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Abstract
We describe a new identity involving sums of powers of Fibonacci numbers and use
this identity to prove that a certain family of combinatorial sequences converges,
pointwise, to the Fibonacci sequence.

1. Introduction

We let F represent the Fibonacci sequence where F0 = 0, F1 = 1, Fn = Fn�1+Fn�2,
and F�n = (�1)nFn for n 2 N. We then have Fn = Fn�1 +Fn�2 for all n 2 Z. Our
first main result is the following identity.

Theorem 1. For all m 2 Z and k 2 N,
k+1X
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= Fm+1 · (Fk+3 � 1).

If we clear denominators, the identity becomes
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We could not find a similar or related identity in the literature, so this appears to
be new. The closest identity we could find is the amazing four-parameter identity
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which can be used to produce many interesting known identities (see [5]).
We discovered the identity in Theorem 1 while studying rational base representa-

tions of natural numbers (see [1], [8], [3], [4], [6] or [2] for instance), which explains
why the identity involves powers of Fm+1

Fm
. While these representations are quite

complex from a language point of view, there is an elementary construction of an
edge-labeled, infinite, rooted tree whose edge labels give the rational base represen-
tation of the integer associated to each vertex (see [1], [7] or [2]). It turns out that
when using the rational base Fm+1

Fm
, the number of nodes lying distance n from the

root in the associated tree is given by the sequence Am with Am
1 = 1 and

Am
n+1 =

&
Fm+1 � Fm

Fm
·

nX
i=1

Am
i

'
=

&
Fm�1

Fm
·

nX
i=1

Am
i

'
(1)

where dxe represents the least integer larger than x (see [1] or [2]).
Interestingly, as m gets larger, the family of sequences {Am} converges pointwise

to the Fibonacci sequence F . More precisely, we have the following theorem.

Theorem 2. Let {Am | m � 1} be the family of sequences defined in (1). For every
n 2 N with n � 1, there exists M 2 N such that Am

n = Fn for all m � M .

Thus, we have produced a family of sequences (with combinatorial interest) that
can match the Fibonacci sequence for as many terms as we wish. Figure 1 shows
the first 15 terms of the sequences Am where m 2 {1, . . . , 10}. The numbers in blue
represent coincidence with F . Note that A10 matches the Fibonacci sequence up to
n = 15 (in fact n = 19 is the first index with A10

n 6= Fn).
We also note that since Fm�1

Fm
! 1

� as m ! 1 (where � represents the golden

Am\ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A2 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

A3 1 1 1 2 3 4 6 9 14 21 31 47 70 105 158

A4 1 1 2 3 5 8 14 23 38 64 106 177 295 492 820

A5 1 1 2 3 5 8 12 20 32 51 81 130 208 333 533

A6 1 1 2 3 5 8 13 21 34 55 90 146 237 385 626

A7 1 1 2 3 5 8 13 21 34 55 88 143 231 373 602

A8 1 1 2 3 5 8 13 21 34 55 89 144 233 377 611

A9 1 1 2 3 5 8 13 21 34 55 89 144 233 377 609

A10 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610

Figure 1: The first 15 terms of the sequences Am for m 2 {1, ..., 10}. For instance,
see A000007, A011782, and A073941 in [9].
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ratio, � = 1+
p

5
2 ), Theorem 2 implies that
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�
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'
(2)

with F0 = 0 and F1 = 1. While we could not find a citation for this formula, it must
be known as it follows from well known facts. We know that Fn+2 = round(�·Fn+1)
so that 1

�Fn+2 � 1
2� < Fn+1 < 1

�Fn+2 + 1
2� , which implies 1

�Fn+2 < Fn+1 + 1
2� and

Fn+1 � 1
2� < 1

�Fn+2. Thus

Fn+1 � 1 < Fn+1 �
3
2�

<
1
�

Fn+2 �
1
�

< Fn+1 �
1
2�

< Fn+1

so that &
1
�

·
nX

i=1

Fi

'
=

⇠
1
�

· (Fn+2 � 1)
⇡

= Fn+1

where the first equality is the well known formula for the sum of the first n Fibonacci
numbers.

This note is organized as follows. In Section 2, we prove Theorem 1 using elemen-
tary techniques. In Section 3, we introduce the terminology of p

q -representations of
natural numbers and state results from [1] in order to prove Theorem 2.

2. Proof of Theorem 1

To prove Theorem 1, we let m 2 Z and use induction on k. For ease of notation,
we define ym := Fm+1

Fm
. We can check that the identity holds for k = 0 and k = 1.

Indeed, we have (since F3 � 1 = 2� 1 = 1):
1X

i=1

�
Fm�1 + (�1)1�i · Fm+i�3

�
· yi

m = (Fm�1 + Fm�2)ym = Fm+1 · (F3 � 1), and

2X
i=1

�
Fm�1 + (�1)2�i · Fm+i�4

�
· yi

m = (Fm�1 � Fm�3)ym + (Fm�1 + Fm�2)y2
m

= Fm�2 · ym + Fm · y2
m

=
Fm+1(Fm�2 + Fm+1)

Fm

=
Fm+1(Fm � Fm�1 + Fm + Fm�1)

Fm

= Fm+1 · 2 = Fm+1 · (F4 � 1).
Now, let k 2 N with k � 1 and assume that the identity holds for j 2 {k� 1, k}.
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Notice that

Fm+1(Fk+4 � 1) = Fm+1 + Fm+1(Fk+3 � 1)| {z }
A

+Fm+1(Fk+2 � 1)| {z }
B

.

Applying the inductive hypothesis to the quantities A and B in the previous equality
yields

A =
k+1X
i=1

(Fm�1 + (�1)k+1�iFm�k+i�3)yi
m

B =
kX

i=1

(Fm�1 + (�1)k�iFm�k+i�2)yi
m

so that

A+B = (Fm�1 +Fm�2) ·yk+1
m +

kX
i=1

(2Fm�1 +(�1)k�i(Fm�k+i�2�Fm�k+i�3))yi
m.

Rearranging sums and applying the Fibonacci identity leaves us with

A+B = Fm�2yk+1
m +Fm�1yk+1

m +
kX

i=1

Fm�1yi
m

| {z }
C

+
kX

i=1

(Fm�1 + (�1)k�iFm�k+i�4)yi
m

| {z }
D

.

In the expression above, since Fm+1 � Fm = Fm�1, we know that

C = Fm�1

k+1X
i=1

yi
m = Fm�1 ·

✓
yk+2

m � 1
ym � 1

� 1
◆

= Fm�1 ·
✓

Fmyk+2
m � Fm

Fm+1 � Fm
� 1

◆

= Fmyk+2
m � Fm � Fm�1.

Therefore, we have

Fm+1(Fk+4 � 1) = Fm+1 + Fm�2yk+1
m + Fmyk+2

m � Fm � Fm�1 + D

= Fm�2yk+1
m + Fmyk+2

m + D

since Fm+1�Fm�Fm�1 = 0. Next, Fm�2 = Fm�1�Fm�3 and Fm = Fm�1+Fm�2,
so that

Fm+1(Fk+4 � 1) = (Fm�1 � Fm�3)yk+1
m + (Fm�1 + Fm�2)yk+2

m + D

=
k+2X
i=1

(Fm�1 + (�1)k�iFm�k+i�4)yi
m

=
k+2X
i=1

(Fm�1 + (�1)k+2�iFm�(k+1)+i�3)yi
m,

as required. ⇤
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3. p
q
-representations

For this section, we fix p, q 2 N such that p > q � 1 and gcd(p, q) = 1. For any
n 2 N, we say (n0, n1, . . . , nk) p

q
is a p

q -representation for n if 0  ni < p for all i

and n =
Pk

i=0 ni

⇣
p
q

⌘i
; in this case we write n = (n0, n1, . . . , nk) p

q
. We note that,

unlike base-b representations (with b > 1 an integer), not every string of digits,
(d0, d1, . . . , dk) p

q
, yields a natural number. However, it is known from [1] (and

earlier, see A024629 in [9] for instance) that every natural number n has a unique
p
q -representation. Hence we can define len p

q
(n) = k +1 when n = (n0, n1, . . . , nk) p

q
.

If the length of n + 1 is larger than the length of n, i.e., n 2 N satisfies len p
q
(n +

1)� len p
q
(n) = 1, we say n + 1 is new-length element (or nl-element for short).

Many properties of p
q -representations (and related representations) are studied

in [1] and [3], where the authors define an infinite, rooted tree, called Ip/q that
describes the p

q -representations. A combinatorial construction of this tree is also
given in [2] or [7]. In that tree, the nl-elements correspond to the nodes with the
least label of any fixed distance from the root; these lie on the left branch of the
tree when drawn as in [1].

To prove Theorem 2, we need the following results about p
q -representations. We

omit the proofs as these may be found in, or are straightforward consequences of,
Proposition 21 and Corollary 23 in [1], though our terminology di↵ers.

Lemma 1. Let n be a natural number with n = (n0, n1, . . . , nk) p
q
. Then n is an

nl-element if and only if n = 1 or n0 = 0, 0  ni < q for 1  i  k� 1 and nk = q.

Next, let g : N ! N be defined by g(n) = p
l

n
q

m
.

Proposition 1. The sequence (K1,K2, . . .) of nl-elements is given by K1 = 1 and
Ki = g(Ki�1) for all i > 1.

Corollary 1. For k > 1, the number of natural numbers with p
q -representations of

length k is given by Kk+1 �Kk. There are K2 = p such representations of length 1
(this includes the natural number 0).

Corollary 2. Let (K1,K2, . . .) be the sequence of nl-elements. Then for k � 2,
Kk+1 �Kk = pak where a1 = 1 and

an+1 =

&
(p� q)

q
·

nX
i=1

ai

'
.

3.1. Rational Fibonacci Representations

Fix m > 1. By definition, we have Fm+1 > Fm, and it is well known that
gcd(Fm+1, Fm) = 1. Consequently, we can consider p

q -representations where p =
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Fm+1 and q = Fm. For the remainder of this section, we let p = Fm+1 and q = Fm

and call the associated p
q -representations simply Fm-representations. The following

lemma allows us to prove Theorem 2.

Lemma 2. Let m,k 2 N with k < m�2. The Fm-representation of Fm+1(Fk+3�1)
is given by (n0, n1, . . . , nk+1) p

q
where n0 = 0, and

ni := Fm�1 + (�1)k+1�iFm�k+i�3

for each 1  i  k + 1. Furthermore Kk+2 = Fm+1(Fk+3 � 1).

Proof. Let n = (n0, n1, . . . , nk+1) p
q
. First, we note that n0 = 0 and we check that

nk+1 = Fm�1 + Fm�2 = Fm. Also, since k < m � 2 and i  k + 1 we have
0  Fm�k+i�3  Fm�2. Thus, we see that

0  Fm�1 � Fm�k+i�3  ni  Fm�1 + Fm�k+i�3 < Fm�1 + Fm�2 = Fm

for 1  i  k. According to Lemma 1, n = Kk+2, and Theorem 2 implies that
n = Fm+1(Fk+3 � 1).

Proof of Theorem 2. Let n 2 N with n � 1. Then, choose M = n + 3. Then for
any m � M consider the Fm-representations of natural numbers and the associated
sequence of nl-elements. According to Lemma 2, we have Kk+2 = Fm+1(Fk+3 � 1)
for all 1  k  n. In particular, we have

Kn+1 �Kn = Fm+1(Fn+2 � 1)� Fm+1(Fn+1 � 1)
= Fm+1(Fn+2 � Fn+1) = Fm+1Fn.

Furthermore, by Corollary 2, we have

Kn+1 �Kn = Fm+1A
m
n

where Am is defined in equation (1). Since Fm+1 6= 0, we have Fn = Am
n . By

definition Am
1 = F1 and so the result holds.

Therefore, the family of sequences {Am} converges pointwise to F . Moreover, by
Corollary 1 and Corollary 2, we see that Am

k counts the number of multiples of p =
Fm+1 having Fm-representations of length k, giving these sequences a combinatorial
interpretation. Moreover, in terms of the tree Ip/q defined in [1], the sequence Am

gives the number of vertices at fixed distances from the root. Finally, it can be
checked (using methods similar to those describing equation 2 in the introduction)
that Am 6= F for all m.

Acknowledgements. We would like to thank the anonymous referee for helpful
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