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Abstract
We prove in particular that if A ⇢ Rn is a compact convex set, and B ⇢ Rn is an
arbitrary compact set, then µ(A�A)⌧ µ(A+B)2p

nµ(A)
, provided that µ(B) � µ(A).

1. Introduction

A well–known Ruzsa triangle inequality states that for any finite subsets of an
abelian group we have

|A�B|  |A + C||C + B|
|C| ;

in particular, if B = A and C = B, then

|A�A|  |A + B|2
|B| .

The aim of this note is to prove a sharp, up to a dimension–independent constant,
form of the above inequality for a compact convex set A ⇢ Rn, and an arbitrary
compact set B ⇢ Rn, provided that µ(A) � µ(B).

2. Result

For a set A ⇢ Rn and x 2 A � A let Ax = A \ (A � x) . Our main tool is the
following lemma proved in [4, Lemma 5]. We recall its proof as it is very simple.
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Lemma 1. Let A,B ⇢ Rn be compact sets. ThenZ
A�A

µ(Ax + B) dx  µ(A + B)2 . (1)

Proof. We apply the Koester-Katz transform: if x 2 A�A then

Ax + B ✓ (A + B)x .

Therefore, we haveZ
A�A

µ(Ax + B)dx 
Z

A+B�A�B
µ((A + B)x)dx = µ(A + B)2 ,

and the assertion follows.

We also need a lower bound for the size of Ax for a convex set A, see [5, Section
3]. We also give the proof for the sake of completeness.

Lemma 2. Let A ⇢ Rn be a compact convex set and r 2 [0, 1] be any real number.
Then for all x 2 r(A�A) the following holds:

µ(Ax) � (1� r)nµ(A) . (2)

Proof. Write x = ra1 � ra2, where a1, a2 2 A and let a 2 A be any element. By
convexity, (1� r)a+ ra1 2 A and (1� r)a+ ra1 = (1� r)a+ ra2 +x 2 A+x. Thus
(1� r)A + ra1 ✓ A \ (A + x) and the result follows.

Finally, we recall the Brunn-Minkowski inequality, see [5, Section 3].

Theorem 1. Let A,B ⇢ Rn be non–empty compact sets. Then

µ(A + B)1/n � µ(A)1/n + µ(B)1/n .

Now we can formulate our main result.

Theorem 2. Let A ⇢ Rn be a compact convex set, and let B ⇢ Rn be an arbitrary
compact set. Then

(1 + ! + · · · + ![
p

n])µ(B)1�1/nµ(A)1/nµ(A�A)⌧ µ(A + B)2 , (3)

where ! = (µ(A)/µ(B))1/n. In particular, if µ(A) � µ(B) then

µ(A�A)⌧ µ(A + B)2p
nµ(A)1/nµ(B)1�1/n

, (4)
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and if µ(B) � µ(A) then

µ(A�A)⌧ µ(A + B)2p
nµ(A)

. (5)

Proof. Let ↵ = µ(B)/µ(A). Applying (1) and the Brunn-Minkowski inequality, we
get

µ2(A + B) �
Z

A�A
µ(B + Ax) dx �

Z
A�A

⇣
µ(B)1/n + µ(Ax)1/n

⌘n
dx

= ↵
nX

k=0

✓
n

k

◆Z
A�A

↵�k/nµ(A)(n�k)/nµ(Ax)k/n dx .

To estimate the size of Ax we use Lemma 2. After integration by parts, we obtain

µ2(A + B) � µ(B)
nX

k=0

✓
n

k

◆
k↵�k/n

Z 1

0
(1� r)k�1µ(r(A�A)) dr

= µ(B)µ(A�A)
nX

k=1

✓
n

k

◆
k↵�k/n

Z 1

0
(1� r)k�1rn dr

= µ(B)µ(A�A)
nX

k=1

✓
n

k

◆
k↵�k/nB(k, n + 1) ,

where B(·, ·) is the beta function. Thus

µ2(A + B) � µ(B)µ(A�A)
nX

k=1

↵�k/n (n!)2

(n� k)!(n + k)!
:= µ(B)µ(A�A)⇥ � .

One can calculate the last sum � using the gamma function or hypergeometric
series, but we use a rather crude estimate. Put � = [

p
n] + 1; then

� =
nX

k=1

↵�
k
n

k�1Y
j=1

✓
1� j

n

◆ kY
j=1

✓
1 +

j

n

◆�1

=
nX

k=1

↵�
k
n

✓
1 +

k

n

◆�1 k�1Y
j=1

✓
1� 2j

n + j

◆
.

Using inequalities ln(1� x) � �2x for 0  x  0.5 and k  n, we obtain

� � 1
2

�X
k=1

↵�k/n exp

0
@� k�1X

j=1

4j
n + j

1
A � 1

2

�X
k=1

↵�k/n exp
✓
�2k2

n

◆
�

�X
k=1

!k .

This gives us (3). To see (4), it is enough to observe that if µ(A) � µ(B) thenP�
k=1 !k � pn. To get (5), take any subset B0 of B such that µ(B0) = µ(A) and

apply (4); then

µ(A�A)⌧ µ(A + B0)2p
nµ(A)

 µ(A + B)2p
nµ(A)

.

This completes the proof.
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Remark 1. Estimate (4) is tight; see [2] or [3] (discussion after Corollary 8.3).
Indeed, consider the n–dimensional simplex

A = AL = {(x1, . . . , xn) 2 Rn : xj � 0,
nX

j=1

xj  L} ,

where L is a parameter. Then µ(A + A) = 2nµ(A) and µ(A � A) =
�2n

n

�
µ(A) (to

obtain the last formula, one can count the number of integer points in A, say, and
approximate µ(A�A) by

X
a+b+c=n

✓
n

a, b, c

◆✓
L

a

◆✓
L

b

◆
⇠ Ln

n!

nX
m=0

✓
n

m

◆2

=
Ln

n!

✓
2n
n

◆
= µ(A)

✓
2n
n

◆
;

see [1]. Here a, b and c, are the number of possibilities for the positive, negative and
zero coordinates in A�A, respectively). Hence

µ(A�A)� µ(A + A)2p
nµ(A)

.
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