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APPROXIMATING THE FIBONACCI SEQUENCE
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Abstract
We describe a new identity involving sums of powers of Fibonacci numbers and use
this identity to prove that a certain family of combinatorial sequences converges,
pointwise, to the Fibonacci sequence.

1. Introduction

We let F represent the Fibonacci sequence where Fy =0, Fy =1, F,, = F,_1+F,_o,
and F_,, = (=1)"F, for n € N. We then have F,, = F,,_1 + F,,_5 for all n € Z. Our
first main result is the following identity.

Theorem 1. For allm € Z and k € N,

k1 i
— Fr

> (Fa+ (D) Fogyios) - ( F+1> = Fpq1 - (Fgs — 1)

i=1 m

If we clear denominators, the identity becomes

k+1
Z (Fm—l + (_1)k+171 : Fm—k+i—3) ’ (Fvln-&-lFﬁflﬂ) = FT]:L+1F77L+1 (Frys —1).
i=1

We could not find a similar or related identity in the literature, so this appears to
be new. The closest identity we could find is the amazing four-parameter identity

k
k _
FrF, =(-1)FY" (h) (= 1) F Er o Ptk
h=0
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which can be used to produce many interesting known identities (see [5]).

We discovered the identity in Theorem 1 while studying rational base representa-
tions of natural numbers (see [1], [8], [3], [4], [6] or [2] for instance), which explains
why the identity involves powers of % While these representations are quite
complex from a language point of view,m there is an elementary construction of an
edge-labeled, infinite, rooted tree whose edge labels give the rational base represen-
tation of the integer associate(} to each vertex (see [1], [7] or [2]). It turns out that

m41

when using the rational base —z*+, the number of nodes lying distance n from the

root in the associated tree is given by the sequence A™ with A" =1 and

m Fm+1_Fm - m mel - m
o [Bat sa] (B g0 o
m i=1 ™=l

where [2] represents the least integer larger than x (see [1] or [2]).

Interestingly, as m gets larger, the family of sequences {A™} converges pointwise
to the Fibonacci sequence F. More precisely, we have the following theorem.

Theorem 2. Let {A™ | m > 1} be the family of sequences defined in (1). For every
n € N with n > 1, there exists M € N such that A} = F,, for allm > M.

Thus, we have produced a family of sequences (with combinatorial interest) that
can match the Fibonacci sequence for as many terms as we wish. Figure 1 shows
the first 15 terms of the sequences A™ where m € {1,...,10}. The numbers in blue
represent coincidence with . Note that A'® matches the Fibonacci sequence up to
n =15 (in fact n = 19 is the first index with AL # F,,).

We also note that since FF” — % as m — oo (where ¢ represents the golden

A\n |12 ]3|4]5] 6| 7] s8] 9 |10 ] 1] 12| 13 ] 14 15
Al tJofJofJoJolo]o]Jo 0 0 0 0 0 0 0
A? 11248163264 128 256 | 512 | 1024 | 2048 | 4096 | 8192
A3 1123l a6 ] 9| 14| 21] 31 47 70 105 | 158
Al 11235 s 1al23] 38 | 64 | 106 177 | 205 | 492 | 820
AP 11235 81220 32 51 | 81 | 130 | 208 | 333 | 533
AS 11235 81321 3¢ | 55 | 90 | 146 | 237 | 385 | 626
AT t|1lz2]3]5] 81321 3¢ | 55 | 88 | 143 | 231 | 373 | 602
A8 11235 s [13]21| 3¢ | 55 | 89 | 144 | 233 | 377 | 611
A? 11235 s [ 1321 3¢ | 55 | 89 | 144 | 233 | 377 | 609
A0 11235 s 1321 3¢ | 55 | 89 | 144 | 233 | 377 | 610

Figure 1: The first 15 terms of the sequences A™ for m € {1,...,10}. For instance,
see A000007, A011782, and A073941 in [9)].
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ratio, ¢ = 1+2‘/5), Theorem 2 implies that

Fuyr = H : ZF-‘ (2)

with Fy = 0 and F; = 1. While we could not find a citation for this formula, it must
be known as it follows from well known facts. We know that F,, o = round(¢- Fy,11)
so that %an — ﬁ < Fhi1 < %Fmrg + ﬁ, which implies éFn+2 < Foy1+ ﬁ and
Fn+1 - ﬁ < éF,,H,Q. ThllS

3 1 1 1
Fopn—1<Fup— o< -Fhp——<Fyp— s <F

20 ¢ o 2¢
so that

1 n
EL

where the first equality is the well known formula for the sum of the first n Fibonacci
numbers.

- [clé (Fryo — 1)—‘ = Fo1

This note is organized as follows. In Section 2, we prove Theorem 1 using elemen-
tary techniques. In Section 3, we introduce the terminology of E-representations of

q
natural numbers and state results from [1] in order to prove Theorem 2.

2. Proof of Theorem 1

To prove Theorem 1, we let m € Z and use induction on k. For ease of notation,
we define y,, 1= FF—:LI We can check that the identity holds for £ = 0 and k = 1.
Indeed, we have (since F3 —1=2—-1=1):

1

Z (Fm—l + (—1)171- : Fm+i—3> ’ Yin = (Fn-1+ Fr2)ym = Frnq1 - (F3 — 1), and
i=1

2
Z (Fm—l + (_1)271- . Fm+i—4> ) y:n = (Fm—l - Fm—?;)Ym + (Fm—l + Fm—2)y72n
i=1

Foi1(Fn—2 + Fing1)

F,
Fm+1(Fm 7Fm—1 +Fm+Fm—1)
F,
= Fir 2= Fpyr - (Fy — 1).
Now, let k € N with k£ > 1 and assume that the identity holds for j € {k — 1, k}.
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Notice that

Frg1(Frpa — 1) = Fpr + Frp1 (Fiegs — 1) + Fp1 (Frg2 — 1)
A B

Applying the inductive hypothesis to the quantities A and B in the previous equality
yields

so that

k

A+B=(Fp_1+Fnp_s) yitt +Z(2Fm,1 (=) (Frnmppie2 = Frnekgi=3)) Y-
i=1

Rearranging sums and applying the Fibonacci identity leaves us with

k k
A"'B = Fm—Zy»]:rjl"'Fm—l}’ﬁjl + Z Fm—ly:n + Z(Fm—l + (_l)kii m—k+i—4)Yin .
i=1 i=1

C D
In the expression above, since F,,+1 — Fp, = Fp—1, we know that
k+1 k+2 k-+2
C:F—E - (- Vg L [ImIm "M g
m—1 ym m—1 ( Vo — 1 ) m—1 ( Fm+1 — Fm

i=1
= men%2 —Fp = Fipa.
Therefore, we have
Frng1(Frepa—1) = Frgr + Frnayly ' + Foymi > — Fpp — Fp1 4+ D
= m—2yﬁq+1 + Fmen+2 +D

since Frpy1—F—Fp—1 =0. Next, Fiy_o = F,_1—Fpn_sand F,,, = F,,_ 1+ Fp,—o,
so that

Frng1(Frga — 1) = (Fre1 — Frog)y5™ + (Fre1 + Fr2)y5™ + D
k+2 ] ]
= Z(FmA + (D) F ki)Y
=1

k+2
= Z(mel + (_1)k+2_1Fm7(k+1)+i73)Y7znv
i=1

as required. O
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3. g-representations

For this section, we fix p,q € N such that p > ¢ > 1 and ged(p,q) = 1. For any
n € N, we say (ng,ni,... ,nk)g is a %—representation for n if 0 < m; < p for all ¢

and n = Zf:o n; (%)Z; in this case we write n = (ng,n1, .. .,nk)g. We note that,
unlike base-b representations (with b > 1 an integer), not every string of digits,
(do,dl,...,dk)%, yields a natural number. However, it is known from [1] (and
earlier, see A024629 in [9] for instance) that every natural number n has a unique
B_representation. Hence we can define lene (n) = k+1 when n = (ng,nq,. .. v”k)§~
If the length of n + 1 is larger than the length of n, i.e., n € N satisfies len%(n +
1) — leng (n) =1, we say n + 1 is new-length element (or nl-element for short).

Many properties of %—representations (and related representations) are studied
in [1] and [3], where the authors define an infinite, rooted tree, called I/, that
describes the %—represen‘cations. A combinatorial construction of this tree is also
given in [2] or [7]. In that tree, the nl-elements correspond to the nodes with the
least label of any fixed distance from the root; these lie on the left branch of the
tree when drawn as in [1].

To prove Theorem 2, we need the following results about g—representations. We
omit the proofs as these may be found in, or are straightforward consequences of,
Proposition 21 and Corollary 23 in [1], though our terminology differs.

Lemma 1. Let n be a natural number with n = (ng,n1,...,ng)z. Then n is an
q
nl-element if and only ifn=10rng=0,0<n; <q for1 <i<k—1andng =q.

Next, let g : N — N be defined by g(n) =p [2—‘ .

q

Proposition 1. The sequence (K1,Ka,...) of nl-elements is given by K1 = 1 and
Ki=g9(K;—1) for alli> 1.

Corollary 1. For k > 1, the number of natural numbers with g—representations of
length k is given by Ki41 — Ki. There are Ko = p such representations of length 1
(this includes the natural number 0).

Corollary 2. Let (K1,Ksq,...) be the sequence of nl-elements. Then for k > 2,
Kr+1 — Ky = pax where a1 =1 and

s = qu) Zw

q

3.1. Rational Fibonacci Representations

Fix m > 1. By definition, we have F,,y; > F,,, and it is well known that
gcd(Fint1, Fin) = 1. Consequently, we can consider Z—I;—representations where p =
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F,+1 and ¢ = F,,,. For the remainder of this section, we let p = Fj,,11 and ¢ = F,
and call the associated %—representations simply Fy,-representations. The following
lemma allows us to prove Theorem 2.

Lemma 2. Let m, k € N with k < m—2. The Fy,-representation of Fy,11(Fgys—1)
is given by (ng,nq,. .. ,nk+1)§ where ng = 0, and

ni = Froy + (1), s
for each 1 <i < k+1. Furthermore K12 = Fpp1(Frys — 1).

Proof. Let n = (ng,n1,...,nk41)2. First, we note that ng = 0 and we check that
q

Nk+1 = Fm—1 + Fin—2 = Fi. Also, since K < m — 2 and i < k+ 1 we have

0< F—k+yi—3 < F—o. Thus, we see that

O0<Fna1-Funpris<n<Fni1+Fnpris3<Ppnai+Fna2=F,

for 1 < i < k. According to Lemma 1, n = Kg 2, and Theorem 2 implies that
n = Fpy1(Frys —1). O

Proof of Theorem 2. Let n € N with n > 1. Then, choose M = n 4+ 3. Then for
any m > M consider the Fy,-representations of natural numbers and the associated
sequence of nl-elements. According to Lemma 2, we have Kyio = Fpp1(Fres — 1)
for all 1 < k <n. In particular, we have

ICn-‘rl - ICn - m+1(Fn+2 - 1) - Fm+1(Fn+1 - 1)
= m+1(Fn+2 - Fn—i—l) = erz+1Fn-

Furthermore, by Corollary 2, we have
’Cn+1 - ICn = m+1A$

where A™ is defined in equation (1). Since F,41 # 0, we have F,, = A. By
definition A" = F} and so the result holds. O

Therefore, the family of sequences { A"} converges pointwise to F. Moreover, by
Corollary 1 and Corollary 2, we see that A}* counts the number of multiples of p =
F,,+1 having Fi,-representations of length k, giving these sequences a combinatorial
interpretation. Moreover, in terms of the tree I/, defined in [1], the sequence A™
gives the number of vertices at fixed distances from the root. Finally, it can be
checked (using methods similar to those describing equation 2 in the introduction)
that A™ # F for all m.

Acknowledgements. We would like to thank the anonymous referee for helpful
comments that clarified and shortened this note.
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