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Abstract
A generalization of the Cauchy-Davenport Theorem to arbitrary finite groups was
suggested by Kéarolyi and proved independently by Kérolyi and Wheeler. Here we
give a short proof of the following small extension of this result (which also applies to
infinite groups): If A, B are finite nonempty subsets of a (multiplicatively written)
group G then |AB| > min{p(G), |A| + |B| — 1} where p(G) denotes the smallest
order of a nontrivial finite subgroup of G, or oo if no such subgroups exist.

1. The Result

The following famous theorem discovered independently by Cauchy [1] and Daven-
port [2] is one of the founding theorems in additive combinatorics and the starting
point for this work.

Theorem 1 (Cauchy-Davenport). Let p be prime and let A, B C Z/pZ be
nonempty. Then the set A+ B ={a+b|a€ A and b € B} satisfies the following
bound:

A+ B| > min{p, || + |B| — 1}

We will be interested in more general groups G which we write multiplicatively.
If A)B C G then we define AB = {ab | a € Aand b € B}, and for g € G we
abbreviate {g}A by gA and A{g} by Ag. Following Karolyi we will generalize the
above theorem to arbitrary groups G by giving a similar lower bound on | AB| except
with “p” replaced by the parameter p(G), which we define to be the order of the
smallest nontrivial finite subgroup of G, or oo if no such subgroups exist. Namely,
we prove the following.

Theorem 2. If A, B are finite nonempty subsets of G then
|AB| > min{p(G), |A| + |B| — 1}.

The restriction of this theorem to finite groups gives the result of Karolyi [3] and
Wheeler [5]. Interestingly, these authors used very different methods to achieve their
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results: Kdrolyi used group extensions (and also generalized Vosper’s Theorem)
while Wheeler utilized the Feit-Thompson Odd Order Theorem and the structure
of solvable groups. Our approach is based on a transform which seems to have first
appeared in a paper of Kemperman [4] and is by comparison quite elementary.

Proof of Theorem 2. Suppose (for a contradiction) that the theorem is false and
choose a counterexample (A, B) so that:

1. |AB]| is minimum,
2. |A| + | B| is maximum subject to 1,
3. |4] is minimum subject to 1 and 2.

Note that our assumptions imply |A| < |B| as otherwise the pair (B~1, A~1)
contradicts the choice of (A4, B) (since |[B~tA™Y| = [(AB)™!| = |AB|). If |A| =1
then |AB| = |B| = |A| + |B| — 1 giving us a contradiction. So |A| > 2 and we may
choose g € G\ {1} so that AgN A # 0. If Ag = A then A is a union of left {g)
cosets and we have the contradiction |AB| > |A| > p(G). It follows that AgN A is
a proper nonempty subset of A. Next consider the two pairs of sets:

(AN Ag,BUg 'B) (AUAg,BNg 'B)

It follows from basic principles that the product set associated to each of these pairs
is a subset of AB (ex. if v € AUAg and y € BNg~ !B then either x € Aso 2y € AB
orx € Agsoxy € Ag-g B = AB). If BNg~!'B = () then we have the contradiction
|AB| > [(ANAg)(BUg™'B)| > |BUg ' B| = 2|B| > |A| +|B|. Therefore all four of
the sets appearing in our two pairs are nonempty. If |[AUAg|+|BNg~—tB| > |A|+|B]
then the pair (AU Ag, BN g~!B) contradicts the choice of (A4, B) (this pair is also
a counterexample since |(AU Ag)(BNg~1'B)| < |AB| < min{p(GQ), |A| +|B|—1} <
min{p(G),|AU Ag| + |[BN g~ 'B| — 1}). It follows from this and |A N Ag| + |A U
Agl+|BUg™IB|+|BNg~1B| = 2|A| +2|B| that |[AN Ag|+|BUg~'B| > |A|+|B|.
However, now the pair (ANAg, BUg~!B) contradicts the choice of (A, B) by similar
reasoning, and this completes the proof. O]
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