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Abstract
In the present paper we initiate the study of a certain kind of partition inequality,
by showing, for example, that if M � 5 is an integer and the integers a and b are
relatively prime to M and satisfy 1  a < b < M/2, and the c(m,n) are defined by

1
(sqa, sqM�a; qM )1

� 1
(sqb, sqM�b; qM )1

:=
X

m,n�0

c(m,n)smqn,

then c(m,Mn) � 0 for all integers m � 0, n � 0. A similar result is proved for the
integers d(m,n) defined by

(�sqa,�sqM�a; qM )1 � (�sqb,�sqM�b; qM )1 :=
X

m,n�0

d(m,n)smqn.

In each case there are obvious interpretations in terms of integer partitions. For
example, if p1,5(m,n) (respectively p2,5(m,n)) denotes the number of partitions of
n into exactly m parts ⌘ ±1(mod 5) (respectively ⌘ ±2(mod 5)), then for each
integer n � 1,

p1,5(m, 5n) � p2,5(m, 5n), 1  m  5n.

1. Introduction

The purpose of this paper is to initiate the study of certain types of partition
inequalities, which will be described below. Before coming to this refinement we
recall some of the previous results.

1This work was partially supported by a grant from the Simons Foundation (#209175 to James
Mc Laughlin).
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Let p1,5(n) (respectively p2,5(n)) denote the number of partitions of n into parts
⌘ ±1(mod 5) (respectively ⌘ ±2(mod 5)). As is well known,

1X
n=0

(p1,5(n)� p2,5(n))qn =
1

(q, q4; q5)1
� 1

(q2, q3; q5)1
(1)

=
1X

k=0

qk2

(q; q)k
�

1X
k=0

qk2+k

(q; q)k

=
1X

k=1

qk2
(1� qk)
(q; q)k

=
1X

k=1

qk2

(q; q)k�1
,

where the second equality follows from the Rogers-Ramanujan identities. If the final
series is expanded as a power series in q, the coe�cient of qn is clearly non-negative
for all n, and thus that

p1,5(n)� p2,5(n) � 0, for all n 2 N. (2)

At the 1987 A.M.S. Institute on Theta Functions, Leon Ehrenpreis asked if (2)
could be proved without employing the Rogers-Ramanujan identities. In [6], Kadell
showed that this was possible by finding an injection from the set of partitions
counted by p2,5(n) into the set of partitions counted by p1,5(n). In [2], Berkovich
and Garvan extended this result by giving injective proofs of an infinite family of
partition inequalities implied by di↵erences of finite q-products.

Theorem 1 (Berkovich and Garvan, [2]). Suppose L > 0, and 1 < r < m� 1.
Then the coe�cients in the q-expansion of the di↵erence of the two finite products

1
(q, qm�1; qm)L

� 1
(qr, qm�r; qm)L

(3)

are all nonnegative, if and only if r - (m� r) and (m� r) - r.

In [1], Andrews used his anti-telescoping technique to provide an alternative
answer to the question of Ehrenpreis. In the same paper he also proved two similar
results for the non-negativity of the coe�cients of the power series deriving from
di↵erences of finite q-products with modulus eight. One of these is contained in the
following theorem (which Andrews called the “finite little Göllnitz” theorem).

Theorem 2 (Andrews, [1]). If L > 0, and the sequence {fn} is defined by
1X

n=0

fnqn =
1

(q, q5, q6; q8)L
� 1

(q2, q3, q7; q8)L
,

then fn � 0, for all n � 0.
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This result of Andrews was extended by Berkovich and Grizzell, who proved
combinatorially the following result ([3, Theorem 1.3]).

Theorem 3 (Berkovich and Grizzell, [3]). For any L > 0, and any odd y > 1,
the q-series expansion of

1
(q, qy+2, q2y; q2y+2)L

� 1
(q2, qy, q2y+1; q2y+2)L

=
1X

n=0

a(L, y, n)qn (4)

has only non-negative coe�cients.

They also proved an extension (Theorem 4.1 in [3]) of the theorem above.

Theorem 4 (Berkovich and Grizzell, [3]). For any L > 0, and any odd y > 1,
and any x with 1 < x  y + 2, the q-series expansion of

1
(q, qx, q2y; q2y+2)L

� 1
(q2, qy, q2y+1; q2y+2)L

=
1X

n=0

a(L, x, y, n)qn

has only non-negative coe�cients.

The authors also give exact conditions under which the coe�cients
a(L, y, n) and a(L, x, y, n) are equal to 0. Berkovich and Grizzell continued their
investigations in [4], where the following theorem is proved.

Theorem 5 (Berkovich and Grizzell, [4]). For any octuple of positive integers
(L,m, x, y, z, r, R, ⇢), the q-series expansion of

1
(qx, qy, qz, qrx+Ry+⇢z; qm)L

� 1
(qrx, qRy, q⇢z, qx+y+z; qm)L

=
1X

n=0

a(L, x, y, z, r, R, ⇢, n)qn

has only non-negative coe�cients.

In each of the above results, the finite q-products were all of the same order,
and the modulus in each case was the same power of q. In [5] they derived a result
involving finite q-products of two di↵erent orders, and with two di↵erent moduli.

Theorem 6 (Berkovich and Grizzell, [5]). For any positive integers m,n, y,
and z, with gcd(n, y) = 1, and integers K and L, with K � L � 0,

1
(qz; qm)K(qnyz; qnm)L

� 1
(qyz; qm)K(qnz; qnm)L

=
1X

k=0

a(K,L, x, y, z, n,m, k)qk

has only non-negative coe�cients.
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Note that Berkovich and Grizzell proved all of their results combinatorially, and
that just as the statement at (1) was interpreted combinatorially at (2), each of the
statements proved by those authors for di↵erences of q-products may be interpreted
in terms of inequalities for certain restricted partition functions.

For example (employing the notation of the authors in [3]), if P1(L, y, n) denotes
the number of partitions of n into parts ⌘ 1, y+2, 2y(mod (2y+2)) with the largest
part less than (2y + 2)L and P2(L, y, n) denotes the number of partitions of n into
parts ⌘ 2, y, 2y + 1(mod (2y + 2)) with the largest part also less than (2y + 2)L,
then Theorem 3 implies that

P1(L, y, n) � P2(L, y, n)

for all positive integers L and n (recall that y is any odd integer greater than 1).
A refinement of the ordinary partition function p(n) is p(m,n), the number of

partitions of n into exactly m parts, since

p(1, n) + p(2, n) + · · · + p(n� 1, n) + p(n, n) = p(n).

This refinement leads naturally to a question that arises from the partition in-
equalities implied by the above theorems. Suppose p1(n) and p2(n) are two re-
stricted partition counting functions such that

p1(n) � p2(n), for all n 2 N.

Let p1(m,n) (respectively p2(m,n)) denote the number of partitions of the type
counted by p1(n) (respectively p2(n)) into exactly m parts. For which n (if any)
does it hold that

p1(m,n) � p2(m,n), 1  m  n?

Such questions are considered in the next section. An example of the results in
the present paper is the following.

Let p1,5(m,n) (respectively p2,5(m,n)) denote the number of partitions of n into
exactly m parts ⌘ ±1(mod 5) (respectively ⌘ ±2(mod 5)). Then, for each integer
n � 1,

p1,5(m, 5n) � p2,5(m, 5n), 1  m  5n.

This is illustrated for n = 4 (or 5n = 20) in Table 1 below.

2. Main Results

The example above follows as an implication of a special case of the next theorem.
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m p1,5(m, 20) p2,5(m, 20) m p1,5(m, 20) p2,5(m, 20)
1 0 0 11 1 0
2 4 4 12 2 0
3 0 0 13 0 0
4 5 5 14 1 0
5 4 3 15 1 0
6 2 2 16 0 0
7 4 3 17 1 0
8 1 1 18 0 0
9 2 1 19 0 0
10 2 1 20 1 0

Table 1: p1,5(m, 20) � p2,5(m, 20), 1  m  20.

Theorem 7. Let M � 5 be a positive integer, and let a and b be integers such that
1  a < b < M/2 and gcd(a,M) = gcd(b,M) = 1. Define the integers c(m,n) by

1
(sqa, sqM�a; qM )1

� 1
(sqb, sqM�b; qM )1

:=
X

m,n�0

c(m,n)smqn. (5)

(i) Then c(m,Mn) � 0 for all integers m,n � 0.
(ii) If, in addition, M is even, then c(m,Mn+M/2) � 0 for all integers m,n � 0.

Proof. We recall a special case of the q-binomial theorem:

1X
n=0

zn

(q; q)n
=

1
(z; q)1

. (6)

Hence

1
(sqa, sqM�a; qM )1

� 1
(sqb, sqM�b; qM )1

=
X

j,k�0

sj+kqa(j�k)+kM

(qM ; qM )j(qM ; qM )k
�

X
j,k�0

sj+kqb(j�k)+kM

(qM ; qM )j(qM ; qM )k
. (7)

We fix the exponent of s by setting j + k =: m, so that j = m � k and the right
side of (7) becomes

X
m�0

sm
mX

k=0

qa(m�2k)+kM � qb(m�2k)+kM

(qM ; qM )m�k(qM ; qM )k
. (8)

Next, we restrict the values of k so that when the inner sum is expanded as a power
series, it contains only those powers of q whose exponents are multiples of M (so
that the series multiplying sm is

P1
n=0 c(m,Mn)qMn).
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From the stated properties of a and b, it can be seen that what is needed is the
set of values of k for which m� 2k is a multiple of M . If m is even, then k = m/2
is such a value, and qa(m�2k)+kM � qb(m�2k)+kM = 0 in this case. Hence we need
only consider those k in the intervals 0  k < m/2 and m/2 < k  m satisfying
m� 2k ⌘ 0(mod M).

Next, notice that every such k0 in the upper interval may be expressed as k0 = m�
k, for some k in the lower interval, and every k in the lower interval can be similarly
matched with a k0 in the upper interval. Note that m � 2k ⌘ 0(mod M) ()
m � 2(m � k) ⌘ 0(mod M), and that the denominators of the summands remain
invariant under the transformation k $ m� k. Hence

X
m,n�0

c(m,Mn)smqMn

=
X
m�0

sm
X

0k<m/2
M |m�2k

qa(m�2k)+kM � qb(m�2k)+kM

+ q�a(m�2k)+(m�k)M � q�b(m�2k)+(m�k)M

(qM ; qM )m�k(qM ; qM )k

=
X
m�0

sm
X

0k<m/2
M |m�2k

qa(m�2k)+kM (1� q(m�2k)(b�a))(1� q(m�2k)(M�b�a))
(qM ; qM )m�k(qM ; qM )k

Finally, (m � 2k)(b � a) and (m � 2k)(M � b � a) are each positive multiples of
M (since M |m � 2k), and the conditions on a and b give that they are di↵erent
multiples of M , each less than (m � k)M , so that the factors (1 � q(m�2k)(b�a))
and (1 � q(m�2k)(M�b�a)) are cancelled by two di↵erent factors in the q-product
(qM ; qM )m�k. The remaining factors in the denominators may be expanded as
geometric series with only non-negative coe�cients, and the claim at (i) above
follows.

The claim at (ii) follows similarly, upon noting that

m� 2k ⌘M/2(mod M)() m� 2(m� k) ⌘ �M/2 ⌘M/2(mod M).

We next compare the results in Theorem 7 with the result in the Theorem 1 of
Berkovich and Garvan. Our results are weaker than those of Berkovich and Garvan
in Theorem 1, in the sense that setting s = a = 1 in our theorem recovers only the
case L!1 in their theorem, and only in the the arithmetic progressions 0(mod M)
and M/2(mod M) (in the case M is even). However, in the case of these arithmetic
progressions, our result is stronger in two senses.

Firstly, the results hold for cases where a > 1, in contrast to the result in Theorem
1, which holds only when a = 1. Secondly, as we will see below, the inclusion of
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the parameter s allows us to give stronger partition interpretations, in that the
partition inequalities for integers in these arithmetic progressions also hold for any
particular fixed number of parts.

Corollary 1. Let M , a and b be as in Theorem 7. Let pa,M,m(n) denote the number
of partitions of n into exactly m parts ⌘ ± a(mod M), and let pb,M,m(n) likewise
denote the number of partitions of n into exactly m parts ⌘ ± b(mod M). Then

(i) pa,M,m(nM) � pb,M,m(nM) for all integers n � 1, and all integers m, 1 
m Mn.

(ii) If M is even, then pa,M,m(nM +M/2) � pb,M,m(nM +M/2) for all integers
n � 0, and integers m with 1  m Mn + M/2.

Proof. Clearly from (5), pa,M,m(nM)�pb,M,m(nM) = c(m,Mn), so that (i) follows
from Theorem 7, and (ii) follows similarly.

We next prove a companion result to that in Theorem 7, one which has implica-
tions for the number of partitions into distinct parts.

Theorem 8. Let M � 5 be a positive integer, and let a and b be integers such that
1  a < b < M/2 and gcd(a,M) = gcd(b,M) = 1. Define the integers d(m,n) by

(�sqa,�sqM�a; qM )1 � (�sqb,�sqM�b; qM )1 :=
X

m,n�0

d(m,n)smqn. (9)

(i) Then d(m,Mn) � 0 for all integers m,n � 0.
(ii) If, in addition, M is even, then d(m,Mn+M/2) � 0 for all integers m,n � 0.

Proof. We begin by recalling another special case of the q-binomial theorem:
1X

n=0

anqn(n�1)/2

(q; q)n
= (�a; q)1. (10)

Hence

(�sqa,�sqM�a; qM )1 � (�sqb,�sqM�b; qM )1

=
X

j,k�0

sj+kqa(j�k)+kMqM [j(j�1)/2+k(k�1)/2]

(qM ; qM )j(qM ; qM )k

�
X

j,k�0

sj+kqb(j�k)+kMqM [j(j�1)/2+k(k�1)/2]

(qM ; qM )j(qM ; qM )k
(11)

We again fix the exponent of s by setting j + k =: m, so that j = m � k and the
right side of (11) becomes

X
m�0

sm
mX

k=0

(qa(m�2k)+kM � qb(m�2k)+kM )qM [(m�k)(m�k�1)/2+k(k�1)/2]

(qM ; qM )m�k(qM ; qM )k
(12)
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Note that the factor (qa(m�2k)+kM � qb(m�2k)+kM ) in (12) is the same as that in
the numerator of (8), and that the rest of the summand in (12) remains invariant
under the transformation k  ! m� k. Hence the remainder of the proof parallels
that of Theorem 7, and so is omitted.

The result in Theorem 8 may be interpreted in terms of certain restricted parti-
tions into distinct parts.

Corollary 2. Let M , a and b be as in Theorem 8. Let p⇤a,M,m(n) denote the number
of partitions of n into exactly m distinct parts ⌘ ± a(mod M), and let p⇤b,M,m(n)
denote the number of partitions of n into exactly m distinct parts ⌘ ± b(mod M).
Then

(i) p⇤a,M,m(nM) � p⇤b,M,m(nM) for all integers n � 1, and all integers m, 1 
m Mn.

(ii) If M is even, then p⇤a,M,m(nM +M/2) � p⇤b,M,m(nM +M/2) for all integers
n � 0, and integers m with 1  m Mn + M/2.

Proof. The proof is immediate from Theorem 8, since from (9),

p⇤a,M,m(nM)� p⇤b,M,m(nM) = d(m,Mn),

so that (i) follows. The claim at (ii) follows similarly.

3. Concluding Remarks

A number of obvious questions present themselves.
1. Are there combinatorial proofs of the inequalities in Corollaries 1 and 2?

More precisely, is there an injection from the partitions counted by pb,M,m(nM)
to those counted by pa,M,m(nM), and an injection from the partitions counted by
p⇤b,M,m(nM) to those counted by p⇤a,M,m(nM)?

2. Are there any cases where “finite” versions of Theorems 7 and 8 hold, in the
sense that if the “1” in the infinite products is replaced by a positive integer L to
give finite products, then all integers c(m,Mn) and d(m,Mn) are still non-negative?

3. Theorem 7 may be thought of as a partial refinement/extension of Theorem
1. Do any of the other theorems in the introduction have similar partial refine-
ment/extensions?

4. It seems that Theorem 7 is not the end of the story for the type of infinite
product di↵erence shown on the left side of (5). For example, if

1
(sq3, sq13; q16)1

� 1
(sq7, sq9; q16)1

:=
X

m,n�0

c(m,n)smqn, (13)
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then numerical evidence suggests that

c(m, 16n + 12) � 0, for all n � 0, 1  m  16n + 12, (14)
c(m, 16n + 15) � 0, for all n � 0, 1  m  16n + 15. (15)

These observations motivate the following general problem.
Let M � 5 be a positive integer, and let a, b and r be integers such that 1  a <

b < M/2 and gcd(a,M) = gcd(b,M) = 1 and define the integers c(a, b,M,m, n) by

1
(sqa, sqM�a; qM )1

� 1
(sqb, sqM�b; qM )1

:=
X

m,n�0

c(a, b,M,m, n)smqn.

Find all quadruples (M,a, b, r) such that

c(a, b,M,m,Mn + r) � 0, for all n � 0, for all m 2 [1,Mn + r]. (16)

To help motivate further study of the problem, we list some such quadruples
(M,a, b, r) in the table below, values not given by Theorem 7 and for which exper-
imental evidence suggests (16) holds.

M a b r
12 1 5 3, 4
16 1 5 4

1 7 3,4,6
3 7 12,15

18 1 7 3,5,6
20 1 9 3,4,5,6,8

3 7 4,15
3 9 1,12,15

24 1 5 6
1 7 4,8,9
1 11 3,4,5,6,8,10
5 11 1,6,16,20,21
7 11 8,18

Table 2: Quadruples (M,a, b, r) not given by Theorem 7 and for which experimental
evidence suggests (16) holds.

Note that M is even for all values in the table.
Of course any set of values for M , a, b and r for which (16) holds also implies an

infinite family of partition inequalities. Let M , a, b and r such that (16) holds. If
pa,M (m,n) (respectively pb,M (m,n)) denotes the number of partitions of the integer
n into exactly m parts ⌘ ±a(mod M) (respectively ⌘ ±b(mod M)), then for all
positive integers n, and all m 2 [1,Mn + r],

pa,M (m,Mn + r) � pb,M (m,Mn + r). (17)
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5. Likewise, it seems that Theorem 8 is not the end of the story either, for the
type of infinite product di↵erence shown on the left side of (9). Let M � 8 be an
even positive integer, and let a and b be integers such that 1  a < b < M/2 and
gcd(a,M) = gcd(b,M) = 1. Define the polynomials pa,b,M,n(s) by

(�sqa,�sqM�a; qM )1 � (�sqb,�sqM�b; qM )1 :=
X
n�0

pa,b,M,n(s)qn. (18)

Experimental evidence appears to suggest that if r is any fixed integer, 0  r 
M � 1, then for all n � 0, all of the coe�cients of pa,b,M,Mn+r(s) have the same
sign. As an example, p1,3,8,n(s) is shown in the following table for 320  n  327.

n p1,3,8,n(s)
320 3s8

�
s2 + 5

�
321 s

�
249s10 + 3872s8 + 8355s6 + 3705s4 + 273s2 + 1

�
322 s4

�
10s8 + 614s6 + 2367s4 + 1424s2 + 127

�
323 �s

�
161s10 + 2775s8 + 6858s6 + 3380s4 + 267s2 + 1

�
324 s4

�
2s8 + 141s6 + 391s4 + 123s2 + 3

�
325 �s

�
266s10 + 4010s8 + 8729s6 + 3862s4 + 280s2 + 1

�
326 �s4

�
10s8 + 548s6 + 2154s4 + 1375s2 + 127

�
327 s

�
228s10 + 3474s8 + 7728s6 + 3582s4 + 273s2 + 1

�
Table 3: The coe�cients in p1,3,8,n(s) all have the same sign, 320  n  327.

This pattern of signs for all of the coe�cients of p1,3,8,n(s) in Table 3, namely
+,+,+, �,+,�,�,+, repeats modulo 8, as n cycles through the various residue
classes modulo 8 (this was checked up to n = 1920). At this point we are unable to
say if this pattern eventually breaks down for n large enough, or if it holds for all
even M � 8. No similar patterns appear to hold for M odd.

We leave it to others to hopefully cast further light on these questions.
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