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Abstract
Working over the field Q(t), Kihara constructed an elliptic curve with torsion group
7,/47Z and five independent rational points, showing the rank is at least five. Follow-
ing his approach, we give a new infinite family of elliptic curves with torsion group
Z/4Z and rank at least five. This matches the current record for such curves. In
addition, we give specific examples of these curves with ranks 10 and 11.

1. Introduction

As is well-known, an elliptic curve E over a field K can be explicitly expressed by
the generalized Weierstrass equation of the form

E:y? 4+ a1y + asy = 25 + apx® + ayx + ag,

with a1, as, as, aq,ag € K. In this paper, we are interested in elliptic curves defined
over the rationals, i.e., K = Q. The famous Mordell-Weil theorem says that every
elliptic curve over Q has a commutative group F(Q) which is finitely generated.
That is, F(Q) & Z" & E(Q)tors, where 7 is a nonnegative integer and E(Q)tors is
the subgroup of elements of finite order in F(Q). This subgroup is called the torsion
subgroup of F(Q) and the integer r is known as the rank of E.

By Mazur’s theorem [12], the torsion subgroup F(Q);.s can only be one of fifteen
groups: Z/nZ with 1 <n <10 or n = 12, Z/27 x Z/2mZ with 1 < m < 4. While
the possibilities for the torsion subgroup are finite, the situation is not as clear for
the rank r. The folklore conjecture is that the rank can be arbitrarily large, but it
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seems to be very hard to find concrete examples of elliptic curves with large rank.
The current record is an example of an elliptic curve over Q with rank at least 28,
found by Elkies in May 2006 (see [5]). There is no known guaranteed algorithm to
determine the rank and it is not known which integers can occur as ranks.

Let T be an admissible torsion group for an elliptic curve E over Q. Define

B(T) = sup{rank E(Q) : torsion group of F over Q is T'},
G(T) = sup{rank E(Q(t)) : torsion group of F over Q(¢) is T'},
C(T) = limsup{rank E(Q) : torsion group of E over Q is T'}.

There exists a conjecture in this setting that says B(T") is unbounded for all T'.
Even though B(T) is conjectured to be arbitrarily high, it appears difficult to find
examples of curves with high rank. There has been much interest in finding high
rank elliptic curves with specified torsion groups. See [2, 3] for tables with the best
known lower bounds for B(T'), G(T), and C(T), including references to the papers
where each bound is found.

In this paper, we will consider elliptic curves with torsion group Z/4Z. The
current record for the highest rank of an elliptic curve with this torsion group is
12, with a curve found by Elkies in 2006 [5], as well as another recently found by
Dujella and Peral [2]. In 2004, Kihara [8] found an infinite one-parameter family of
curves with torsion group Z/47 and having rank (at least) 4. He extended this to an
infinite rank 5 family whose fifth point was parameterized by a positive rank curve.
Later in [9], he improved his results to an unconditional family of rank (at least)
5. Dujella, et. al. [4], by using a suitable injective specialization, subsequently
proved that the rank of Kihara’s family over Q(¢) is exactly equal to 5 and found
explicit generators. In 2007, Elkies also found an infinite family with rank at least
5 and a rank 6 family dependent on a positive rank curve [6]. Thus, B(Z/4Z) > 12,
G(Z/A7) > 12, and C(Z/4Z) > 6.

The main contribution of this work is a new family of elliptic curves with torsion
group Z/47Z, and rank (at least) 5. In fact, we show the family has rank exactly
5 over Q(¢). This family matches the best known results for high rank for an
infinite family of elliptic curves with torsion group Z/47 . We also find two elliptic
curves with rank 11, and many with rank 10, all of which have not been previously
published. According to [2], there are only two other known curves with rank 11
(and torsion group Z/47Z).

Our starting point to find these families of curves is Kihara’s original paper [8].
We review Kihara’s method in Section 2, and in Section 3 find a new solution to
some of Kihara’s equations, leading to a different rank 4 family than Kihara found.
In Section 4, we further specialize this family to create a fifth rational point. We
show that the family has rank 5 over Q(¢) in Section 5, and find the generators.
We performed a computer search for specific curves in our families with high rank.
The results are given in Section 6.
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2. Kihara’s Method

We briefly describe Kihara’s construction [8]. Consider the projective curve
C: (2% —y?)? + 2422 +y*)22 + Bzt = 0.
C can be transformed into Weierstrass form by setting X = (A% — B)y?/z? and
Y = (A? — B)y(Bz? + Az? + Ay?) /23, resulting in the curve
E:Y?= X+ (242 +2B)X? + (A? - B)’X. (1)

The point P = (A% — B,2A(A%? — B)) is on E and it can be easily checked that
2P = (0,0) and 4P = O, the identity element of E. Now consider the affine model
of C

H: (2* —y*)? + 2A(2* +y*) + B =0.

If we assume that the points P, = (r, s) and P, = (r,u) are on H, then it is required
that A = (2r? — s2 —u?)/2 and B = s%u? + 5272 + u?r? — 3r%. We further assume
that the points P; = (s,p) and Py = (u, q) are also on H, and so we must have

p? =357 +u? - 3r? (2)
¢? = 5%+ 3u® — 3% (3)
Kihara gave the following parametric solution to the Diophantine equations (2),(3):
r=1t*—33,
s=1t%—2t—27,
u=t>— 6t + 33,
p=1t>—12t+3,
g =t>—20t + 27.

Thus, there are four Q(¢)-rational points on the affine curve H, and consequently
four Q(t)-rational points on the corresponding elliptic curve E.

3. A Family of Elliptic Curves with Rank at Least 4

We solve the equations (2) and (3) in a different way. By subtracting (3) from (2),
we have that

p? +2u* = ¢* + 25°. (4)
Recall the well-known Brahmagupta identity

(a® + Nb*)(c + Nd*) = (ac — Nbd)? + N(ad + bc)?
= (ac+ Nbd)? + N(ad — bc)?.
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By setting N = 2, and letting

p = ac+ 2bd,
q = ac — 2bd,
u = bec — ad,
s =bc+ ad,

we see that we have a solution to (4).
From (2), we require r* = (3s% + u? — p?)/3. Substituting in, this translates to

r? = (4/3)b*c* + (4/3)ad® — (1/3)a*c* — (4/3)b*d>. (5)

In order to find a parametric solution to (5) we fix ¢ and d. Now we rewrite (5) in
the form

4% (c* — d*) + 4a*(d* — ¢ /4) = 3r*. (6)
If we consider 4(c? — d?) = « and 4(d*> — ¢?/4) = (3, then (6) can be written
ab? + fa? = 3r?, with parametric solution given by

a=(d* - A)m? + 3n?,
b= (d* — %)m?® — 3emn — 3n?,
r=c(d* — *)m? + (4(d* — ¢?))mn — 3en?,

for any ¢, d. Therefore

r = 4®mn — em?d® + 3en? — dmnd® + Am?,

s =cem?d?® — Am? — 3¢Pmn — 3en? + m2d® — dm>c? + 3dn?,
u=cm?d® — Am? — 3¢®mn — 3en? — m2d® + dm?c® — 3dn?,
p=cm?d® — Am? + 3en? + 2m2d® — 2dm>*c® — 6demn — 6dn?,

g =cm?d® — Am? + 3en? — 2m2d® + 2dm>c® + 6demn + 6dn®.
If we write the elliptic curve E from (1) in the form

Y2 = X3+ A4 X?% + By X,
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then a simple calculation yields

Ay = — 240" m"d*n — 16¢ ' m n — 432¢°mn” — 16¢2m3d0 + 48m8d'on?
+432m2d®n® — 1512¢m>n® — 808m*d®*n* — 16¢°m3d® — 736c"m’n®
+ 4EmBd* — 1708 m* n* + 24 mBd® — 168¢°mn? — 2208¢"m3n®
+ 4m®d'? + 324d*n® + 112¢°m" d*n — 2136c°md*n? + 4528¢"m°d*n®
+1680c*m®d®n? + 1104c®*m®d*n? + 9712¢5m*d*n* — 12840c*m*d*n*
— 7440°m5n3d* + 208¢°m nd® + 11376 m>*nSd? — 528¢*mCd®n?
+ 5968c¢2m*d®n* — 10944c3nSd*m? 4+ 1728¢*n"d*m — 64cm"d®n
+4672c3m°d®n® + 6912c*m?d*n® — 3888c*m?d*n’ + 3072m3d%n"c
— 1024mSd®n3e,

By = 16m*n?(2n + me)?(—d + ¢)?(2d + ¢)*(—2d + ¢)*(d + ¢)*(n + dm + mc)?

x (3n — dm +mc)?(3n + dm + me)?(3cn + 2¢*m — 2d*m)? (n — dm + mc)?.
With the values given above, the curve E(c,d, m,n) has a point of order 4, as well
as four rational points. Using specialization, the four rational points can easily be
shown to be independent. For instance, when (¢,d,m,n) = (3,2,1,1), the height
pairing matrix has determinant 357.065396133752 as computed by SAGE [13]. Thus
Py, P, P;, and P, are independent.

4. An Infinite Family with Rank 5

Following the approach of Kihara’s second paper [9], we seek to force a fifth point
Ps = (p, M) on H. The point Ps will only be rational if we have a rational solution
to the equation

M? = 6s® + 3u® — 8r%.

Substituting in the expresssions for r, s, and u in terms of ¢,d, m, and n, we note
that the expression 6s% 4+ 3u? — 8r2 is a quartic in m. In fact, this is expression is

((c+3d)(c* — d*))*m* 4 ... + (3n*(c — 3d))*%.

If we set this equal to (tam? + tym + tg)?, where to = (¢ + 3d)(c® — d?) and ty =
3n%(c — 3d) then a little bit of algebra finds that setting

5¢2 — 9cd — 32d3?

b= —
! o c+ 3d
leads to 652 + 3u? — 8r% = (tam? + tym + tg)?, if
19 cdn(c+ 3d)

(2 — d)(3¢2 + 8cd + 12d2)°
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This leads to an infinite family with five rational points, in terms of ¢, d, and n.
To simplify the coefficients, we perform an isomorphism (z,y) — (k?z, k3y) where

(c* — d?)(3c + 8dc + 12d?)*

b= 18n4(c2 — 4d2)?

The resulting family is the curve E : y? = 23 + Asz? + Bsz, where A5 and Bs are
homogenous polynomials in ¢ and d. We can thus set d = 1, obtaining

As = 34992 ¢ + 268272 ¢'® + 563760 ¢!7 — 668655 ¢ — 3947184 ¢! 4 1925820 ¢!
+ 44407056 ¢'3 4 137106486 ¢2 + 233620224 ¢! + 231242652 ¢! + 51841920 ¢°
— 219842399 & — 358210752 ¢” — 238162320 ¢® — 9324288 ¢® + 125750880 ¢
+ 110730240 ¢ + 39377664 ¢* + 8957952 ¢ + 1679616,

Bs = 576(c — 1)*(c + 1)%*c*(c — 2)%(c + 3)*(c + 2)*(3¢® + ¢ + 6)*(3¢* + Tc + 6)°
(3¢% + 8¢ +12)%(3¢® — 13¢ — 6)% (3¢ + 5c — 6)2(3¢? + 2¢ + 3)%.

We denote this curve by E., since the parametrization is only dependent on c
(and not n or d). Thus, we have an infinite number of curves in this family with
rank at least 5, which can be proved by specialization at ¢ = —6/5, where the height
pairing matrix has determinant 5062.58320537396.

To verify that this family is different than Kihara’s family, let j(¢) be the j-
invariant of the elliptic curve E; given in Kihara’s paper [9]. Let j(c) be the j-
invariant of the curve E. given above. We checked that there are no solutions to
the equation j(t) — j(c), for any value of ¢ = a/b, with 0 < |a|,b < 100. If the two
families were isomorphic, then there would exist solutions.

5. The Generators of the Rank 5 Family

Similarly as done in [4], we find the generators of the family E. and prove the rank
is 5 over Q(c). The key result needed is a theorem of Gusi¢ and Tadi¢ [7], for
elliptic curves E given by y? = 2% + A(t)x? + B(t)z, where A, B € Z|[t], with exactly
one nontrivial 2-torsion point over Q(t). If ¢ € Q satisfies the condition that for
every nonconstant square-free divisor h of B(t) or A(t)? —4B(t) in Z[t] the rational
number h(tp) is not a square in Q, then the specialized curve Ey, is elliptic and the
specialization homomorphism at ¢y is injective.

If additionally there exist Py,-- -, P. € E(Q(¢)) such that Pi(to),--- , P-(to) are
the free generators of E(tg)(Q), then F(Q(t))and E(ty)(Q) have the same rank r,
and Py,---, P. are the free generators of E(Q(t)).
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Just as in [4], the points P;, for i = 2,3,4,5, all satisfy P; + P; = 2Q); for some
point @; on E(c). Concretely,

Q2= ((c—1)(c+1)(3c® + ¢+ 6)(3¢2 + Te + 6)(3¢* — 13¢ — 6)(3¢* + 5c — 6)
x (9c* 4+ 48¢3 + 115¢2 + 48¢ + 36)%, ¢(c — 1)(9c* + 48¢3 + 115¢2 + 48¢ + 36)
x (3¢? +c+6)(c+1)(3¢% + 5¢ — 6)(3¢* + Te + 6)(9c* — 61¢% — 96¢ — 108)
x (3¢ — 13c — 6)(216¢” + 1449¢® + 3624c” + 4446¢° + 1728¢° — 1103¢*
— 2784¢® + 216¢% + 3456¢ + 1296)),

Q3 = (48¢%(c — 1)(c+2)(c + 1)(3¢* + ¢+ 6)(3c* 4 8¢ + 12)(3¢* — 13¢ — 6)(c + 3)?
x (3¢2 + 5¢ — 6)%, —48¢*(c + 1) (c — 1)(c + 3)*(c + 2)(3¢* + 8c + 12)
x (3¢2 + 5¢ — 6)%(3c* 4 5¢ — 6)(3c® + ¢ + 6)(3c* — 13¢c — 6)(162c'0 + 324¢°
— 459¢® — 3840c” — 8880c — 9924¢° — 4175¢* 4 11040¢ + 18360c? + 8640¢
+ 1296)),

Qs = (48¢3(c — 2)(3c® + ¢+ 6)(3¢* + 8¢ +12)(3¢* — 13¢ — 6)(c + 3)*(c + 1)?
x (6c% — 5c+6)2(3¢* + Tc+6)%/(Te+ 6)2, —48c*(c + 1) (c — 1) (c + 3)*(c + 2)
x (3¢? +8c+12)(3¢* 4+ ¢+ 6)(3¢* — 13¢ — 6)(162¢'° + 324¢” — 459¢® — 3840c”
— 8880c® — 9924¢® — 4175¢" + 11040¢ 4 18360c? + 8640c + 1296)),

Qs = (64c®(c — 1)(c — 2)(c + 3)(3c® + 2¢ + 3) (3¢ + 8¢ + 12)(3¢* — 13¢ — 6)
x (3¢% + 5¢ — 6)(3c® 4+ Tc +6)2, —48¢*(c — 1) (c + 1) (c + 3)*(c + 2)
x (3¢2 + 8¢+ 12)(3¢ + 5¢ — 6)%(3¢? + ¢ + 6) (3¢ — 13¢ — 6)(162¢ 4 324¢°
—459¢® — 3840c” — 8880c® — 9924¢° — 4175¢* + 11040¢ + 18360c? + 8640¢
+ 1296)).

We also have

Q1= (—24(c+2)(c—2)(c— 1) (c+1)(3¢* — 13¢ — 6)(3c* + 5¢c — 6)(3¢* + ¢ + 6)

X (3¢® 4+ Tc+6)(3c® +2¢+ 3)(c + 3)(9¢° + 3¢* — 41¢® — 67¢? — 12¢ — 36)2

x (3¢? 4+ 8¢+ 12)/(9¢* — 61¢* — 96¢ — 108)%,24(c — 2)(c + 2)(c +1)(c + 3)

x (¢ —1)(3¢* — 13¢ — 6)(3¢* 4 5¢ — 6)(3c® + ¢ + 6)(3¢* + Tc + 6)(3c? + 2¢ + 3)
x (3¢? + 8¢+ 12)(9¢” + 3¢* — 41¢® — 67¢% — 12¢ — 36)(17496¢'® + 121743¢7
+ 115425¢'0 — 1292112¢"° — 5110992¢'* — 5428170¢!3 4 14855802¢'2

+ 66008328¢!! 4-120014112¢'0 + 107134883¢” — 34458947¢% — 247766784c”

— 3525451205 — 246090528¢° — 45834336¢* + 75271680¢% + 70170624¢2

+20715264c¢ + 1679616)/(9¢* — 61c* — 96¢ — 108)3).

Checking the conditions of the Gusi¢ and Tadi¢ specialization theorem, a calcula-
tion shows ¢ = —21/20 satisfies the squarefree requirements. Furthermore, E_5 /99
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has rank 5, with generators

W1 = (—20267924789539728753288856980600917277/3556814946304000000000
0000000000, —448779459929843779757249062325114417895735745047302
4651/33539911308059607040000000000000000000000000000),

Wy = (= 13093678749940185033860723639114157/2441150464000000000000000
0000, —69092878561298015416940736324954933546907667962989/603061
810626560000000000000000000000000000),

W3 = (— 15197282700176912764695930790260813,/2917728256000000000000000
0000, 81412088006787334224770902297938068184642194262723/78802004
7380480000000000000000000000000000),

W, = (32152011117817302350909977707/655360000000000000000000, 125934775
37698657949624647957303231653667527/8388608000000000000000000000
0000000),

W5 = (2601527024655173135032681319662136007508737243116036240559397896
06971409/4549349522128061401278405671331450389401600000000000000
0000000000, 29572656103560837694845166511685248784281246955726134
9293667205270956651193405766694290156975109943994360779/19406800
9956202000539027774861911976046693959858553984402718720000000000
00000000000000000000000000).

It can be checked that (disregarding torsion), @1 = —2Ws5+ W5, Qo = —W7 + Wy —
3Ws — Wy +Ws, Qs = Wi +2Ws + Wy — W5, Qs = Wi +2W3 — W5, Q5 = Wa.
The matrix of conversion has determinant —1. Thus, the @Q;(c) are the generators
of F,.

6. Examples of curves with high rank

The highest known rank of an elliptic curve over Q with torsion subgroup Z/47Z is
rank 12 (see [2, 5]). From Dujella’s table [2], there are also two known examples
of curves with rank 11, and some elliptic curves with rank 10. Doing a computer
search, we found two new curves with rank 11 and many curves with rank 10. We
actually only list a few of the many rank 10 curves we found (over forty rank 10
curves). Note that the curves listed below are all new, meaning they have never
appeared in the literature (to the best of our knowledge). We refer to [2] for the
details of the other high rank curves with torsion group Z/47Z.
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A common strategy for finding high rank elliptic curves over Q is the construction
of families of elliptic curves with high generic rank, and then searching for adequate
specialization with efficient sieving tools. One popular tool is the Mestre-Nagao
sum, see for example [10, 11]. These sums are of the form

SnE)= Y (1 #pE(I;p)>logp. (7)

p<n, p prime

For our search, we used the family of elliptic curves with rank at least 4 given in Sec-
tion 3. We attempted to search the rank 5 family, but the large coefficients proved
too much of an impediment in the calculations. Since the curve in Section 3 with pa-
rameters [c,d, m,n] is isomorphic to the curve with parameters [em/n,dm/n,1,1],
we can take m = n = 1. Using the Mestre-Nagao sums (7), we looked for those
curves F with S(523,F) > 20 and S(1979, E) > 32. We ranged over the values
¢ =p/qand d = r/s, with =100 < p < 120,1 < ¢ < 100,—100 < r < 100 and
1 < s <100.

After this initial sieving, we calculated the rank of the remaining curves with
mwrank [1], though we note we were not always able to determine the rank exactly.
Table 1 summarises the results.

c d rank

99/2  99/10 11
108/71 -74/71 11
1 3/34 10
41/22  71/66 10
67/13  24/13 10
74/83  61/83 10
82/3 45 10
88/75 47/30 10
82/63 11/9 10
115/79  23/79 10
139/16  97/16 10
-89/55 13/22 10
96/7 81 10
-98/39  35/13 10
99/32  51/8 10
-1/28  41/70 10
9/7  66/91 10

Table 1: High rank elliptic curves with torsion subgroup Z/4Z

We give some details on the rank 11 curves. For the parameters (c,d,m,n) =
(99/2,99/10,1,1) in the family from Section 3 we may write the first curve with
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rank equal to 11 in the form

y? + zy = 2% — 83598958924587909464854346830766301770x
+ 294558475635028689022196236625520239031964650641823108900,

with 11 independent rational points

Py = (— 376658071791198860, 18055283474447823397487893030),

Py = (— 10533246148223735060, 2543790543040848018444649030),

P3 = (156463934499960842778983498260/33904961689, 16570405295991611927241
032829912617594508110,/6243022310680637),

P, = (— 885711103196628014898367036982440460,/418008125605759441, 5810099
562920438083424746642029601056459657987040508170/2702570837144118
45345707239),

P5 = (2310627833438618566207271440660/1518703775449, 24466201571326713110
135052718307507812214184590/1871585228601003293),

Py = (637984027011974650607003560/91718929, 61867792730592473990674817890
00045078390,/878392183033),

P; = (— 27871641836820690309740,/2809, 1806199110727433199159170522308910/
148877),

Ps = (8834146807327345463574297460/2255965009, 55925080013357505974329415
0493626041731190/107151570032473),

Py = (1358304570443828210036870576518625140/168942036456899281, 827898920
114464004948399788286383863554398242895941130/69439500379440573000
500071),

Pio = (1694354547857797725807403203760,/ 7739952529, 22036032510063005220899
21136232083170878234490,/680937803643833),

Pi; = (154143538630738814816283133954788005083334459928492868125827227071
42713825223124/543050953744618090303926661632157319206268348139160
177767049, 57703017195240271907640734277016013618480881024729115224
151945894986238427125846869887651421936528580719895231543107906/400
1850599552908995591255349523485071894520209623177631864591898892932
44718664501739178843).

The second curve with rank 11 has the parameters (¢, d, m,n) = (108/71,-74/71,1,1),
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and can be put in the form

Yitzy +y = 2% — 22 — 6733405851080577415475454221932585499304047x
+ 4800325455798548390824144090920449266363788590480449836501600119,

with 11 independent rational points

Py = (—859040480466684135399409946637/357701569, —570851739448307375446
298525772903969793199258/6765209774497),

Py = (— 86666288433783782765420030182168946493/403989240106987441, —2027
5473440123939103498192448687826487891735533319052199446/2567761585
12087335734025239),

P3 = (—7409440973597749452172160724317853/20224187231161, —772709352834
8812288313690883962192020793939126647174/90950819347058299091),

P, = (—3573159919562444687416081900533/2363029321, —1233150435614496041
9570336229779531484558668734/114869218323131),

P = (50457757689930470323988196055818601/239245222129, 113333723486760862
45255625501336274920485602295184476/117021297764291383),

Ps = (753320280758446140552599814044467/192925628289, 16528039595145598724
636047412511736643691300872486/84739302490262337),

P; = (11399590407313172614495459849827/3813186001, 25128614496449358884398
093023284000254237912586/235468048747751),

Ps = (480337863259420232838048924818817/751461863161, —1792845917173405724
5864188117030228724320095652326,/651418993856512909),

Py = (5955153195237282506441093676187/220789881, —14466844741047487243113
690100138781156335681006,/3280716841779),

Py = (1375362162769333581779723763/543169, —2527191573457340016030881768
3399948364442/400315553),

P11 = (21920079230111700414086050318699,/4818025, 102627348546574245945365
125069231207443139803042/10575564875).
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