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Abstract
We build upon previous work on the densities of uniform random walks in higher
dimensions, exploring some properties of the even moments of these densities and
extending a result about their evaluation modulo certain primes.

1. Introduction

Consider a short random walk of n steps in d dimensions where each step is of unit
length and whose direction is chosen uniformly. Following [2], we let ⌫ = d

2 � 1 and
denote by pn(⌫;x) the probability density function of the distance x to the origin
of this random walk. This paper will be concerned with the even moments of these
random walks.

Definition 1. Define
Wn(⌫; s) =

Z 1

0
xspn(⌫;x) dx

as the sth moment of the probability density function.

We know that:

Theorem 2 (Borwein, Straub, Vignat, [2, Theorem 2.18]). For non-negative
integers k, Wn(⌫; 2k) is given by

Wn(⌫; 2k) =
(k + ⌫)!⌫!n�1

(k + n⌫)!

X
k1+···+kn=k

✓
k

k1, . . . , kn

◆✓
k + n⌫

k1 + ⌫, . . . , kn + ⌫

◆
.
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Theorem 3 (Borwein, Straub, Vignat, [2, Example 2.23]). For given ⌫, let
A(⌫) be the infinite lower triangular matrix with entries

Ak,j(⌫) =
✓

k

j

◆
(k + ⌫)!⌫!

(k � j + ⌫)!(j + ⌫)!

for row indices k = 0, 1, 2, . . . and column indices j = 0, 1, 2, . . . . Then the moments
Wn+1(⌫; 2k) are given by the row sums of A(⌫)n.

For a good history of these moments, and random walks in general, see [1, 2, 3, 4].

Example 4. For example, the upper corners of A(0), A(1) and A(2) are given
below.

A(0) :=

2
66666666666664

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0
1 4 1 0 0 0 0 0
1 9 9 1 0 0 0 0
1 16 36 16 1 0 0 0
1 25 100 100 25 1 0 0
1 36 225 400 225 36 1 0
1 49 441 1225 1225 441 49 1
...

. . .

3
77777777777775

,

A(1) :=

2
66666666666664

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0
1 3 1 0 0 0 0 0
1 6 6 1 0 0 0 0
1 10 20 10 1 0 0 0
1 15 50 50 15 1 0 0
1 21 105 175 105 21 1 0
1 28 196 490 490 196 28 1
...

. . .

3
77777777777775

,

A(2) :=

2
66666666666664

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0
1 8/3 1 0 0 0 0 0
1 5 5 1 0 0 0 0
1 8 15 8 1 0 0 0
1 35/3 35 35 35/3 1 0 0
1 16 70 112 70 16 1 0
1 21 126 294 294 126 21 1
...

. . .

3
77777777777775

.

The lower triangular entries of A(0) are the squares of the binomial coe�cients�k
j

�
and those in A(1) are known as the Narayana numbers [7, A001263]. Using
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these observations about A(0) and A(1), it is easy to observe that all of the entries
of A(0) and A(1) are integers. A quick glance at A(2) shows that this is not always
true. It was stated that Ak,j(2) 2 1

3Z in [2].
We define

r⌫ := min
⇢

r > 0 : Ak,j(⌫) 2 1
r

Z, j, k � 0
�

.

Using this notation, we see that r0 = r1 = 1 and r2 = 3. It is not immediately clear
that r⌫ is well-defined and finite for all ⌫ (although we will show that this is the
case).

In Section 2 we show the following:

Theorem 5. For ⌫ � 1 we have r⌫

�� (2⌫�1)!
⌫! .

This is not best possible. In Section 3 we prove a result that bounds r⌫ in the
opposite direction.

Theorem 6. For ⌫ � 1 we have
�2⌫�1

⌫

� �� r⌫ .

We conjecture that this is in fact best possible. That is, we conjecture:

Conjecture 1. For ⌫ � 1 we have r⌫ =
�2⌫�1

⌫

�
.

We present evidence for this conjecture in Section 4 and 5.
Next we consider a result by Borwein, Nuyens, Straub and Wan in [1] about the

modularity of moments. They showed:

Theorem 7. For primes p, we have Wn(0; 2p) ⌘ n mod p.

We extend this in Section 6 to get

Theorem 8. Let

• p = k be prime with 2⌫ < p, or

• p = k + ⌫ be prime with ⌫ < p.

Then Wn(⌫; 2k) ⌘ n mod p. If p2 = k with p prime, then Wn(0; 2k) ⌘ n mod p2.

It is worth remarking that if both p1 := k and p2 := k + ⌫ are prime with
2⌫ < p1 (and hence ⌫ < 2⌫ < p1 < p2), then clearly Wn(⌫; 2k) ⌘ n mod p1p2 by
the Chinese Remainder Theorem.

In Section 7 we discuss some of the open problems related to this research.

2. A Proof of Theorem 5: r⌫ |(2⌫ � 1)!/⌫!

To prove Theorem 5, we make use of the following remark and lemma:
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Remark 9. There are multiple equivalent ways of representing Ak,j(⌫). The three
most common that we will use are:

Ak,j(⌫) =
✓

k

j

◆
(k + ⌫)!⌫!

(k � j + ⌫)!(j + ⌫)!
=

✓
k

j

◆✓
k + ⌫

j

◆✓
j + ⌫

j

◆�1

=
✓

k + ⌫

j

◆✓
k + ⌫

j + ⌫

◆✓
k + ⌫

⌫

◆�1

.

Lemma 1. For integers 1  ⌫  j we have

gcd((j � ⌫ + 1)(j � ⌫ + 2) · · · j, (j + 1)(j + 2) · · · (j + ⌫))
�� (2⌫ � 1)!.

Proof. Let Aj,⌫ = {j � ⌫ + 1, . . . , j} and Bj,⌫ = {j + 1, . . . , j + ⌫}. Let ⇡(Aj,⌫) and
⇡(Bj,⌫) be the products of these sequences. Let p be a prime number and vp(x) be
the p-adic valuation of x. We see that for p↵ > 2⌫ there is at most one term in
Aj,⌫ [Bj,⌫ that is divisible by p↵. Without loss of generality we may assume that
such a term, if it exists, is in Aj,⌫ . We see that vp(Bj,⌫) = vp(Bj+p↵k,⌫) for all k by
translation. Further, if there exists a term in Aj,⌫ that is divisible by p↵, then by
translations we can assume that this term is divisible by an arbitrarily high power
of p. Hence we can assume that, if such a term exists, then we can find a translate
of this sequence so that

vp(gcd(⇡(Aj+p↵k,⌫),⇡(Bj+p↵k,⌫))) = vp(⇡(Bj+p↵k,⌫)).

We see that if p�  ⌫, then there are at most
l

⌫
p�

m
terms in Bj+p↵k,⌫ that are

divisible by p� . We see that if ⌫ < p�  2⌫, then there are at most
l

2⌫
p�

m
� 1 terms

in Bj+p↵k,⌫ which are divisible by p� . By the Chinese Remainder Theorem we can
find a j such that both the inequalities are exact. This gives us:

vp(gcd(⇡(Aj+p↵k,⌫),⇡(Bj+p↵k,⌫))) 
X

p�⌫

⇠
⌫

p�

⇡
+

X
⌫<p�2⌫

⇠
2⌫
p�

⇡
� 1, (1)

and moreover, there exists a j so that this is exact.
We observe that

vp((2⌫ � 1)!) =
X

p�2⌫�1

�
2⌫ � 1

p�

⌫
.

Observe that if p� < ⌫, then �
2⌫ � 1

p�

⌫
�

⇠
⌫

p�

⇡
.

If p� = ⌫ then �
2⌫ � 1

p�

⌫
=

⇠
⌫

p�

⇡
= 1.
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⌫ Equation (1) (2⌫ � 1)!
1 1 1
2 2 · 3 2 · 3
3 23 · 3 · 5 23 · 3 · 5
4 23 · 32 · 5 · 7 24 · 32 · 5 · 7
5 26 · 33 · 5 · 7 27 · 34 · 5 · 7
6 26 · 33 · 52 · 7 · 11 28 · 34 · 52 · 7 · 11
7 27 · 34 · 52 · 7 · 11 · 13 210 · 35 · 52 · 7 · 11 · 13
8 27 · 34 · 52 · 72 · 11 · 13 211 · 36 · 53 · 72 · 11 · 13
9 211 · 34 · 52 · 72 · 11 · 13 · 17 215 · 36 · 53 · 72 · 11 · 13 · 17
10 211 · 36 · 52 · 72 · 11 · 13 · 17 · 19 216 · 38 · 53 · 72 · 11 · 13 · 17 · 19

Table 1: Prime factorization of Eq (1) and (2⌫ � 1)!

If ⌫ < p�  2⌫ � 1 then
�

2⌫ � 1
p�

⌫
= 1 �

⇠
2⌫
p�

⇡
� 1.

Lastly, if p� = 2⌫ then �
2⌫ � 1

p�

⌫
= 0 �

⇠
2⌫
p�

⇡
� 1.

Hence, we have vp(gcd(⇡(Aj,⌫),⇡(Bj,⌫))  vp((2⌫ � 1)!), which gives that

gcd(⇡(Aj,⌫),⇡(Bj,⌫))
�� (2⌫ � 1)!

as required.

It is worth remarking that for any fixed ⌫ � 4, we can find tighter lower bounds
for the gcd by using (1) directly. This can be used to tighten the results of Theorem
5 for specific ⌫. Unfortunately, even when tightened in this way, we cannot achieve
the conjectured bound. See Table 1.

We are now ready to prove Theorem 5.

Proof of Theorem 5. We fix integers ⌫ � 0 and 0  j  k. We consider 2 cases:
If 0  j  ⌫ � 1 then we have

Ak,j(⌫) =
✓

k

j

◆✓
k + ⌫

j

◆✓
j + ⌫

j

◆�1

=
✓

k

j

◆✓
k + ⌫

j

◆
j!

⌫!
(j + ⌫)!

.

By our assumption on j we know j + ⌫  2⌫ � 1; hence (j + ⌫)!
�� (2⌫ � 1)!, and

therefore
Ak,j(⌫) 2 ⌫!

(j+⌫)!Z ✓
⌫!

(2⌫�1)!Z.
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Otherwise we may assume that j � ⌫. Then we have

Ak,j(⌫) =
✓

k + ⌫

j

◆✓
k + ⌫

j + ⌫

◆✓
k + ⌫

⌫

◆�1

=
(k + ⌫) · · · (k + 1) · k · · · (k + ⌫ � j + 1)

j!
·

(k + ⌫) · · · (k � j + 1)
(j + ⌫)!

· ⌫!
(k + ⌫) · · · (k + 1)

=
k · · · (k + ⌫ � j + 1)

j!
· (k + ⌫) · · · (k � j + 1)

(j + ⌫)!
· ⌫!

=
(k + ⌫) · · · (k + 1)

(j + ⌫) · · · (j + 1) · j · · · (j � ⌫ + 1)

✓
k

j � ⌫

◆✓
k

j

◆
⌫!.

Next observe that both

(k + ⌫) · · · (k + 1)
(j + ⌫) · · · (j + 1)

✓
k

j � ⌫

◆✓
k

j

◆
=

✓
k

j � ⌫

◆✓
k + ⌫

j + ⌫

◆

and
(k + ⌫) · · · (k + 1)
(j) · · · (j � ⌫ + 1)

✓
k

j � ⌫

◆✓
k

j

◆
=

✓
k + ⌫

j

◆✓
k

j

◆

are integers. Hence there exist p, q 2 Z such that

Ak,j(⌫) =
(k + ⌫) · · · (k + 1)

(j + ⌫) · · · (j + 1) · j · · · (j � ⌫ + 1)

✓
k

j � ⌫

◆✓
k

j

◆
⌫! =

p

q
⌫!

and where q
�� gcd((j + ⌫) · · · (j + 1), j · · · (j � ⌫ + 1)).

By Lemma 1 and the transitivity of divisibility, q
�� (2⌫ � 1)! and hence there

exists p0 such that

Ak,j(⌫) = p0 · ⌫!
(2⌫ � 1)!

.

Thus, for all integers ⌫ � 0 we have r⌫

�� ⌫!
(2⌫�1)! as desired.

3. A Proof of Theorem 6:
�2⌫�1

⌫

� �� r⌫

Theorem 6 is an immediate corollary of:

Lemma 2. Let p↵|
�2⌫�1

⌫

�
. Let pr � p↵ and pr > ⌫. Then the denominator of

Apr�1,⌫�1(⌫) is divisible by p↵.

Proof. Let p↵|
�2⌫�1

⌫

�
. Let pr � p↵ and pr > ⌫. Notice that

Apr�1,⌫�1(⌫) =
✓

pr + ⌫ � 1
⌫ � 1

◆✓
pr � 1
⌫ � 1

◆✓
2⌫ � 1
⌫ � 1

◆�1

.
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Consider the first term:✓
pr + ⌫ � 1

⌫ � 1

◆
=

(pr + ⌫ � 1) · · · (pr + 1)
(⌫ � 1) · · · 1 .

Observe that each factor of the numerator is congruent mod pr to the matching
factor in the denominator. Hence

�pr+⌫�1
⌫�1

�
⌘ 1 mod p.

The second term is similar, with each term of the numerator congruent mod pr

to the additive inverse of the associated factor of the denominator. Hence
�pr�1

⌫�1

�
⌘

(�1)⌫ mod p.
Hence

Apr�1,⌫�1(⌫) =
1
p↵

· a

b

with p co-prime to a.

4. The cases ⌫ = 3 and ⌫ = 4

We see that r1 = 1 =
�1
1

�
and r2 = 3 =

�3
2

�
. In this section we show the next two

cases of Conjecture 1 hold, namely that r3 = 10 =
�5
3

�
and r4 = 35 =

�7
4

�
.

We first need the following lemma:

Lemma 3. Let n and k be non-negative integers. If n is even and k is odd then�n
k

�
is even.

Proof. By Kummer’s theorem [5], 2 divides
�n

k

�
if there is at least one carry when

k and n � k are added in base 2. Since n is even and k is odd, n � k is odd. The
least significant bit of an odd integer represented in base 2 is always 1. Hence both
k and n� k have a 1 in the least significant place. Thus when they are added, this
will result in a carry. So 2 divides

�n
k

�
.

We now follow the proof of Theorem 5 using ⌫ = 3 to show:

Theorem 10. Conjecture 1 holds for ⌫ = 3. That is, r3 =
�5
3

�
= 10.

Proof. We have that 10|r3 by Theorem 6.
As in the proof of Theorem 5, we first consider the case where 0  j  2. A

quick calculation shows that

Ak,0(3)
✓

5
3

◆
= 10,

Ak,1(3)
✓

5
3

◆
=

5(k + 3)k
2

,

Ak,2(3)
✓

5
3

◆
=

(k � 1)(k + 2)(k + 3)k
4

.
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By considering the cases of k even or odd, we see that all of these values are always
integers, and hence Ak,0(3), Ak,1(3), Ak,2(3) 2 1

10Z.
If j � 3 then, as in the proof of Theorem 5, we have

Ak,j(3) =
3!

(j + 3)(j + 2)(j + 1)

✓
k + 3

j

◆✓
k

j

◆
=

3!
j(j � 1)(j � 2)

✓
k

j � 3

◆✓
k + 3
j + 3

◆
.

We see that if 8 - gcd((j + 3)(j + 2)(j + 1), j(j � 1)(j � 2)), then

Ak,j(3) 2 2!3!
5!

Z

as required. Hence we may assume that 8
�� gcd((j+3)(j+2)(j+1), j(j�1)(j�2)).

If j is even then 8
�� (j + 3)(j + 2)(j + 1) implies that j ⌘ 6 mod 8. We observe

that 8
�� j(j � 1)(j � 2) and 16 - j(j � 1)(j � 2). In this case one of

� k
j�3

�
and

�k+3
j+3

�
is also even by Lemma 3. Hence we may write

Ak,j(3) =
2 · 3!

8
· p

q

where q is odd and q divides gcd((j + 3)(j + 2)(j + 1), j(j � 1)(j � 2)). Hence q is
one of 1, 3, 5 or 15. This implies that

Ak,j(3) 2 2!3!
5!

Z

as required.
Similarly if j is odd, then j ⌘ 1 mod 8, and 8

�� (j + 1)(j + 2)(j + 3) and
16 - (j + 1)(j + 2)(j + 3). Further one of

�k+3
j

�
and

�k
j

�
is even, and hence

Ak,j(3) =
2 · 3!

8
· p

q

where q is odd and q divides gcd((j + 3)(j + 2)(j + 1), j(j � 1)(j � 2)). Again this
implies that

Ak,j(3) 2 2!3!
5!

Z

as required.

Theorem 11. Conjecture 1 holds for ⌫ = 4. That is, r4 =
�7
4

�
= 35.

Proof. We have that 35|r4 by Theorem 6.
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As in the proof of the previous theorem, we first consider the case where 0  j 
3. A quick calculation shows that

Ak,0(4)
✓

7
4

◆
= 35,

Ak,1(4)
✓

7
4

◆
= 7k(k + 4),

Ak,2(4)
✓

7
4

◆
=

7(k � 1)k(k + 3)(k + 4)
12

,

Ak,3(4)
✓

7
4

◆
=

(k � 2)(k � 1)k(k + 2)(k + 3)(k + 4)
36

.

By considering the various cases for k mod 12 (resp. 36), we see that these expres-
sions are always integers, and hence Ak,0(4), Ak,1(4), Ak,2(4), Ak,3(4) 2 1

35Z.
If j � 4 then, as in the previous proof, we have

Ak,j(4) =
4!

(j + 4)(j + 3)(j + 2)(j + 1)

✓
k + 4

j

◆✓
k

j

◆

=
4!

j(j � 1)(j � 2)(j � 3)

✓
k

j � 4

◆✓
k + 4
j + 4

◆
.

From equation (1), or Table 1, we have that

gcd((j + 4)(j + 3)(j + 2)(j + 1), j(j � 1)(j � 2)(j � 3))
�� 7!/2.

Hence we have that Ak,j(4) 2 2·4!
7! Z. We still need to show that there is an additional

factor of 3 in the numerator.
To prove the result, we need to show that one of the following three things occur:

• 9 - gcd((j + 4)(j + 3)(j + 2)(j + 1), j(j � 1)(j � 2)(j � 3)),

• 3 |
�k+4

j

��k
j

�
, or

• 3 |
� k
j�4

��k+4
j+4

�
.

If (j + 4)(j + 3)(j + 2)(j + 1) ⌘ j(j � 1)(j � 2)(j � 3) ⌘ 0 mod 9 then j ⌘ 2
mod 9 or j ⌘ 6 mod 9. Hence if j ⌘ 0, 1, 3, 4, 5, 7, 8 mod 9, then Ak,j(4) 2 3!·4!

7! Z
as required.

If j ⌘ 2 mod 9 then 27 - (j + 1)(j + 2)(j + 3)(j + 4). Hence we have that 9
divides the gcd exactly.

Consider ✓
k + 4

j

◆✓
k

j

◆
=

fa,b(k, j)
ga,b(k, j)

✓
k + a

j

◆✓
k + b

j

◆
(2)
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k j a b
k ⌘ 0 mod 3 j ⌘ 2 mod 3 2 2 f ⌘ 0 mod 3 g ⌘ 1 mod 3
k ⌘ 1 mod 3 j ⌘ 2 mod 3 4 1 f ⌘ 0 mod 3 g ⌘ 2 mod 3
k ⌘ 2 mod 3 j ⌘ 2 mod 3 0 3 f ⌘ 0 mod 3 g ⌘ 2 mod 3

Table 2: Cases when j ⌘ 2 mod 9

k j a b
k ⌘ 0 mod 3 j ⌘ 0 mod 3 2 4 f ⌘ 0 mod 3 g ⌘ 2 mod 3
k ⌘ 1 mod 3 j ⌘ 0 mod 3 1 3 f ⌘ 0 mod 3 g ⌘ 1 mod 3
k ⌘ 2 mod 3 j ⌘ 0 mod 3 0 2 f ⌘ 0 mod 3 g ⌘ 2 mod 3

Table 3: Cases when j ⌘ 6 mod 9

where fa,b(k, j) and ga,b(k, j) are polynomials. With careful choices of a and b we
can construct fa,b and ga,b such that fa,b(k, j) will have more factors of 3 than ga,b.

For example, if a = b = 2, then

f2,2(k, j) = (k + 4)(k + 3)(k + 2� j)(k � j + 1)
g2,2(k, j) = (k � j + 4)(k � j + 3)(k + 2)(k + 1).

Using the fact that j ⌘ 2 mod 3, we see that for k ⌘ 0 mod 3 that f2,2(k, j) ⌘
0 mod 3 and g2,2(k, j) ⌘ 1 mod 3 and hence

�k+4
j

��k
j

�
⌘ 0 mod 3. A similar

argument is given for k ⌘ 1 mod 3 and k ⌘ 2 mod 3, summarized in Table 2.
Hence if j ⌘ 2 mod 9, then Ak,j(4) 2 3!·4!

7! Z as required.
If j ⌘ 6 mod 9 then 27 - j(j� 1)(j� 2)(j� 3) so we have that 9 divides the gcd

exactly.
Consider ✓

k + 4
j + 4

◆✓
k

j � 4

◆
=

fa,b(k, j)
ga,b(k, j)

✓
k + a

j � 4

◆✓
k + b

j + 4

◆
. (3)

As before, we can break this into cases, as described in Table 3.

5. Additional Support for Conjecture 1

We have computationally checked that Conjecture 1 holds for all k, j, ⌫  200.
Further, using the techniques of Theorems 10 and 11, we have computationally
verifed that Conjecture 1 holds for all j, ⌫  15 and all k. It is not unreasonable
to think that Conjecture 1 can hold in general. Indeed, if we plot the non-integer
entries in the lower triangular part of A(⌫) and color them based on the prime
factorization of their denominators in reduced form, we obtain the fractal pattern
seen in Figure 1. This suggests that there is far more structure to the matrix
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Figure 1: Non-integer entries of the first 1000 rows of A(5)

A(⌫) that we are currently exploiting. We note that from equation (1), combined
with Theorem 5, we would be able to prove that r5|23 · 32 · 7. We conjecture that
r5 =

�7
4

�
= 2 · 32 · 7. In this image of A(5), denominators are colored red for 2,

blue for 3, green for 7 and orange for 32. If the denominator had contained any
additional factors of 2, 3 or 5 then we would have colored this value black. None
occurred. Assuming that primes always give rise to the associated fractals early on,
as seen in Figure 1, we would be led to believe that 4 - r5.
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6. Proof of Theorem 8: Wn(v;2k) ⌘ n

Proof of Theorem 8. We rewrite (2) as

Wn(⌫; 2k) =
X

k1+···+kn=k

k! · (k + ⌫)! · ⌫!n�1

k1! · · · kn! · (k1 + ⌫)! · · · (kn + ⌫)!
.

Let p = k be prime with 2⌫ < p, or let p = k + ⌫ be prime with ⌫ < p. We claim
that there do not exist indices 1  i < j  n such that ki + ⌫ � p and kj + ⌫ � p.
Indeed, this would lead to

2p  ki + kj + 2⌫  (k1 + · · · + kn) + 2⌫ = k + 2⌫.

If p = k, then 2⌫ < p by assumption, and hence 2p  k + 2⌫ < 2p, a contradiction.
If p = k + ⌫, then ⌫ < p by assumption, and hence 2p  (k + ⌫) + ⌫ < 2p, a
contradiction.

If instead k = p2 and ⌫ = 0, it is easy to see that there do not exist indices
1  i < j  n such that ki + ⌫ � p2 and kj + ⌫ � p2.

We consider 2 cases:
If there exists 1  i  n such that ki = k, then clearly kj = 0 for j 6= i and hence

k! · (k + ⌫)! · ⌫!n�1

k1! · · · kn · (k1 + ⌫)! · · · (kn + ⌫)!
=

k! · (k + ⌫)! · ⌫!n�1

k! · 0! · · · 0! · (k + ⌫)! · ⌫! · · · ⌫!
= 1.

Assume that ki < k for all 1  i  n.
If p = k we see that p|k! and p|(k + ⌫)!. We further see that at most one term in

the denominator is divisible by p. Hence

k! · (k + ⌫)! · ⌫!n�1

k1! · · · kn! · (k1 + ⌫)! · · · (kn + ⌫)!

can be written as pa
b where p - b, and thus is congruent to 0 modulo p.

If p = k+⌫, we see that p|(k+⌫)!. We further see that no term in the denominator
is divisible by p. Hence

k! · (k + ⌫)! · ⌫!n�1

k1! · · · kn! · (k1 + ⌫)! · · · (kn + ⌫)!

can be written as pa
b where p - b, and thus is congruent to 0 modulo p.

If p2 = k and ⌫ = 0, we see that pp+1|k! and pp+1|(k + ⌫)!. We further see that
we have at most 2p factors of p in the denominator, with equality only if p|ki for
all i. Hence

k! · (k + ⌫)! · ⌫!n�1

k1! · · · kn! · (k1 + ⌫)! · · · (kn + ⌫)!

can be written as p2 a
b where p - b, and thus is congruent to 0 modulo p2.
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Thus there are only n terms in the sum for Wn(⌫; 2k) which are not congruent to
0 mod p (resp 0 mod p2), namely when ki = k for some k. In this case the term
is congruent to 1 mod p (resp 1 mod p2) hence

Wn(⌫; 2k) ⌘ n mod p (resp. Wn(0; 2k) ⌘ n mod p2).

7. Comments

We showed in Section 4 that Conjecture 1 held for the case ⌫ = 3 and ⌫ = 4. It
is probable that this technique could be extended computationally for any fixed ⌫,
although this is not clear. It is also not clear that this technique would be extendible
to arbitrary ⌫ without additional ideas.

In Section 6 we showed how the ideas of modularity of Wn(⌫; k) could be extended
to k = p2 or ⌫ > 0. It appears that something is also happening in the case when
k = p2 6= 4 and ⌫ = 1, although it is unclear how one would prove this. There are
most likely many other relations that can be found when considering Wn modulo a
well chosen prime power.

Acknowledgments. The authors would like to thank Jon Borwein for many useful
discussions and suggestions, without which this paper would not have been possible.

References

[1] J. M. Borwein, D. Nuyens, A. Straub and J. Wan, Some arithmetic properties of short random
walk integrals Ramanujan J., 26(1) (2011), 109-132.

[2] J. M. Borwein, A. Straub and C. Vignat, Densities of short uniform random walks in higher
dimensions Preprint (2015), http://arxiv.org/abs/1508.04729.

[3] J. M. Borwein, A. Straub and J. Wan, Three-step and four-step random walk integrals Exp.
Math., 22(1) (2013), 1-14.

[4] J. M. Borwein, A. Straub, J. Wan and W. Zudilin, Densities of short uniform random walks
(with an appendix by Don Zagier) Canad. J. Math., 64(5) (2012), 961-990.
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