}} = \left(\frac{1-z^{ar^{N-1}}}{1-z^{r^{N-1}}}\right)^{p^{N-1}}$$

is a unit of norm 1,

$$F(1,1,\ldots,1) = a + \sum_{i=1}^{N-1} p^{i} H_{i}(1,1) - tp^{N} = (1 + 1 + \cdots + 1)^{p^{N-1}} - tp^{N} = a^{p^{N-1}} - tp^{N},$$

and
$$P_G(F(z, x_1, ..., x_n)) = a^{p^{N-1}} - tp^N$$
.

We observe that if p divides a G_p measure then a high power of p divides the measure.

Lemma 2. Suppose that $p^m || P_{G_p}(F)$. Then m = 0 or

$$m \ge (l_1 + 1) + \sum_{i=1}^{n-1} (l_{i+1} - l_i + 1) p^{l_1 + \dots + l_i}.$$
 (12)

We can also replace this by a more precise but less digestible bound; if l_1, \ldots, l_n take the values $k_1 < \cdots < k_L$ with multiplicities m_1, \ldots, m_L and $k_0 = 0$, then the right-hand side of (12) can be replaced by

$$1 + \sum_{l=0}^{L-1} \sum_{j=0}^{k_{L-l}-k_{L-l-1}-1} \sum_{i=0}^{m_L+\cdots+m_{L-l-1}} p^{m_1k_1+\cdots+m_{L-l-1}k_{L-l-1}+(m_L+\cdots+m_{L-l-1})(k_{L-l}-j)-i}.$$

Either bound (12) or (13) can be used for $B(G_p)$ in Theorem 1. When $G_p = \mathbb{Z}_p^n$ both give the bound $2 + p + \cdots + p^{n-1} = 1 + \frac{p^n - 1}{p-1}$ used in [1]. A simpler bound on $B(G_p)$ is given in [7, Theorem 2.1.3].

Proof. Observe that if w_{p^j} denotes a primitive p^j th root of unity, then

$$\operatorname{Norm}_{\mathbb{Q}(w_{p^s})/\mathbb{Q}} F(w_{p^{s_1}}, \dots, w_{p^{s_n}}) = \prod_{\substack{j=1 \ (j,p)=1}}^{p^s} F(w_{p^{s_1}}^j, \dots, w_{p^{s_n}}^j) \in \mathbb{Z},$$

where

$$s = \max\{s_1, \dots, s_n\},\$$

and $M_{G_p}(F)$ can be written as a product of such integer norms. Moreover, extending the p-adic absolute value to $\mathbb{Q}(w_{p^s})$, we have $|w_{p^{s_i}} - 1|_p < 1$ and so plainly

$$\operatorname{Norm}_{\mathbb{Q}(w_{p^s})/\mathbb{Q}} F(w_{p^{s_1}}, \dots, w_{p^{s_n}}) \equiv F(1, \dots, 1)^{\phi(p^s)} \bmod p.$$

Hence if $p \mid P_{G_p}(F)$, then $p \mid F(1,\ldots,1)$ and p divides all the norms. Thus the bounds (12) and (13) represent a bound on the number of integer norms that make up M_{G_p} . For (12) we proceed by induction on n; for n = 1 we have $l_1 + 1$ norms, namely the value F(1) and the norms of $F(w_{p^j})$, $j = 1, \ldots, l_1$. For n > 1 and a

primitive p^j th root of unity w_{p^j} with $l_{n-1} \leq j \leq l_n$ the $F(x_1, \ldots, x_{n-1}, w_{p^j})$ produce a different norm for each choice of x_1, \ldots, x_{n-1} , giving $(l_n - l_{n-1} + 1)p^{l_1 + \cdots + l_{n-1}}$ norms. Discarding any terms $F(x_1, \ldots, x_{n-1}, w_{p^j})$ with $1 \leq j < l_{n-1}$, the remaining terms in (12) come from the n-1 variable $\mathbb{Z}_{p^{l_1}} \times \cdots \times \mathbb{Z}_{p^{l_{n-1}}}$ measure of $F(x_1, \cdots, x_{n-1}, 1)$.

Retaining the terms $F(x_1,\ldots,x_{n-1},w_{p^j})$ with $1 \leq j < l_{n-1}$ gives (13); taking $x_n = w_{p^{k_L}}$ we have the $p^{m_1k_1+\cdots+m_{L-1}k_{L-1}+(m_L-1)k_L}$ choices of the other x_i . The remaining norms then have a k_L replaced by k_L-1 . When $m_L > 1$ one successively reduces the remaining k_L to k_L-1 contributing $p^{\sum_{t=1}^{L-1} m_t k_t + (m_L-1)k_L - i}$ for i=0 to m_L-1 . When $k_L-1 > k_{L-1}$ one continues to reduce all the m_L exponents k_L-1 until one has m_L+m_{L-1} values k_{L-1} (the j sum). One repeats (the l sum) until left with $m_1+\cdots+m_L$ exponents k_1 and finally the single term $F(1,\ldots,1)$. \square

Proof of Theorem 1. Let w_r denote a primitive rth root of unity. For the lower bound observe that we can write

$$P_G(F) = P_{G_p}(F_1) = \prod_{d|m} P_{G_p}(f_d),$$

where

$$F_1 := \prod_{j=0}^m F(w_m^j, x_1, \dots, x_n) = \prod_{d|m} f_d(x_1, \dots, x_n)$$

with

$$f_d(x_1, \dots, x_n) := \prod_{\substack{j=1 \ (j,d)=1}}^d F(w_d^j, x_1, \dots, x_n) \in \mathbb{Z}[x_1, \dots, x_n].$$

From Lemma 2 if $p \mid P_{G_p}(f_d)$ then $p^{B(G_p)} \mid P_{G_p}(f_d)$. It was shown in [1, Lemma 2.1] for $G_p = \mathbb{Z}_p^n$ and in [7, Theorem 2.1.2] for general G_p that if $p \nmid P_{G_p}(f_d)$ then $P_{G_p}(f_d)$ lies in \mathcal{M}_n . Since for a prime q and (l,q) = 1 we can write $w_{lq^j} = w_l w_{q^j}$ with $|w_{q^j} - 1|_q < 1$, we have

$$f_{lq^j} \equiv f_l^{\phi(q^j)} \bmod q$$

and

$$P_{G_p}(f_{lq^j}) \equiv P_{G_p}(f_l)^{\phi(q^j)} \bmod q$$

Hence if $q^{\alpha} \mid\mid m$ has $q \mid P_G(F)$, then $q \mid P_{G_p}(f_{lq^j})$ for some l with $q \nmid l$ and $0 \leq j \leq \alpha$, and $q \mid P_{G_p}(f_{lq^i})$ for all $0 \leq i \leq \alpha$, and $|P_{G_p}(f_{lq^i})| \geq \mathcal{M}_n^-(q)$ for all i. So $|P_G(F)| \geq \mathcal{M}_n^-(q)^{\alpha+1}$ and the lower bound is plain.

From Lemma 1 we have $\mathcal{P}_G \leq \mathcal{M}_N^+(m)$. For the remaining upper bound observe that if a is in \mathcal{M}_N and we write $m = m_1 m_2$, where $m_1 = \prod_{q^{\alpha}||m,q|a} q^{\alpha}$ and $(m_2, a) = 1$, then we know that for $G_2 := \mathbb{Z}_{m_2} \times \mathbb{Z}_p^n$ there is an $f(z, x_1, \ldots, x_k)$ with $P_{G_2}(f) = 1$

a. Hence $F(z, x_1, \ldots, x_k) = f(z^{m_1}, x_1, \ldots, x_k)$ will have $P_G(F) = P_{G_2}(f)^{m_1} = a^{m_1}$. Taking $a = \mathcal{M}_N^*$ gives the bound stated. Note, taking the polynomial $F(x_1, \ldots, x_n)$ achieving \mathcal{P}_{G_p} , we similarly have the trivial bound $\mathcal{P}_G \leq \mathcal{P}_{G_p}^m$.

4. Examples

Notice that the smallest possible value of $\mathcal{P}_{\mathbb{Z}_2 \times \mathbb{Z}_p^2}$ is 3, achievable exactly when $3^{p-1} \equiv 1 \mod p^2$. The only known such Mirimanoff primes (Wieferich primes base 3) are p = 11 and p = 1006003; see for example [3, p.150] or [6, p.347]. The two known Wieferich primes, p = 1093 and 3511, have $\mathcal{P}_{\mathbb{Z}_2 \times \mathbb{Z}_p^2} = \mathcal{M}_2^-(2)^2 = 4$.

The following tables give the \mathcal{M}_n^* and $\mathcal{M}_n^+(m)$ for $G = \mathbb{Z}_m \times \mathbb{Z}_p^n$, with $3 \leq p \leq 103$, n = 2, 3, 4, and m of the form $2^{\alpha}, 3^{\alpha}, 5^{\alpha}, 2^{\alpha}3^{\beta}, 7^{\alpha}, 2^{\alpha}5^{\beta}$ or 11^{α} . For $p \nmid m\phi(m)$ we have $\mathcal{M}_n^+(m) < \mathcal{M}_n^{*2}$ and $\mathcal{P}_G = \mathcal{M}_n^+(m)$ except for the following few unresolved cases:

G	\mathcal{P}_G	G	\mathcal{P}_G
	9 or 27 27, 81 or 161		27 or 40 324 or 437
$\mathbb{Z}_{2^{\alpha}\cdot 3^3} \times \mathbb{Z}_{11}^2, \alpha \ge 1,$	81 or 161		

Since 8 is a cube, the restriction $p \nmid \phi(m)$ only affects $\mathbb{Z}_7 \times \mathbb{Z}_3^n$, n = 3, 4 and $\mathbb{Z}_{11} \times \mathbb{Z}_5^n$, n = 2, 3, 4.

Table of M_n^* :

	n=2	n=3	n = 4		n=2	n = 3	n = 4
p = 3	8	26	80	p = 47	53	295	224444
p=5	7	57	182	p = 53	338	1468	189323
p = 7	18	18	1047	p = 59	53	2511	11550
p = 11	3	124	1963	p = 61	264	15458	397575
p = 13	19	239	239	p = 67	143	3859	201305
p = 17	38	158	4260	p = 71	11	6372	15384
p = 19	28	333	2819	p = 73	306	923	840838
p = 23	28	42	19214	p = 79	31	1523	1372873
p = 29	14	1215	2463	p = 83	99	5436	1576656
p = 31	115	513	15714	p = 89	184	1148	278454
p = 37	18	691	51344	p = 97	53	412	1721322
p = 41	51	1172	20677	p = 101	181	4943	48072
p = 43	19	3038	3038	p = 103	43	4432	281007

Table of \mathcal{P}_G for $G = \mathbb{Z}_{2^{\alpha}} \times \mathbb{Z}_p^n$, $n = 2, 3, 4, p \le 103$. In all these cases $\mathcal{P}_G = \mathcal{M}_n^+(2)$:

	n=2	n = 3	n = 4		n = 2	n = 3	n = 4
p=3	17	53	161	p = 47	53	295	225947
p = 5	7	57	443	p = 53	413	9283	189323
p = 7	19	19	1047	p = 59	53	2511	111529
p = 11	3	161	1963	p = 61	601	28743	397575
p = 13	19	239	239	p = 67	143	3859	201305
p = 17	65	399	15541	p = 71	11	8327	557381
p = 19	69	333	2819	p = 73	527	923	1551509
p = 23	63	803	60793	p = 79	31	1523	1372873
p = 29	41	1215	2463	p = 83	99	6509	2864371
p = 31	115	513	126279	p = 89	605	1485	6251225
p = 37	117	691	216739	p = 97	53	34557	6313037
p = 41	51	9325	20677	p = 101	181	4943	571075
p = 43	19	3623	162637	p = 103	43	26319	281007

Table of $\mathcal{M}_n^+(3) \neq \mathcal{M}_n^*$ for $G = \mathbb{Z}_{3^\alpha} \times \mathbb{Z}_p^n, \ n=2,3,4, \ p \leq 103$:

	n = 2		n = 3		n = 4
p = 7	19	p=5	68	p = 7	1048
p = 11	40	p = 7	19	p = 17	15541
p = 37	76	p = 19	623	p = 29	23174
p = 41	148	p = 23	803	p = 31	51266
p = 61	572	p = 29	4850	p = 59	111529
p = 73	368	p = 31	5995	p = 61	846695
p = 83	161	p = 59	18511	p = 71	557381
		p = 71	8327	p = 83	2864371
		p = 83	6509	p = 89	381718
				p = 97	3464764
				p = 101	571075
				p = 103	4717448

Table of $\mathcal{M}_n^+(5) \neq \mathcal{M}_n^*$ for $G = \mathbb{Z}_{5^{\alpha}} \times \mathbb{Z}_p^n, \ n=2,3,4, \ p \leq 103$:

	n = 2		n = 3		n = 4
p = 31	117	p = 29	1872	p=3	161
		p = 47	4757	p = 17	15541
				p = 59	111529
				p = 61	648103
				p = 67	201306

Table of $\mathcal{M}_n^+(6) \neq \mathcal{M}_n^*$, for primes such that $3 \mid \mathcal{M}_n^+(2) \neq \mathcal{M}_n^*$ or $2 \mid \mathcal{M}_n^+(3) \neq \mathcal{M}_n^*$ for $G = \mathbb{Z}_{2^{\alpha} \cdot 3^{\beta}} \times \mathbb{Z}_p^n$, $n = 2, 3, 4, p \leq 103$:

10

	n=2		n = 3		n=4
p = 11	161	p=5	193	p=7	2549
p = 19	127	p = 17	653	p = 29	78017
p = 23	263	p = 19	623	p = 31	298423
p = 37	437	p = 29	10133	p = 61	846695
p = 41	313	p = 31	5995	p = 89	6251225
p = 61	601	p = 59	18511	p = 97	6313037
p = 73	527	p = 61	38447	p = 103	6280381
p = 83	161	p = 89	24833		
		p = 97	34675		
		p = 103	50645		

Table of $\mathcal{M}_n^+(7) \neq \mathcal{M}_n^*$ for $G = \mathbb{Z}_{7^{\alpha}} \times \mathbb{Z}_p^n, \ n = 2, 3, 4, \ p \leq 103$:

	n = 2		n = 3		n = 4
p=5	18	p = 23	803	p=5	443
p = 19	54	p = 43	3623	p = 43	45922
p = 23	118	p = 89	1485	p = 59	111529
p = 29	41				

Table of $\mathcal{M}_n^+(10) \neq \mathcal{M}_n^*$, for primes such that $5 \mid \mathcal{M}_n^+(2) \neq \mathcal{M}_n^*$ or $2 \mid \mathcal{M}_n^+(5) \neq \mathcal{M}_n^*$ for $G = \mathbb{Z}_{2^{\alpha}.5^{\beta}} \times \mathbb{Z}_p^n$, $n = 2, 3, 4, p \leq 103$:

	n=2		n = 3		n = 4
p = 31	117	p = 29	2463	p = 61	548103
p = 89	707	p = 41	10399	p = 67	1057933
		p = 89	24833	p = 89	7552311
				p = 101	1358891

Table of $\mathcal{M}_n^+(11) \neq \mathcal{M}_n^*$ for $G = \mathbb{Z}_{11^\alpha} \times \mathbb{Z}_p^n, \ n=2,3,4, \ p \leq 103$:

	n = 2		n=4
p = 61	432	p = 47	225947
p = 67	248	p = 59	905953
p = 71	26	p = 89	381718
p = 83	161		

Similarly, fixing p we can evaluate \mathcal{P}_G for varying m:

Example 4.1. Suppose that $G = \mathbb{Z}_m \times \mathbb{Z}_3^2$ with $3 \nmid m$. Then

$$\begin{split} \mathcal{P}_G = & 8 \quad \text{if } 2 \nmid m, \\ \mathcal{P}_G = & 17 \quad \text{if } m = 2n, \ 17 \nmid n, \ 3 \nmid \phi(n), \\ \mathcal{P}_G = & 19 \quad \text{if } m = 2 \cdot 17n, \ 3 \nmid \phi(n), \\ \mathcal{P}_G = & 64 \quad \text{if } m = 2 \cdot 5 \cdot 17 \cdot 19 \cdot 37 \cdot 53n \quad \text{or } m = 2 \cdot 7 \cdot 11 \cdot 17 \cdot 19 \cdot 37 \cdot 53n, \ 2 \nmid n. \end{split}$$

Example 4.2. Suppose that $G = \mathbb{Z}_m \times \mathbb{Z}_5^2$ with $5 \nmid m\phi(m)$. Then

$$\begin{split} \mathcal{P}_G = & 7 \quad \text{if } 7 \nmid m, \\ \mathcal{P}_G = & 18 \quad \text{if } m = 7n, \ (6, n) = 1, \\ \mathcal{P}_G = & 26 \quad \text{if } m = 3 \cdot 7n, \ (26, n) = 1, \\ \mathcal{P}_G = & 32 \quad \text{if } m = 3 \cdot 7 \cdot 13n, \ 2 \nmid n, \\ \mathcal{P}_G = & 43 \quad \text{if } m = 2 \cdot 7n, \ 43 \nmid n. \end{split}$$

For $m = 2 \cdot 7 \cdot 43$ we have $\mathcal{P}_G = 49$ or 51. Since 32 is a fifth power we can drop the restriction $5 \nmid \phi(m)$ when $m = 3 \cdot 7 \cdot 13n$, $2 \nmid n$.

Example 4.3. Suppose that $G = \mathbb{Z}_m \times \mathbb{Z}_7^2$ with $7 \nmid m\phi(m)$. Then

```
 \begin{array}{llll} \mathcal{P}_{G} = & 18 & if \ (6,m) = 1, \\ \mathcal{P}_{G} = & 19 & if \ m = 2n \ or \ m = 3n, \ 19 \nmid n, \\ \mathcal{P}_{G} = & 31 & if \ m = 2 \cdot 19n \ or \ m = 3 \cdot 19n, \ 31 \nmid n, \\ \mathcal{P}_{G} = & 50 & if \ m = 3 \cdot 19 \cdot 31n, \ (10,n) = 1, \\ \mathcal{P}_{G} = & 67 & if \ m = 2 \cdot 19 \cdot 31n \ or \ m = 3 \cdot 5 \cdot 19 \cdot 31n, \ 67 \nmid n, \\ \mathcal{P}_{G} = & 68 & if \ m = 3 \cdot 5 \cdot 19 \cdot 31 \cdot 67n, \ (2 \cdot 17,n) = 1, \\ \mathcal{P}_{G} = & 79 & if \ m = 2 \cdot 19 \cdot 31 \cdot 67n \ or \ m = 3 \cdot 5 \cdot 17 \cdot 19 \cdot 31 \cdot 67n, \ 79 \nmid n, \\ \mathcal{P}_{G} = & 97 & if \ m = 2 \cdot 19 \cdot 31 \cdot 67 \cdot 79n \ or \ m = 3 \cdot 5 \cdot 17 \cdot 19 \cdot 31 \cdot 67 \cdot 79n, \ 97 \nmid n, \\ \mathcal{P}_{G} = & 99 & if \ m = 2 \cdot 19 \cdot 31 \cdot 67 \cdot 79 \cdot 97n, \ (3 \cdot 11,n) = 1, \\ \mathcal{P}_{G} = & 116 & if \ m = 3 \cdot 5 \cdot 17 \cdot 19 \cdot 31 \cdot 67 \cdot 79 \cdot 97n, \ (3 \cdot 13,n) = 1, \\ \mathcal{P}_{G} = & 117 & if \ m = 2 \cdot 11 \cdot 19 \cdot 31 \cdot 67 \cdot 79 \cdot 97n, \ (3 \cdot 13,n) = 1, \\ \mathcal{P}_{G} = & 129 & if \ m = 2 \cdot 11 \cdot 13 \cdot 19 \cdot 31 \cdot 67 \cdot 79 \cdot 97n, \ 3 \nmid n, \\ \mathcal{P}_{G} = & 197 & if \ m = 2 \cdot 3 \cdot 19 \cdot 31 \cdot 67 \cdot 79 \cdot 97n. \end{array}
```

Since 128 is a seventh power we can drop the restriction $7 \nmid \phi(m)$ and obtain $\mathcal{P}_G = 128$ when $m = 3 \cdot 5 \cdot 17 \cdot 19 \cdot 29 \cdot 31 \cdot 67 \cdot 79 \cdot 97n$, $2 \nmid n$.

INTEGERS: 16 (2016) 12

Acknowledgment. The second author thanks Felipe Voloch for asking whether $\mathcal{P}_{\mathbb{Z}_2 \times \mathbb{Z}_3^2} = 8$ or 17.

References

- [1] D. De Silva and C. Pinner, The Lind-Lehmer constant for \mathbb{Z}_p^n , Proc. Amer. Math. Soc. 142 (2014), 1935-1941.
- [2] N. Kaiblinger, On the Lehmer constant of finite cyclic groups, Acta Arith. 142 (2010), 79-84.
- [3] J. S. Kraft and L. C. Washington, Elementary Number Theory, CRC Press, Boca Raton, 2015.
- [4] D. Lind, Lehmer's problem for compact abelian groups, Proc. Amer. Math. Soc. 133 (2005), 1411-1416.
- [5] V. Pigno and C. Pinner, The Lind-Lehmer constant for cyclic groups of order less than 892371480, Ramanujan J. 33 (2014), 295-300.
- [6] P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, New York, 1996.
- [7] W. Vipismakul, The Stabilizer of the Group Determinant and Bounds for Lehmer's Conjecture on Finite Abelian Groups, PhD. thesis, University of Texas at Austin, 2013.