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Abstract
Two polynomials f, g 2 Z[x] are evaluationally coprime at x if gcd(f(x), g(x)) = 1.
We give necessary and su�cient conditions for two such linear polynomials to have
a positive proportion of evaluated coprime values.

1. Introduction

A natural extension of the greatest common divisor of two polynomials is to con-
sider the greatest common divisor of the evaluation of the two polynomials at a
particular value. This then leads to the concept of polynomials f, g 2 Z[x] that are
evaluationally coprime. That is, gcd(f(x), g(x)) = 1 for all x 2 Z. We can extend
this line of enquiry to tuples of evaluationally pairwise coprime polynomials; that
is, f1, . . . , fn such that for any 1  i < j  n we have gcd(fi(x), fj(x)) = 1 for all
x 2 Z.

Denote the greatest common divisor of integers a1, . . . an by (a1, . . . , an). Re-
cently, Knox, McDonald and Mitchell [1] examined pairs of polynomials f, g 2 Z[x]
that have greatest common divisors equal to 1, and have greatest common divisors
equal to 1 when evaluated at every integer value. In [1, Corollary 3.5] necessary
and su�cient conditions are given for two primitive linear polynomials to exhibit
both of these conditions. The main result of the present paper, Theorem 1 below,
gives necessary and su�cient conditions for the less demanding result that a posi-
tive proportion of evaluated values are coprime. Unlike the proof in [1], the proof
of Theorem 1 does not use the resultant.

Theorem 1. Suppose f(x) = ax + b, g(x) = cx + d, a, b, c, d 2 Z, a, c 6= 0. Then

lim inf
N!1

1
2N + 1

��{x : (f(x), g(x)) = 1,�N  x  N}
�� > 0

if, and only if,
(a, b, c, d) = 1 and ad 6= bc.
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2. Preparation

We use the following GCD algorithm (‘the algorithm’). Given two polynomials
a1x + b1, a2x + b2 2 Z[x] with a1 � a2 > 0 we let

aix + bi = ei+1(ai+1x + bi+1) + ai+2x + bi+2, i = 1, 2, . . . , (1)

where ei+1 is the largest integer such that ei+1ai+1  ai. So ai � ai+1 > ai+2 � 0.
The algorithm terminates when ai+2 = 0. Let m be this value i+2. So the algorithm
terminates when am = 0. We note that for any x 2 Z and for any 1  i, j  m� 1
we have

(aix + bi, ai+1x + bi+1) = (ajx + bj , aj+1x + bj+1).

We simplify the last part of the algorithm by denoting am�1 = u, bm�1 = v and
bm = s. So we can write

(ax + b, cx + d) = (ux + v, s). (2)

To prove Theorem 1, we require three simple lemmas, below.

Lemma 1. Let u, v, s 2 Z. We have (xu + v, s) = ((x + s)u + v, s) for all x 2 Z.

Proof. Fix x 2 Z. Let g1 = (xu + v, s), g2 = ((x + s)u + v, s). We have g1|su so
g1|(x + s)u + v; hence g1|g2. Similarly, g2|su so g2|xu + v; hence g2|g1. So g1 = g2

as required.

Lemma 2. Suppose by comparing the first and last line of the algorithm we have,
as shown in (2),

(ax + b, cx + d) = (ux + v, s). (3)

Then (a, c) = u and (b, d) = (v, s).

Proof. Recalling the algorithm, we have

aix + bi = ei+1(ai+1x + bi+1) + ai+2x + bi+2, i = 1, 2, . . .m� 2.

Setting x = 0 and then x = 1 we have

bi = ei+1bi+1 + bi+2, ai + bi = ei+1(ai+1 + bi+1) + ai+2 + bi+2

respectively. Subtracting equations we obtain

ai = ei+1ai+1 + ai+2,

where ei+1 is the biggest integer such that ei+1ai+1  ai. This is Euclid’s algorithm
for integers. Thus (ai, ai+1) = (ai+1, ai+2). Since this applies for any i it follows that
(a1, a2) = (am�1, 0) = am�1. Letting a1 = a, a2 = c and recalling that am�1 = u
concludes the proof that (a, c) = u. Setting x = 0 in (3) yields (b, d) = (v, s) which
completes the proof.
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Lemma 3. Let a, b, c, d 2 Z. We have (a, b, c, d) = ((a, b), (c, d)).

Proof. Let g1 = (a, b, c, d), g2 = ((a, c), (b, d)). We have g1 divides both (a, c) and
(b, d), so g1|g2. Similarly, g2|g1. So g1 = g2 as required.

3. Proof of Theorem

Suppose f(x) = ax + b, g(x) = cx + d, a, b, c, d 2 Z, a, c 6= 0. Without loss of
generality we will assume that a � c.

To prove su�ciency suppose firstly that (a, b, c, d) = j 6= 1. Then for all x 2 Z
we have j|(ax + b) and j|(cx + d), which implies that j|(ax + b, cx + d), and so
(ax + b, cx + d) > 1. Therefore

lim inf
N!1

1
2N + 1

��{x : (f(x), g(x)) = 1,�N  x  N}
�� = 0.

Alternately, if ad = bc then, since a, c 6= 0, we have a/c = b/d . Thus a =
kc, b = kd for some k 2 Q, k � 1. So f(x) = kg(x) and the termination line of the
algorithm will be (f(x), g(x)) = (ux + v, 0), for some u 2 N, v 2 Z.

Since (xu + v, 0) = xu + v for all x 2 Z, the sequence (u + v, 0), (2u + v, 0), . . . ,
is monotonic. It follows that

lim inf
N!1

1
2N + 1

��{x : (f(x), g(x)) = 1,�N  x  N}
�� = 0.

To prove necessity suppose that (a, b, c, d) = 1 and ad 6= bc. Since ad 6= bc then,
as argued above, the right-hand side of the termination line of the algorithm must
be

(ux + v, s), for some u 2 Z, s 6= 0. (4)

Using Lemma 1 we see that the sequence (u + v, s), (2u + v, s), . . . has maximum
period s. So it will su�ce to show that for some x 2 Z we have (xu + v, s) = 1, for
then

lim inf
N!1

1
N

��{x : (f(x), g(x)) = 1,�N  x  N}
�� � 1

s
> 0.

We may assume (u, v, s) = 1 for otherwise, by Lemmas 2 and 3, we have ((b, d), (a, c)) =
((u, v), s) 6= 1 which contradicts our supposition that (a, b, c, d) = 1. Let s have the
following prime factorisation

s =
Y
p|s

p-uv

p↵ ⇥
Y
p|s

p|uv

p↵ := x⇥ y,
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where ↵ for each prime p is such that p↵|s and p↵+1 - s. Clearly (x, y) = 1. We are
going to show that for this x, (xu+v, s) = 1. Suppose not and p is a prime dividing
(xu + v, s). Then, since p|s, either p|x or p|y.

If p|x then p|(v, s), but this implies that p|y and this contradicts (x, y) = 1.
If p|y then either p|u or p|v. If p|u then p|(v, s) and this contradicts (x, y) = 1. If

p|v then p|xu and hence p|u because (x, y) = 1. Hence we have p|(u, v, s) and this
contradicts (u, v, s) = 1.

So for some x 2 Z we have (xu + v, s) = 1 which concludes the proof.

4. Comments

There are two lines of enquiry that naturally follow from Theorem 1. Firstly, sup-
pose we have (not necessarily linear) integer coe�cient polynomials f and g. What
are necessary and su�cient coe�cient conditions such that

lim inf
N!1

1
N

��{x : (f(x), g(x)) = 1,�N  x  N}
�� > 0?

Secondly, suppose we have linear integer coe�cient polynomials, f1, . . . , fn. What
are necessary and su�cient coe�cient conditions such that

lim inf
N!1

1
N

��{x : (f1(x), . . . , fn(x)) = 1,�N  x  N}
�� > 0?
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