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Abstract

The generating function for py(n), the number of partitions of n into at most N
parts, may be written as a product of N factors. In an earlier paper, we studied
the behavior of coefficients in the partial fraction decomposition of this product
as N — oo by applying the saddle-point method to get the asymptotics of the
main terms. In this paper, we bound the error terms. This involves estimating
products of sines and further saddle-point arguments. The saddle-points needed
are associated with zeros of the analytically continued dilogarithm.

1. Introduction

1.1. Background

The generating function for py(n), the number of partitions of n into at most N
parts, and its partial fraction decomposition may be written as

LN/k)

oo N C
E_:OPN( H 1— qj = Z Z q _hekfﬂ'zh/k (11)

O<h<k<N (=1
(h,k)=

for coefficients Chye(IN) studied by Rademacher in [12]. Each Chie(N) is in the
field Q(e2™*"/F) by [8, Prop. 3.3]. Let Liy denote the dilogarithm. It is shown in
[10, Sect. 1] that

Lig(w) — 2milog(w) =0 (1.2)

has a unique solution, namely wg ~ 0.916198 — 0.182459i. From this, define zy :=
1+ log(l —wp)/(2mi) =~ 1.18147 + 0.255528i. With

={h/k L 1<k<N, 0<h<k, (h,k):l}
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denoting the Farey fractions of order N in [0,1), the asymptotic result
|wo| N
+0 ( RNE (1.3)

is given in [9, Thm. 1.2]. This resolves an old conjecture of Rademacher in [12, p.
302] by showing that the limit of Cpi¢(N) as N — oo does not exist in general since
[1/wp| > 1; see [9, Cor. 1.3].

Equation (1.3) is a special case of the more general theorem, [9, Thm. 1.4], which
we state next. Note that Co1¢(V) is the coefficient of 1/(g — 1)¢ in (1.1).
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Z Chkl(N) = Re
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Theorem 1.1. There are explicit coefficients ¢, ce,1,... so that

4
Core(N)+ D (2™ Mk — 1) 73 C)(N)

0<h/k€E100 J=1

-N —N
wy Ce,1 Com—1 |wo|
=Re | v (0&0+W+'“+W) +O<W> (1.4)
where ¢ o = —2206’”20(27&20)4*1 and the implied constant depends only on £ and

m.

The main term of Theorem 1.1 is shown in [9]. The proof that the size of the
error term above is O (|wo| ™V /N**™*1) is sketched in [9], due to its length, and
the detailed proof of this error bound is the main result of this paper.

Rademacher’s coefficients Cpi¢(N) are fascinating numbers and their properties
have been coming into focus with the recent papers [2, 1, 6, 14, 3, 8]. Andrews gave
the first formulas for them in [1, Thm. 1]. Further expressions were given in [8]
with, for example, the relatively simple

—1N( = 1) {+40) B: B ---B;. 1/1292... NI~
0014(N)=4( )]\(7! ) ) { /0} (jgl_]iJrjO)jgN AT
jotji+jz+-+in=N—£

where B,, is the nth Bernoulli number and {::L} is the Stirling number, denoting
the number of ways to partition a set of size n into m non-empty subsets. Also,
with 8, (N) :=1™ 4+ 2™+ ... 4+ N™,

_\N
Cou() = &) > :

P T P I |
Jo+1g142ja 4 Njy=N—g JOTII2E T IN

x <1?11!(51(N)+1—£)>j1... (%(SN(N)—Fl—Z))jN.
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These results are [8, Eq. (2.12), Prop 2.4] and in that paper the close connection
is described between Rademacher’s coefficients Chie(IN) and Sylvester’s waves. In
forthcoming work we develop this link and obtain the asymptotics of the individual
waves in Sylvester’s decomposition of the (unrestricted) partition function p(n).

It is also shown in [8, Thm. 7.3] that, for r > 1,

Porr(N) i= (=1)N N1 (=4)"r! - Corv—r) (N)

is a monic polynomial in N of degree 2r with 0 and 1 as roots. This proved part of
Conjecture 7.1 in [14]. In the remaining part, Sills and Zeilberger conjecture that
Py1-(N) is convex and has coefficients that alternate in sign.

Rademacher realized, already in the 1937 paper [11], that his celebrated formula
for p(n) leads to a decomposition similar to (1.1):

) 0o o o
n§=:0 H 1- qJ Z Z h:QTr'Lh/k (|Q| < 1); (15)

j=1 0<h<k £=1
(h,k)=1

with numbers Chye(co) computed explicitly in [12, Eq. (130.6)]. Using limited
numerical evidence he conjectured that limy_oo Chie(N) = Chie(co). Numerical
computations were extended in [1, 2, 14] with the results in [14] indicating clearly
that Rademacher’s conjecture was almost certainly false. Confirmation of this was
given independently in [3] and [9]. The work of Drmota and Gerhold in [3] gives
the main term in the asymptotics of Cp1,(N) as N — oo using techniques involving
the Mellin transform. The proof of our Theorem 1.1, in [9] and this paper, is based
on a different, conceptually simple idea that is described in the next subsection.
Though certainly very long when all details are included, our proof results in the
complete asymptotic expansion of a finite average containing Co1¢(N). With further
improvements it should be possible to replace the average on the left side of (1.4)
with just Cp1,(IN); see [9, Conj. 1.5].

We highlight two further interesting directions for investigation leading from this
paper.

(i) Tt should be possible to obtain the asymptotics for all coefficients Cpx¢(N) with
k small. Based on Theorem 1.6 below, the asymptotic expansion of Cy21 (V)
was conjectured in [8, Conj. 6.3] and [9, Conj. 6.4]. Elements possibly leading
to the asymptotic expansion of Cy31(N)+C2s31 (N) are given in [9, Eq. (6.12)].

(ii) Rademacher’s original conjecture on the relationship between the sequence
Chie(1), Crie(2), ... and Chie(00) was too simplistic. However, it seems clear
that there is indeed a close relationship between them, as shown in [14, Sect.
4] and [8, Table 2]. The precise nature of this link remains to be found.
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1.2. Proof of Theorem 1.1

We introduce some notation and results from [9, Sect. 1.3] to describe the proof of
Theorem 1.1. Define the numbers

2ricz
Qnko (N) := 2mi ZI:{S?,C (1— e2miz)(1 - :271'1'22) (1= e2miNzy (1.6)
The Rademacher coefficients Cj,e(IN) are related to them by
-1 |
) = 32 (5 4= Quaa (V) (17)
and for o a positive integer they satisfy
> Qure(N)=0 (1.8)
h/ken
for N(N+1)/2 > 0. Put
A(N)::{h/k:N/2<k<N,h:1orh:k—1}gN (1.9)

and decompose (1.8) into

> Quio(N) + > Queo(N)+ D> Quio(N)=0.  (1.10)

h/k€100 h/k€N—(100UA(N)) h/keA(N)
Theorem 1.1 breaks into two natural parts. The first is proved in [9]:

Theorem 1.2. With by = 2z0e~ "0 and explicit by (o), ba(0),... depending on

o € Z we have
-N —N
Wy b1 (o) bm—1(0) |wo
5 (b0+ N +"'+7Um_1 + O P

for an implied constant depending only on o and m.

> Quko(N) =Re

h/ke A(N)

The proof of the second part is sketched in [9]:
Theorem 1.3. There exists W < U := —log |wp| = 0.068076 so that
. Que(N)=0(")
h/kenN—(100UA(N))
for an implied constant depending only on o € Z. We may take W = 0.055.

Theorem 1.1 follows from combining Theorems 1.2 and 1.3 with (1.10) and (1.7).
This is done in [9, Sect. 5.4].
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1.3. Main Results

In this paper we give the details of the proof of Theorem 1.3. This therefore com-
pletes the proof of Theorem 1.1 and (1.3). The work in this paper and [9] will also
be useful in describing the asymptotics of Sylvester waves and restricted partitions;
this corresponds to estimating Qpko (V) for o < 0 as discussed in [9, Sect. 6.2]. Fur-
ther natural extensions and possible generalizations of our results are given there
as well.

Define the sine product

IL,,.00) = HZsin(ij) (1.11)

with [[,(0) := 1. In Section 3 we show
Proposition 1.4. For2< k< N, o €R and s := |N/k]

Q) < g exp (N 2ERECEID B I ).

In Section 2 we find sharp general bounds for H;ll (h/k). This requires the
interesting sum
in(2 k
S k)= Y % (1.12)
(B1EZ(h ) 7

for

Z(h, k) == {(6,7)EZ><Z C1<|Bl <k 1<y <k, ﬂhzfymodk}. (1.13)

We will see that H;ll (h/k) and S(m;h, k) may be bounded in terms of 1/|By7o]
where (80, 70) is a pair in Z(h, k) with |So~o| minimal.

Combining a refinement of Proposition 1.4 with our bound for H;ll (h/k) allows
us to prove Theorem 1.3 except for h/k in the following sets

N

C(N) = {h/k : 5 <k<N, kodd, h=2 or h:k—2}, (1.14)
N 1 1

D(N) := {h/k Y <k <N, kodd, h:kT or h:k%}, (1.15)

E(N)::{h/k: g<k<%,hzlo1~h:k—1}. (1.16)

For the next results we need a brief description of the zeros of the dilogarithm;
see [9, Sect. 2.3] and [10] for a fuller discussion. Initially defined as

oo

n
Lis(z) =y 2—2 for |2] < 1, (1.17)

n=1
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the dilogarithm has an analytic continuation given by — fc(z) log(1 —u)d—;‘ where the
contour of integration C(z) is a path from 0 to z € C. This makes the dilogarithm
a multi-valued holomorphic function with branch points at 0, 1 and co. See for
example [5], [16]. We let Liz(z) denote the dilogarithm on its principal branch so
that Liz(2) is a single-valued holomorphic function on C — [1,00). It can be shown
that the value of the analytically continued dilogarithm is always given by

Lig(2) + 472 A + 2miBlog (2) (1.18)

for some A, B € Z.

Let w(A, B) be a zero of (1.18). It is shown in [10, Thm. 1.1] that for B # 0, a
zero w(A, B) exists if and only if —|B|/2 < A < |B|/2 and is unique in this case.
Each zero may be found to arbitrary precision using Newton’s method according to
[10, Thm. 1.3]. We already met wy = w(0,—1) and we also need the two further
zeros w(l, —3) ~ —0.459473 — 0.848535i, w(0, —2) ~ 0.968482 — 0.109531¢ and the
associated saddle-points

z3 =3+ log(1 —w(l,-3))/(2mi), 2 :=2+log(l—w(0,—-2))/(2mi).

Theorem 1.5. With ¢ = —z3e~ "2 /4 and explicit ci(o), c5(o),... depending on
o € Z we have

Z Qnko(N) = Re [w(l’ —3) " (c(*) + ¢io) +oeee gt C:”l(a)ﬂ

h/keC(N) N? N Nmt
PTCUERAR
for an implied constant depending only on o and m.
Theorem 1.6. Let N denote N modulo 2. With
do(N) = zo\/ze—ﬂ% (e=mi0 + (=1)N) (1.20)

and explicit dy (0, N), da (0, N), ... depending on o € Z and N, we have

57 (D), )

Nm— 1

+0 (M> (1.21)

Nm+2

> Quo(N)=Re

h/kED(N)

for an implied constant depending only on o and m.

(By w(;N/Q we mean (/wp) ~N \here ,/wg is chosen as usual with Re(y/wg) > 0.)
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Theorem 1.7. With eg = —3z1e~ "1 /2 and explicit e1(0), ea(o),... depending
on o € Z we have

+0 (7“”(0’ _2)|N> (1.22)

Nm+2

for an implied constant depending only on o and m.

The above three estimates are the final elements required for Theorem 1.3, and
its proof is given near the end of Section 8. Theorems 1.5, 1.6 and 1.7 above are
proved using the techniques developed in [9] for Theorem 1.2, though they each
present new challenges. These techniques use the saddle-point method described in
the next subsection.

In fact, Theorems 1.5, 1.6 and 1.7 are more than is needed for Theorem 1.3,
but we included them for two reasons. First, they allow us to check our work
numerically; see Tables 1 — 4. Secondly, their asymptotic expansions point the way
to further results and a better understanding of relations in the left side of the
identity (1.8). Examples of these relations, from [9, Sect. 6.2], are

Quu(N) ~ — Y Qua(N), (1.23)
h/kEA(N)

Qi21(N) ~ - Z Qi1 (V) (1.24)
h/kED(N)

where by (1.23) and (1.24) (and (1.25)) we mean that, at least numerically, the
asymptotic expansions of both sides seem to be identical. With Theorems 1.5

and 1.7 we discover another asymptotic relation. To describe it, let C'(IN) be all
h/k € C(N) with 2N/3 < k < N, so that C'(N) is about two thirds of C(N) . Then

3 ) Quo(N) ~ > Qure(N). (1.25)

h/keC’(N) h/kEE(N)

See the end of Section 8 for more about (1.25).

1.4. The Saddle-point Method

The next result is a simpler version of [7, Theorem 7.1, p. 127] that was used in [9,
Sect. 5.1].

Theorem 1.8 (Saddle-point method). Let P be a finite length path, made of closed
line segments in C, with p(2), q(z) holomorphic functions in a neighborhood of P.
Assume p, q and P are independent of a parameter N > 0. Suppose p'(z) has a
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simple zero at zg € P with Re(p(z) — p(20)) > 0 for z € P except at z = z5. We
also require zg to not be an endpoint of any line segment. Then there exist explicit
numbers ass depending on p, q, zo and P so that we have

5-1
—N-p(2) o, —N-p(z0) a2s 1
/736 Pq(z) dz = 2e7 P10 (;ZO ['(s+1/2) Noriz t 0 (NS+1/2>> (1.26)

as N — oo where S is an arbitrary positive integer.

Write the power series for p and ¢ near zg as
p(2) = p(20) + po(z — 20)% +p1(z — 20)> + -+, (1.27)
q(2) =qo +q(z —20) + q2(z — 20)% +--- . (1.28)

Choose w € C giving the direction of the path P through zg: near zy, P looks like
z = 2o + wt for small ¢ € R increasing. Wojdylo in [15, Theorem 1.1] found an
explicit formula for the numbers ass:

2s i
W _S_j<_s_1/2) .
A2s = 75 179 q2s—i D . B; j(p1,p2, - - 1.29
2(w2po)1/2 ; s 1]2::0 0 j i4( ) (1.29)

where we must choose the square root (w?po)/? in (1.29) so that Re((w?po)'/2) >0
and 3” is the partial ordinary Bell polynomial. The first cases are

3 15 p3
o w (qz P1a1 + P24o _plgo) . (130)

2@ 2 T P\ 2} 8 B
agreeing with [7, p. 127].
We will be applying Theorem 1.8 to functions p of the form
~ —Lig (€?™) 4 Lip(1) + 4n2d
B 2miz

pa(2) : (1.31)

with p(z) := po(z) the most important. Recall that Liz(z) is holomorphic on C —
[1,00). Hence p4(z) is a single-valued holomorphic function away from the vertical
branch cuts (—ioco,n] for n € Z. (We use (—ioo,n] to indicate all points in C with
real part n and imaginary part at most 0.) The next result is shown in [9, Sect.
2.3]. The notation w(A, B) for the dilogarithm zeros is defined after (1.18).

Theorem 1.9. Fiz integers m and d with —|m|/2 < d < |m|/2. Then there is
a unique solution to pl)(z) = 0 for z € C with m —1/2 < Re(z) < m +1/2 and
z & (—ioco,m]. Denoting this saddle-point by z*, it is given by

o —m o o8 —;T(Z_d, —m))

(1.32)

and satisfies
pa(z*) = log(w(d, —m)). (1.33)
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2. The Maxima and Minima of [] . (h/k)

Recall the set Z(h, k) from (1.13). We will also need Clausen’s integral,

0
Cly(0) == —/0 log |2 sin(x/2)| dx (# eR) (2.1)
-y Singg). (2.2)

=1

3

The maximum value of Cly(8) is Cla(7/3) & 1.0149416.

Theorem 2.1. For all m, h, k € Z with 1 <h <k, (h,k) =1 and 0 < m < k we

have 1 Cly(2rmAoh k) log k
L 1/ k)| = 222l +O<Og )
k og‘Hm( / )‘ 27| Bool vk

where (Bo,7Y0) s a pair in Z(h,k) with |Boyo| minimal. The implied constant in
(2.3) is absolute and in fact this error is bounded by (16.05 + v/2/wlogk)/Vk.

(2.3)

We prove Theorem 2.1 in the following subsections, assuming throughout that
m, h, k satisfy its conditions. Define D(h, k) to be the above minimal value |By7o|-
For example, it is easy to see that

D(h,k) =1 ifand only if h=41modk (2.4)
and if D(h,k) # 1 then
D(h,k) =2 if and only if hor h~' = +2mod k (2.5)

with k necessarily odd. Since (1,h) € Z(h, k) we have D(h,k) < h < k. We will see
later in Lemma 2.9 that there is a unique (8o,v) € Z(h, k) with |Soy0| minimal if

|,80’}/0| < \/k/Q.

The corollary we will need, Corollary 2.11, says there exists an absolute constant

7 such that
Cly(7/3) log k

oD k) | VE
For example, Figure 1 compares both sides of (2.6) with £ =101, 7 = 0 and

o8] TT,, (/0] | < (2.6)

U(h,k) = max {%‘bg‘ Hm(h/k)”} . (2.7)

o<m<k
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0.08 -
Cla(m/3)
0.06 27 D(h, 101)
0.04 ~
—— (R, 101)
0.02 -
1
0 20 40 60 80 100 p
Figure 1: Bounding ¥(h,k) for 1 <h <k —1and k =101
2.1. Relating [['(h/k) to S(m;h,k)
By (2.1) we have Cl5(0) = — log [2sin(6/2)| and
log ‘ H;j(h/k)‘ =Y clenin/k). (2.8)
j=1

With the sum S(m;h, k) defined in (1.12), our first goal is to prove:
Proposition 2.2. For 0 < m < k and an absolute implied constant

& k

> Cly(2mjh/k) = - S(mih, k) +0 (log? k).

™
j=1
With z € R, let
L
cos(nz
ful)=>" 7(1 ) (2.9)
n=1

and define ||z|| as the distance from z to the nearest integer, so that 0 < ||z|| < 1/2.

Lemma 2.3. For L > 1 and z € R, x € Z we have

Cly(2rz) = fr.(27mz) + O <m> .

Proof. We first claim that

1
S Ll

M
cos(2wre
> )

r

(2.10)

r=L
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for v ¢ Z. Let A, (2mx) := >, 2™ Then this geometric series evaluates to

; 2mi(m+1/2)x _ iz
ie e
Am(2m7) = 2 sin

and the inequality |sinzmz| > 2|z| implies |A4,,(27x)] < 1/(2||z|]). By partial
summation

M 2mwire M-1
e Ay Ara Aqg
+ Z
d(

P VA FCESTA

r=L
Taking real parts, using the bound for A4,, and evaluatlng the telescoping sum shows
(2.10).

Now S2F_ sin(na)n=2 as L — oo converges uniformly to Cla(z). The derivative
of the above partial sum is fr(z). As L — oo, (2.10) implies that fr(27z) converges
uniformly for z in any closed interval not containing an integer. Hence, with [13,
Thm. 7.17), im e fr.(2mx) = Cly(27z) for x ¢ Z and the lemma follows. O

Corollary 2.4. We have
> Cly@2njh/k) =Y fr(2mjh/k) + O (logk) .
j=1

Jj=1

Proof. Use
_ k)2

- 1 1 k
z:: \Jh/kll h Z lih/k|l S Z Ii/k] ;3
<1

+ log k we get

With %, 1/j

< logk

HMS

1
< k|jh/k|

and the corollary now follows from Lemma 2.3. (We use < as an equivalent form
of the big-O notation.) O

Lemma 2.5. ForO<m <k and L = I<:2,

a sin(2rm(nh + 1k)/k)
201 (2mjh/k) = Z_X_:LZ CERT + 0 (logk). (2.11)

Proof. Apply Euler-Maclaurin summation, in the form of [4, Corollary 4.3], to find

m

(2mjh/k) w(2mzh ) k)e2™ e dg
> fu(anih/) Z/f Jk)e

j=1 l=—L
™| fL(2mah k)2 k|
1+ L ||z

+ %fk(%mh/k) - %fk(o) +0 </0 d:c> (2.12)
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where the implied constant is absolute. Clearly we see |fr(z)] < 1+ logk and
| fr(x)] < k. To bound the error term in (2.12) note that

/m dx </k dx _%/1/2 dr__ 2klog(l+L/2)
o L+Llzll ~Jo 1+ Lzl T Jo 14+Lx L

Hence, on choosing L = k2, (2.12) implies

m

Z (2mih/k) = Z / fe(2mzh/k)e*™ de + O(log k). (2.13)

Use cosf = (e + e7%9) /2 to evaluate the right side of (2.13) as follows.

Z / fr(2mzh/k)e 2mile g, _ Z Z/ cos 27rnxh/k) G2mile g

==L I=—Ln=1
B E . L XL: k—1 27mm (nh/k+1) _ 1 N 627rim(7nh/k+l) -1
Sk dmi L g\ n(nh/k D) n(—nh/k+1)
— ﬂ L XL: z_i e2mim(nh/k+l) _ o—2mim(nh/k+1)
T w2 2 n(nh/k +1)
Combining this with Corollary 2.4 completes the proof. m

To simplify the right of (2.11) set
H(d) = H(d, L: h, k) :== #{(l,n) bt lk=dl<n<k-1-L<I< L}.
Then the double sum equals

sin(2rmd/ k)
Z H(d dh I mod k)d (2.14)
dez

where we exclude ds that are multiples of k, since H(d) is necessarily 0 if k|d, and
we understand here and throughout that 0 < (* mod k) < k — 1.

Lemma 2.6. Recall that L = k*. For all d € Z we have H(d) = H(d, L;h, k)
equalling 0 or 1. Also

H(d) = 1 for 1<|d <k, (2.15)
H(d) = 0 for |d>2k. (2.16)

Proof. Since (h, k) = 1 there exist ng, lg such that ngh+1lok = 1. Then for allt € Z

(no +tk)h + (lo — th)k =
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and we may choose ng, lp satisfying 1 < ng < k and —h < [y < —1. Similarly, for
fixed h, k, d, all solutions (n,1) of nh + Ik = d are given by

n=dng+tk, l=dlo—th (t€7Z). (2.17)

Hence, for k t d, there is exactly one solution (n,l) with 1 < n < k — 1. Then
H(d) =1 if the corresponding [ satisfies —L < I < L and H(d) = 0 otherwise.
In (2.17), if 1 <n < k—1 then t = —|dno/k]. Therefore

I = dlo — th = dlo + h|dno/k|

and [ satisfies —k? < [ < k? for |d| < k. This proves (2.15). Finally, to show (2.16),
note that |n| < k, || < L implies |nh + Ik| < k(h + L) < 2k3. O

The sum (2.14) with indices d restricted to |d| < k is

sin(2rmd/k)
—_ 2.1
7k<d§; 440 (dh=1 mod k)d (2.18)

Replacing d by dh mod k if d > 0, and d by —(dh mod k) = (—dh) mod k if d < 0,
allows us to write (2.18) as

sin(2wrmdh/k)
[ —.— ‘h. k).
D (@hmod k)] — i k)
—k<d<k, d0

Proof of Proposition 2.2. With Lemmas 2.5 and 2.6 we have demonstrated that

A k sin(2rmd/k)
— H(d)———F—— 1 .
201 (2mjh/k) = 5 S(m; h,k)+ o > (d) @ Tmod k)d—f—O(ogk:)
j=1 deZ : k<|d|<2k3
(2.19)
To estimate the sum on the right of (2.19), write d = uk +r and use Lemma 2.6 to

see that it is bounded by

2.20
Z Z|ukj+r| rh I mod k) (2:20)
—2k? Cu2k? =1

'u.;éO -1

For w > 1 the inner sum is less than

— 1 B 1’§1<1+1ogk
“ uk(rh=" mod k) uk —r uk
Similarly for © < —2 and therefore (2.20) is bounded by
2k 2
1+logk 1 log“ k
22— — g
LR

u=1
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2.2. Relating S(m;h, k) to Clausen’s Integral

With (2.8) and Proposition 2.2 we have proved that

Llog [T, ym| = 200 (1°g2 4. (2:21)

27 k

Remark 2.7. The implied constant in (2.21) is absolute and we may find it explic-
itly. In Corollary 2.4 the error is bounded by 2(1 + log(k/2)). In (2.12) the implied
constant can be 1/2 4+ 1 /7 which follows (see [4, Eq. (4.18)]) from

L . .
x—LxJ—l/Q—kZ:lsm(i;Ux) < 1+f|\w|\ (T=1/2+1/7).  (2.22)

To prove (2.22), show that the left is bounded by 1/2 and, with a similar proof to
Lemma 2.3, also bounded by 1/(wL ||z||). This yields (2.22). (It seems that T'=1/2
should be possible.) Hence the error in Lemma 2.5 is bounded by

2(1 +log(k/2)) + 1 +logk + 47T (1 + log(k?/2)).

For Proposition 2.2 we add (1 + logk)(1 + log(2k?))/m. Altogether this shows the
error in (2.21) is bounded by

(5.31 + 24.75logk + 2/mlog? k) /k < 40.18(log? k) /k (k> 2). (2.23)

For the proof of Theorem 2.1 we therefore need to estimate S(m;h, k) in (2.21).
To do this, note that the largest terms in the sum (1.12) should occur when |3| and
~ are both small. We introduce a parameter R to the set Z(h, k) to control the size
of the elements:

Zr(h k) = {(,@,7) €ZxZ : 1<|f| <R, 1<v<R, Bh=r~mod k} (2.24)
Then Z(h, k) is Zy(h, k) in this notation.

Lemma 2.8. For an absolute implied constant

5 sin2rmy/k) _ ) <1°gR> : (2.25)

R
Bznnm-zntg PV

Proof. We may partition the terms of the sum on the left of (2.25) into the three
cases where |[B] > R or v > R or both. The first two corresponding sums are
each bounded by 2(1 + log R)/R. With the Cauchy-Schwarz inequality, the third is
bounded by

1/2 1/2

k711 k—1 1 e’} 1 9 1
Z@ Zv— <2 Zﬁ <E<1+T{)' O
B=R = d=R
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Lemma 2.9. Suppose Zg(h,k) is non-empty and k > 2R?. Let (B1,71) be a pair
in Zg(h,k) with |81y1| minimal. Then for each (8,7) € Zgr(h,k) there exists a
positive integer A such that (B,7v) = (AB1, A y1)-

Proof. The number 8 may not have an inverse modulo k so write § = 'k’ with
K'|k and ged(B’,k) = 1. Necessarily we also have v = 'k’ with ged(y/,k) = 1.
Similarly, there exists k1|k so that

B1 =Pk, =k, ged(B1, k) =ged(v), k) =1.

Then
h=(8)"" mod k/E', h=(B]))"" v mod k/ko

and letting k* = ged(k/E', k/k1) we obtain

(8" = (B)) "1 mod k*

so that
A1y = By = 0mod k. (2.26)
Now B2 i
2
' =B < <k 2.2
|61’y B 71| < klkl klkl ( 7)

so that (2.26) and (2.27) imply
By =By =0

which, in turn, shows that 5/81 = v/y1. Hence (8,v) = (uB1, uy1) for pn:=v/v1 €
Qso- Write py=A+dwith AeZ and 0 <d < 1. If0 < § <1 then

(577) - A(ﬂlv’h) = (ﬂ - Aﬂlvﬁ)/ - A’yl) = (6B17671) € Zk(hvk)a

but [626171] < |B1y1| and |B171| was supposed to be minimal. We must have § = 0,
as required. O

Proposition 2.10. Let (Bo,v0) be a pair in Zg(h,k) with |Boyo| minimal, and
so equalling D(h,k) as defined after Theorem 2.1. Then for an absolute implied

constant Cla (2 /) log k
S(m; h, k) = —222TI0/F) <°g ) 2.8
(m ) 18070l vk ( )
Proof. By Lemma 2.8 with R = \/k/2
. sin(2rmy /k) log k

(BAEZ s (hik)
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Case (i) Assume first that Z\/m(h,k) is empty. If (Bo,70) ¢ Z\/m(h,k) it follows
that |Bovo| = +/k/2 and so

C12(27rm'yo/k) - L
S o) 25

Then (2.28) follows from (2.29) and (2.30).

Case (i7) Assume now that Z\/m(h, k) is not empty. Apply Lemma 2.9 with the same
R=/k/2, and (81,7m) € Z\/m(h, k) with |8171| minimal, to get

Z sin(2mrmy/k) 1 Z sin(2mrmAy; /k)
(By)eZ bk 187 |B171] A2
MNEZ, 7z (hik) 1<A<y/k/2/ max{|B1|,m }
Cla(2mmy1 /k) 1 1
= +0 —
18171 |B171] Z A2

A2/k/2/ max{|B1], 1}

B Cla(2mmy1 /k) i
= —|51’Yl| +0 (\/E) . (2.31)

Case (iia) If (5o, 7o) € Z\/m(h, k) then necessarily (8o, 7v0) = (51, 71) and so (2.29) and

(2.31) prove the proposition in this case.

Case (itb) In the final case, Z\/m(h, k) is not empty and doesn’t contain (p, 7). Since

|B171] = |Bovol = v/ k/2 we find

Cla(2mmy /k) _ ( 1 )

|B171] ﬁ

so that (2.28) follows from (2.29), (2.30), (2.31) and (2.32).

(2.32)

We see that both sides of (2.28) are O((log k)/vk) except in Case (ia), and in this
case the pair (5o, 7o) € Z\/m(h,k:) is unique. O

Proof of Theorem 2.1. The proof now follows directly from combining (2.21) and
Proposition 2.10. Treating the error in (2.28) of Proposition 2.10 more carefully, we
find it is bounded by

(2v2(5 —log 2 + Cly(7/3)) + 2v/2log k) /Vk < (15.06 + 2v/21log k) /VE.

Combining this with the estimate (2.23) for the error in (2.21) shows that the error
term in (2.3) of Theorem 2.1 is bounded by (16.05 + v/2/7 log k) /Vk. O
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Corollary 2.11. There exists an absolute constant T such that for all integers m
with0 <m< k-1

) Cla(m/3 log k
E‘log\ Hm(h/k)” S 2#12)((71/7 k)) ' \/gE .

Proof. We may take 7 to be the absolute implied constant of Theorem 2.1 and note
that |Cly(6)| < Cly(nr/3) for all # € R. Hence we may take any 7 > v/2/7 for k
large enough. O

3. Bounds for Most Qpre(IN)

In this section we continue to assume that h and k are integers with 1 < h < k and
(h,k) =1.

3.1. Initial Estimates

The next result, mentioned in the introduction, is proved in this subsection.

Proposition 1.4. For 2< k< N, o0 € R and s:= | N/k|

3 p<N2+1og(1+3k‘/4 lol|

Quao (V)] < 5 ex D mem]. e

Proof. From definition (1.6),

e27r'u7z

Qhka(N> = /E (1 _ e27riz)(1 _ e27ri2z) .. (]_ _ 627riNz) dz

(3.2)

where z traces a loop £ of radius 1/(2rNkX) around h/k, i.e.,

1
27Nk

z=h/k+ w, |lw| =

and A is large enough that only the pole of the integrand at h/k is inside £. This
is ensured when A > 1/27, since if a/b is any other pole (1 < b < N) we have

a_nl_
b k|

ak—bh| 11
vk |~ bk~ NE

Therefore, letting e?™°% I (z) denote the integrand in (3.2),

|Qrio (N)| < / ™7 In(2)| dz < 27 ( ) sup{|e*™*In(2)| : z € L}.
c

(3.3)

2Nk



INTEGERS: 16 (2016) 18

It is easy to see that if A > 1/k then
2™z L elol/N (2 e L, 0 €R). (3.4)
Now write Iy (z) = I} (2) - I (z) for

1 1

Iy = 1] A=y WG 11 A= i)
1<jEN 1<jKN
k|j ktj

We use the following simple bounds (better ones are proved in Lemma 3.3). For all
z € Cwith |z] <1

|1 —€®| <2z, (3.5)
1—e*|7! < 2/)2],
log(1 — 2/2)| < 3]z1/4.
Lemma 3.1. For z € L and A > 1/k we have
. e\ /2
Ix <— (= 2ek\)’. 3.8
< o= () 2o 9)
Proof. Clearly
1 1
Iy (z) = — = —_—
N 1<1;£N (1 _ 627T’L](h/k)+w)) 1<1:n[<s (1 _ e27rzkmw)
klj
Also ok )
2mikmuw| = ot < S = (3.9)

2TNEX © NA kA
so assuming A > 1/k, we can apply (3.6) to get

2 0 INA  (2NN)*
m sl

re< 1

2wkm|w| -
1<m<s

1<m<s

It follows from Stirling’s formula that 1/a! < ﬁ (%)a for a € Zx1. Hence the

lemma is obtained with

sl (s+1)! 2m(s+ 1)

1 s+1 s+1 ( e >S+1
= <
s+1

- \/%(27“) (sil)s = Q:N/k (%>
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Lemma 3.2. For z € £ and A > 1 we have
N 3N\ 1
el <o (g5 5 )

i w7 | LI (/k)|-

Proof. Write

1
Iy (2) = H 27ij (h/ktw
TN (1 — e2mij(h/k+w))
ktj

_ H T H 1
1 — e2rijh/k — ] & e—2mijuw
1<j<N 1<<N (1—e te )
Kt Kt

. 1 1
_ —miw(N(N+1)—ks(s+1))
=e 0] ]
1<1J‘_£N (1 — e2mian/t) 1<13'_£N (L= il w))

ktj ktj

(3.10)
for g
) 1— 67271'1,‘]71_)
My (J, w) 1= 1 _ e2mijh/k”
To estimate the parts of (3.10), we start with
N(N+1) —ks(s+1) < N?, (k< N) (3.11)
to see that

2k

With (1 —¢)(1 —¢2)---(1 —¢* 1) = k for ¢ a primitive kth root of unity, (by [8,
Lemma 4.4] for example), the middle product satisfies

‘e—ﬂ-iw(N(N—i-l)—ks(s—i-l))‘ < exp <i> ) (312)

1 1
11 [(1 = e2mih/m)] ~ & HNfskUz/k)\- (3.13)
N

ktj

Next we estimate the right-hand product of (3.10). By (3.5)

. 24
11— e 27| < 2. 2mj|w| = N—ZA (3.14)
provided A > 1/k. We have
1 1 1
— = < — —-1/2<0<1/2
[1—e2m®  2|sin(wh)| ~ 4|0 (=1/ /2)
and it follows that
1 1 k
< = (k > 2). (3.15)

‘1 _ ezm‘jh,/k| = ‘1 —e2mi/k| T 4
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Consequently, (3.14), (3.15) show

: J
/3, 0)] < 5 (3.16)

If X > 1 then |ny/,(j, w)| <1/2 for all j < N and we may apply (3.7):

1
- _—expl|- log |1 — 0k (d, w)|
lglle 11— np (G, w)| 1@;]\1:, ktj
ktj

< exp > [log(l = nusk(i,w))]
1<GEN, Ktj

3 , 3N
Sexp |5 S mw(Giw)] <exp(§> (3.17)

1<GSN, Ky

where we used (3.11) in the last inequality. Combining the estimates (3.12), (3.13)
and (3.17) for (3.10) finishes the proof. O

Inserting the bounds from (3.4) and Lemmas 3.1, 3.2 into (3.3), we obtain

e
< - -
< V21 N3/2k1/2)

13 141log22] o]\ |1
N|l—+—+ —+-— — . 1
xexp( |:2k>\+8>\+ A ] + N ‘HN_Sk(h/k) (3.18)

|Qhko’ (N)

For fixed k, the expression

1 3 1+log2A

2%x T3 3

has its minimum at A = 1/2 + 3k/8. We may set A to this value in (3.18) since
all the conditions A > 1/(2w), 1/k, 1 are satisfied when &k > 2. This completes the
proof of Proposition 1.4. O

An example of Proposition 1.4 is given in Figure 2 for h = ¢ = 1 and N = 50
where we denote the right side of (3.1) as Q. (). The numbers Qpiro(N) are
calculated using the methods of [8, Sect. 5] as follows. For N, k > 1, m > 0 and
0 < r < k — 1 define the rational numbers Ey (N, m;r) recursively with Ej (0, m;r)
set as 1 if m = r =0 and 0 otherwise. Also, with N > 1

m aga—1 k-1
Er(N,m;r) ::ZN i ZEk(N—l,m—a; (r — Nj) mod k) - Ba(j/k)

al
a=0 j=0
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for B,(x) the Bernoulli polynomial. Then

N k—1 j
Qnko(N) = Z 2mi(rto)h/k Z 7 —Ep(N,N —1—j;r). (3.19)
7=0

In particular, we see from (3.19) that e=279"/kQ;,,(N) is a polynomial in o of
degree N — 1.

40 + *
30 1 log Q1k1(50)
?8 1 log [Q171(50)
0+
W TN P ey
\ \ A e— \ \
10 20 30 40 50 k

Figure 2: Bounding Qpi(50) for h=0c=1and 2 < k < 50

3.2. Improved Estimates

By tightening up the bounds (3.5), (3.6), (3.7) and restricting the range of k we can
improve Proposition 1.4 a little as follows.

Lemma 3.3. For z € C and |z| <Y we have

‘1_262 Sall):= eyy_l (3.20)
ll_zez <BY) 1=2+% (1—cot (%)) (Y < 2n) (3.21)
@ <Y) = %log (ﬁ) (Y <1). (3.22)

Proof. For |z| <Y < 27 we have

o0 (o)
z z y» Y Y Y
= B < Byl—=1+=+(1-= =),
P S BI <3 B sy (1-F e (3 )

using [12, Eq. (11.1)]. The other two inequalities have similar proofs. Note that
for Y = 0 we have «(0) = 8(0) = v(0) = 1 in the limit, with a(Y"), S(Y) and v(Y)
increasing for Y > 0. O

Start with a parameter K > 2. We assume

k>K,  A>1/2+K/8. (3.23)
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The quantity 1/(kX) in (3.9) then satisfies
i < ; <
xS K(1)2+ K/8)
With (3.21) we may therefore replace the factor 2 in (3.8) by

2.

1
G =&(K)=p <m> : (3.24)
Similarly, the factor 2 in (3.14) may be replaced by
1
§2= 2(K) O‘(K(1/2+K/8)) (3:25)
This improves the bound (3.16) to
‘ §2J
< ==

so that for all j < N we have |n,/,(j, w)| < &2/(4A) < 1. The factor 3/2 in (3.17)
can now be replaced by

o -6 = (17 77 420

H ; < exp <£2§3N>
1<EN ‘1_nh/k(jaw)| 8\
ktj

and we obtain

Hence

|Qhko’ (N)

e
< - -
< V2T N3/2k1/2)

1 141 A _
X exp (N {% + % + %gfl] + %) ‘ HNisk(h/k) (3.27)

and setting A = 1/2 4 £3€3k/8 minimizes (3.27). Note that £&s > 1 so that our
initial inequality (3.23) for X is true. We have proved

Proposition 3.4. For 2< K <k < N and s:= |N/k| we have

@ (V)] < g oxp (W EEREELZEOSGOEE L B 0 | 28)

for &1, &2, &3 defined in (3.24), (3.25), (3.26) and depending on K.

Some examples of triples (K, &1, £1€2€3) are

K=2: & ~137065, &&és~ 2.64070 (3.29)
K=61: & ~100101, &&é&; ~1.01778 (3.30)
K=82: & ~1.00057, &é&és~1.01297 (3.31)
K =101: & ~1.00038, &é&és~ 1.01041. (3.32)
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3.3. Final Bounds
Define B(K, N) to be the set

{h/k S K<k<N,0<h<k, (h,k):l} (3.33a)
but with the restrictions

h # +1 mod k if N/3 <k
h#+1,42,(k£1)/2mod kit N/2<k

< NJ2, (3.33b)
< N. (3.33¢)

Theorem 3.5. There exists W < U := —log |wg| =~ 0.068076 so that
> Quke(N) =0(e"N).
h/k€B(101,N)

We may take any W > Cly(n/3)/(67) ~ 0.0538 and the implied constant depends
only on o and W.

Proof. Recall from Corollary 2.11 that there exists an absolute constant 7 such that
for all m, h, k € Z with 1 < h <k, (h,k) =1 and 0 < m < k we have

1og’H;f(h/k)‘ < % -k +7Vklogk. (3.34)

It follows from Proposition 3.4 and (3.34) that

2 4log (§&1/2+ &1§283k/8)  Cla(m/3)
(N 3 +27TD(h,k;) -k‘—l—T\/NlogN)

1
Qhkg (N) < F exp
where k > K = 101 and &, £&2&3 are as in (3.32). Given any ¢ > 0 we have
T\/NlogN < eN for N large enough. For k£ in a range 0 < a < k < b where we
know D(h, k) > D* for some D*, the expression
24 log (£1/2 + &1&283K/8) | Cla(m/3)
N . .

A + 27D~ k (3.35)
has possible maxima only at the end points k = a or k = b. For h/k € B(101,N)
with 101 < k£ < N/3 we know D(h,k) > 1 and see the end points are bounded by

2 +1log (§1/2 + £162£3101/8) + Cly(m/3)

N -101 < 0.0454N + 16.315, (3.36)
101 2 -1
2+ log(&1/2 + £16263(N/3)/8)  Cla(n/3) N Cla(7/3)
N p— N+ —"2N.
N/3 T T SN
Therefore

Qh;w(N)<<$eXp (N {%4—26]) (h/k € B(101,N), k < N/3).
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Similarly, for h/k € B(101, N) with N/3 < k < N/2 we have D(h,k) > 2 by (2.4).
Hence (3.35) is bounded by the maximum of

Cly(n/3) N Clao(n/3) N
Ny 22020 2 g eN g 22T
OteN+ = 3 T 2
For h/k € B(101,N) with N/2 < k < N we have D(h,k) > 3 by (2.5). Hence
(3.35) is bounded by the maximum of

Cla(r/3) N Cla(/3)
A4 eN 4 223 A 94 eN 4+ =22
TNt s TNt 53

It follows that for any W > Cly(7/3)/(67), we have
Quio(N) < "N /K> (h/k € B(101,N)).

Finally,
Z Qnio(N) < Z eV /13
h/kEB(101,N) h/kEB(101,N)
N &k N
<e"NN N1 = YV 1R < VY. O
k=1 h=1 k=1

Remark 3.6. Theorem 3.5 is still true if we enlarge B(101, N) to B(82, N), i.e.,
allowing all k£ > 82. This is because we obtain 0.0535N + ... on the right side of
(3.36) when we replace 101 by K = 82 on the left (and use the corresponding &;s
as in (3.31)). Furthermore, with K = 61 we find

> Qure(N) =0(e"N),
h/keB(61,N)

needing W = 0.067403, very close to U (see (3.30)). We expect that K can be
pushed all the way back to 2 and that with improved techniques it should be possible
to prove that for some W < U

> Quke(N) =0(e"N).

h/keB(2,N)
This would eliminate the } ,_;, /e ,, term in (1.4) of Theorem 1.1.

What remains from y — (100 U A(N) U B(101, N)) are the subsets C(N), D(N)
and £(N) as defined in (1.14), (1.15) and (1.16). In the following sections we find
the asymptotics for each of the corresponding Qpio (V) sums.

4. Further Required Results

We gather here some more results from [9] we will require for developing the asymp-
totic expansions in the next sections. Throughout we write z = x 4 iy € C.
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4.1. Some Dilogarithm Results
In [9, Sect. 2.3] we saw the identity
Liy (e72™%) = — Lip (€*™*) + 212 (2> = 2m + D)z +m? + m + 1/6)  (4.1)
for m < Re(z) < m + 1 where m € Z. Also
Cly (272) = —iLip (e*™) + in? (2> — (2m + 1)z + m® + m + 1/6) (4.2)
form<z<m+1.

Lemma 4.1. Consider Im(Liz(e2™#)) as a function of y € R. It is positive and
decreasing for fized x € (0,1/2) and negative and increasing for fized x € (1/2,1).

Lemma 4.2. Consider Re(Lia(e?™)) as a function of y > 0. It is positive and
decreasing for fized x with |x| < 1/6. It is negative and increasing for fized x with
1/4 < |z € 3/4.

Lemma 4.3. For y > 0 we have | Liz(e?™*)| < Lig(1).

2. Approximating Products of Sines

In the following, let & and k be relatively prime integers with 1 < h < k. From [9,
Sect. 2.1] we have

Proposition 4.4. For N/2 <k < N

(—1)k+1 . —mih(N? + N — 40)
k2 P 2k

Qnio(N) =

X exp (%i(QNh AN htk— hk;)) TIah, (h/R).

So estimating Qpnko (V) requires these further results on sine products from [9,
Sect. 3|:

Proposition 4.5. For m, L € Z>1 and —1/m < 0 < 1/m with 8 # 0 we have
0\ [ 2sin(rmb) 12 Clz(2mmb)
)= — i S A biddbads
0= (i7) (35) e (<555

( Boy
X exp —

(20)!
with p(z) := log((sinz)/z) and

Om Bor, — Bgz()"x — lz]) pPE) (nzh) da

> BQL - BQL(J) — \_JTJ)
+/0 L@ tmyE o

TM‘

(we)%l cot<2“>(7rm9)) exp(Tr(m,0)) (4.3)

Ty (m, ) == (m0)*"




INTEGERS: 16 (2016) 26

Lemma 4.6. For 1 < m < k/h we have
Ty (m, h/k)| < 7h/18 + 1/12. (4.4)

Proposition 4.7. Let W > 0. For § satisfying 0 < § < 1/e and dlog(1/§) < W
we have

1 (h/k) < (k) exp (%) for og%hgé, %—5<—<1

and
c(h) == h'/? exp(n?h /18 + 1/6)/2.

Proposition 4.8. Suppose A and W satisfy 0.0048 < A < 0.0079 and Alogl/A <
W. For the integers h, k, s and m we require

0<h<k<s, Ra<s/h, As/h<m<k/(2h).
Then for L := |meA - s/h] we have
[L. (h/k)Ti(m,h/k)| < (x°/2)e(h) - /", (4.5)
|TL(m, h/k)| < 73)2. (4.6)

See [9, Sect. 3.4] for the definition of Ra. We will only use it in the case when
A = 0.006 and then Ra ~ 130.7.

Corollary 4.9. Let W, A,s,h,k,m and L be as in Proposition 4.8. Suppose also
that 0 < u/v < h/k. Then

[L,. (h/K)Tr(m,u/v)| < (7°/2)e(h) - ™", (4.7)
Ty (m,u/v)| < 73/2. (4.8)
The main consequence of Propositions 4.5 and 4.8 is:

Proposition 4.10. For W, A, s, h,k,m and L as in Proposition 4.8 we have

[T, (h/k) = < m ) v exp <% C12(27rmh/k))

- <_L§:1% (%)chot(”” <7rTmh)> +0(eSW/h) (4.9)

{=1

for an implied constant depending only on h.
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5. The Sum C;(N, o)

Let 0 € Z. In this section and the next we prove Theorem 1.5, giving the asymptotic
expansion as N — oo of

Ci(N,0):= > Quw(N)=2Re > Quo(N). (5.1)

h/kEC(N) N k<N, k odd

The equality in (5.1) is straightforward to justify; see [9, Sect. 2.2]. For k odd,
setting h = 2 in Proposition 4.4 yields

2 _ .
Q210(N) = 1 exp (—m’w> exp (%(5N +2-— k)) J_\,lfk(Z/k;)

k2 k
(5.2)
The sum (5.1) corresponds to 2N/k € [2,4) and we break it into two parts: C2(N, o)
for 2N/k € [2,3) and C5(N, o) with 2N/k € [3,4).

0.06 2Re Q2k0 (V)
0.03
. e e
2 5/2 3 7/2 4 IN/k
—0.03
C2(N, o) C5(N,o)

Figure 3: 2Re Q20 (N) for 0 =1 and N =100

5.1. First Results for C2(IN, o)
With (5.2) we have

cmn=re 3 e (v[f (- rsog)])

k odd, 2N/ke(2,3)
—mi 2N 11, . 2N -1
X exp <—T> exp (N [27”07]> [In-x(2/k). (53)

Define
90(2) 1= — = (w2)* 7 cot P2 (n2) (5.4)

and set Z = Z(N, k) := 2N/k. The analog of the sine product approximation, [9,
Thm. 4.1], we need here is:
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Theorem 5.1. Fiz W > 0. Let A be in the range 0.0048 < A < 0.0079 and set
a = Ame. Suppose & and &' satisfy

A 1

0< -

1-A < e

1
, O<6'<E and &logl/s, &'logl/d’ < W.
Then for all N > 2 - Ra we have

[Ix.(2/k) =0 (eWN/Q) for 2e€2, 2+48U[5/2—¢, 3) (5.5)

[=i2/k) = Ni/Q P (N 0122(52 2>> (QSiIiwé)>1/2

L—1 ~
X exp ( ]342(2’2)1) +0 (eWN/2> for 2€(2+46, 5/2—05) (5.6)
=1

with L = |« - N/2]. The implied constants in (5.5), (5.6) are absolute.

Proof. The bound (5.5) follows directly from Proposition 4.7 with m = N — k and
h = 2. Next, in Proposition 4.10, we set s = N and again m = N — k and h = 2.
The condition on m in Proposition 4.10 is equivalent to

A ON
— <<
1-A2 Sk

| Ot

2+
So (5.6) follows from Proposition 4.10 if

A
— < o. .
a7 <0 (5.7)

The inequality (5.7) is equivalent to 1/A — 1/§ > 1/2. Since our assumption
A/(1 — A) < § is equivalent to 1/A —1/§ > 1, we have that (5.7) is true. O

With (4.2) for m = 2 we obtain

Cly(212) = —i Lig(e?™) +in?(22 — 52 +37/6) (2 < z < 3).

Therefore
Cla(2m2)  mi 2y 1 - omiz : 2
oty (2450 ) =g L@ ~La) —ae) (5)

with the right side of (5.8) now holomorphic in the strip 2 < Re(z) < 3.
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To combine (5.3) and (5.6) we set, initially with z € (2, 3),

re(z) = 27T1iz [Lig(em) — Lis(1) — 47r2} : (5.9)
. 1/2
qe(z) = (m) exp(—miz/2), (5.10)

. _ 2mioz L1 9e(2) B
ve(z;N,0) = N T N2 (L= |a-N/2]). (5.11)
(=1

Then define

-2 1 . 5 5
C3(N,o) := WRG Z e exp(N ‘T (z))qc (2) exp(vc(z; N, U)),
k odd: 2€(2+6,5/2—6")
(5.12)
and it follows from (5.3) and Theorem 5.1 that for an absolute implied constant

Ca(N,0) = C3(N,0) + O(e"N/?), (5.13)

5.2. Expressing C3(IN, o) as an Integral

Proposition 5.2. Suppose 3/2 < Re(z) < 5/2 and |z — 2| > € > 0. Also assume

that )
max{l + -, 16} < (5.14)
e «

Then, for an implied constant depending only on €, a and d,

L-1
gz(z) < 1 6*7"|y|
N2¢-1 N2d—1

{=d

(d>2, L=|a NJ2|. (5.15)

Proof. For z in this range, Theorem 3.3 of [9] bounding derivatives of the cotangent
allows us to show

4 4
ge(2) —7ly| ¢ 2 ‘
Fano(20—1) e for Fy.(0):= 142 2 .
NoT < Eve(20—1)-e or Fnell) = {500y o) 3

(5.16)
This bound gets very large for ¢ large. The condition (5.14) ensures L is small
enough that g¢(z)/N?~! remains small. See [9, Sect. 4.2] for the details. O

We now fix some of the parameters in Theorem 5.1 and take
W =0.05, «a=0.006me~0.0512, 0.0061 <6, & <0.01, N >400. (5.17)

Also, with e = 0.0061, condition (5.14) is satisfied and Proposition 5.2 implies:
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Corollary 5.3. With 6,0" € [0.0061,0.01] and z € C such that 2+ 6 < Re(z) <
5/2 — &' we have

omicy e ge(z) 1
ve(z; Nyo) = ~ +ZN25—1+0<N2(1—1>
=1

for2 < d < L=|0.006me- N/2| and an implied constant depending only on d.

In the next theorem we assemble the results we need to convert the sum C3(N, o)
in (5.12) into an integral.

Theorem 5.4. The functions rc(z), qe(z) and ve(z; N,o) are holomorphic for
2 < Re(z) < 5/2. In this strip,

Re <7"c () + 27;”) <1 <x Cly(2rm2) + 2y E a0+ 1)D (y > 0)

= 2m|z)2
(5.18)
R, ()+@ < Cly(27z) + 2||1—4' (y <0)
el reclz > \27T|Z|2 x 22T T™\Y 3 ] Y X
(5.19)

for j € R. Also, in the box with 2+ < Re(z) < 5/2 - ¢ and —1 < Im(z) <1,
qc(z), exp(vc(z;]\f7 U)) <1 (5.20)
for an implied constant depending only on o € R.

Proof. Since Lig(e*™%) is holomorphic away from the vertical branch cuts (—ioco,n]
for n € Z, we see that r¢(z) is holomorphic for 2 < Re(z) < 5/2. Then in this strip,
using (4.1),

re () + 27? B 27711'3 {Lb(emz) — Lia(1) — 47%(j + 1)}
= 27;2 {_ Li2(672m‘z) + Liz(l) — 47r2(j — 2)} — 7ri(z — 5). (5.21)

The inequalities (5.18) and (5.19) follow, as in [9, Sect. 4.3].
Check that for w € C,

—m/2 < arg(sin(rw)) < /2 for 0 < Re(w) < 1.

Consequently, —7 < arg(z/sin(rz)) < 7 for 2 < Re(z) < 5/2 and so qc(z) is
holomorphic in this strip. Also ve(z; N, o) is holomorphic here since the only poles
of go(z) are at z € Z.

Finally, gc(2) is bounded on the compact box, as is exp (vc(z; N, U)) by Corollary
5.3. ([l
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By the calculus of residues, see for example [7, p. 300],

_1 o(2) s
2. wlb=3 /C Sitan(r(z —1)/2) (5:22)

a<k<b, k odd

for ¢(z) a holomorphic function and C a positively oriented closed contour sur-
rounding the interval [a,b] and not surrounding any integers outside this interval.

Hence . . )
_ oz
—@(2N/k) = —
a<k<§k odd k? #2N/E) 4N /C 2itan(m(2N/z —1)/2) dz

for C' now surrounding {2N/k | a < k < b} with a > 0. Therefore

= # (§] ex Trelz2 qC(Z) explvuclz; g z
CN.0) = sxaptt /C1 p(N-7e ))Qitan(w(QN/z—l)/2) plue(ziN,0) d

(5.23)
where C is the positively oriented rectangle with horizontal sides C;", C; having
imaginary parts 1/N?, —1/N? and vertical sides C;, 1, C1 g having real parts 2 + §
and 5/2 — ¢’ respectively, as shown in Figure 4. The next result shows that the

cf Cy
i/N* < <
ChL Ci.r Cao,r, Co.r
2| o 2 3| o |2 4
_i/N* > =
9405 5/2-¢ 545 7/2-6

Figure 4: The rectangles C; and Cy

integrals over C1,r, C1, g are small.

Proposition 5.5. For N greater than an absolute constant, we may choose §,
¢’ € [0.0061,0.01] so that

Re/ exp(N . rc(z))qc(z) exp(vc(z; N, 0))
2N3/27 Jotuer 2itan(m(2N/z — 1)/2)

for W = 0.05 and an implied constant depending only on o.

C3(N,o) = dz + O(e"VN/2)

Proof. The proposition follows from (5.23) if we can show [, o . = O(eWN/2),
For N large enough, we may choose § and ¢’ so that Cy 1 and Cy r pass midway
between the poles of 1/ tan(m(2N/z — 1)/2). Hence
1
tan(m(2N/z — 1)/2)

<1 (z € CI,L U CI,R)' (5.24)
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The bound (5.20) from Theorem 5.4 implies
qc(z) exp(ve(z; N, 0)) < 1 (z € Cy, UCH R). (5.25)

Theorem 5.4 with 7 = 0 also implies

1 52
Re(re(2)) < o= (:c Cly(27) + %) (z € CL.L UCYLR).
Note that

Cla(2mz) < 0.24 if 2 < <2.01, Cly(27x) < 0.05 if 2.49 < ax <2.5.
(5.26)
Therefore

1 2
Re(re(z)) < g (2.01 % 0.24 + %) <0025 (2€Cip, N>25) (5.27)

and we obtain (5.27) for z € C1 g in the same way. Consequently

exp(N - re(2)) < exp(0.025N) (2 € C1,, UCYR). (5.28)
The proposition now follows from the bounds (5.24), (5.25) and (5.28). O
We have
| 1 _ {1/2 + Y e (F17m N if Tz > 0 (5.29)
2itan(m(2N/z —1)/2) —-1/2— Zj>1(—1)j627”]N/2 if Imz <0

and therefore
/C+ = Z/(_l)j/ exp(N[re(z) + 2mij/2])qe(z) exp(ve(z; N, o)) dz,  (5.30)

+
3<0 Cy

/_ =— Z/(—l)j/ exp(N(re(z) + 2mij/z])qe(2) exp(ve(z; N, o)) dz  (5.31)

§=0 Cr

where " indicates the j = 0 term is taken with a 1/2 factor. The terms with
j =0, —1 are the largest:

Proposition 5.6. For W = 0.05 and an implied constant depending only on o

Cs(N, o) = —+_ > (-1

3/2
2N3/ P

2.49
X Re/201 exp(Nlre(z) + 2mij/2])qe(2) exp(ve(z; N, o)) dz + 0("N/2). (5.32)
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Proof. As in [9, Sect. 4.5], the total contribution to (5.30), (5.31) for all j with
|7| > N? can be shown to be O(N). Let D} be the three lines which, when added
to Cfr , make a rectangle with top side having imaginary part 1. Orient the path
D7 so that it has the same starting and ending points as C;. Since the integrand is
holomorphic we see that fcj = fo' For integers j with —N? < j < 0 we consider

/D+ exp(Nre(z) + 2mij/2])qe(z) exp(ve(z; N, o)) dz. (5.33)

We have qc(2) exp (ve(N, z)) < 1 for z € D by Theorem 5.4. On the vertical sides
of D} we have

< 0.02

Re (rc(z) n 27mj> - x0128(27rx)

z ™
by Theorem 5.4 and (5.26) if j < —2. On the horizontal side of D}, with y = 1,
Theorem 5.4 implies

21

Re <rc (2) + > < L <2.5 Cly(7/3) + m* F +4(5 + 1)]) <0

27| z|? 3

if j < —2. Hence, for each integer j with —N? < j < =2, (5.33) is O(exp(0.02N)).
In a similar way, the terms in (5.31) for 1 < j < N? are O(exp(0.0QN)). Moving
the lines of integration from C; and C; to [2.01,2.49] is valid with (5.25), (5.28)
and this completes the proof. [l

A slightly more detailed argument shows that the j = 0 term in (5.32) is also
O(e"N/2).
Proposition 5.7. For W = 0.05 and an implied constant depending only on o

2.49
/201 exp(N - r¢(2))qe(2) exp(ve(z; N, 0)) dz = O(e"WN/2), (5.34)

Proof. Change the path of integration to the lines joining 2.01, 2.01 — 4, 2.49 — ¢
and 2.49. The result follows if we can show Re(r¢(z)) < W/2 on these lines. For
y <0, by (5.21),

_ xlm(Liy (e=2miz))

Yy . . —2miz
Re(re(z)) = my — D (Liz(1) — Re(Lix (e~ ™)) + 87°) 2|22
. o Cla(27z)
< - B 2miz 2 L
ST onz (Liz(1) = Re(Liz(e™*"*)) +87°) + 2m|z|?

using Lemma 4.1. Recalling (5.26) we obtain the following bounds on each segment:
e v =2.01, -1 <y <0. By Lemma 4.2 we have —Re(Liz(e~2"%*)) < 0 so that

1

RQ(TC(Z)) S Yy =+ m (

—y(Liz(1) 4 87?) + 0.24z) < 0.025.
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e v =249, —1 <y < 0. By Lemma 4.3 we have —Re(Liz(e2"%*)) < Lia(1) so
that

Re(re(2)) < my + (—y(2Lix(1) + 87?) +0.05z) < 0.01.

27 (22 + y?)
e 2 < x <25, y=—1. With Lemma 4.3 again

Re(re(z)) < my + (—y(2Liy(1) + 87%) 4 2.5 Cly(m/3)) < 0. O

2m(2% +y?)
Define p(z) as po(z) with (1.31). Since p(z) = —(r¢(z) — 2mi/z), and recalling
(5.13), we have therefore shown

Co(N, o) = C4(N, o) + O("V'N/?) (5.35)

for W = 0.05, an implied constant depending only on o, and

2.49
C4(N,0) := ﬁRe/201 exp(—N-p(z))qc(z) exp(vc(z;N, 0)) dz. (5.36)

5.3. A Path Through the Saddle-point

To apply the saddle-point method, Theorem 1.8, to C4(N, o) we first locate the
unique solution to p’(z) = 0 for 3/2 < Re(z) < 5/2 as

N log(l — w(.O, —2))
2me

by Theorem 1.9. Then we replace the path of integration [2.01,2.49] in (5.36) with

one passing through z;.

Let v = Im(z1)/Re(z1) =~ 0.156728 and ¢ = 1 4 4v. The path we take through
the saddle-point z; is Q := Q1 U Q3 U Q3, the polygonal path between the points
2.01, 2.01¢, 2.49c and 2.49 as shown in Figure 5.

For Theorem 1.8 we require the next result.

~ 2.20541 + 0.3456487

Z1 =2

Theorem 5.8. For the path Q above, passing through the saddle point z1, we have
Re(p(z) —p(z1)) > 0 for z € Q except at z = z1.

Theorem 5.8 seems apparent from Figure 6. We prove it by approximating
Re(p(z)) and its derivatives by the first terms in their series expansions and re-
ducing the issue to a finite computation. This method was used in [9, Sect. 5.2
and we repeat the results from there. To take into account that we are using an
approximation to z1, we give proofs valid in a range 0.15 < v < 0.16.

Generalizing to pg(z), we examine Re(pq(z)) for z on the ray z = ¢t for ¢ = 1+iv
with v > 0. We also write

c = pe'? 0<p, 0<O<7/2).
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21
0.346¢ -

T

Q

0, Qs

1 1
T

2 2.205 5/2

Figure 5: The path @ = 9 U Q5 U Q3 through z;

0.03 +
0.02 +

0.01 F :
21 |
. 1

9 Qo Qs

Figure 6: Graph of Re[—p(z)] for z € Q

For the second derivative we have
2

@ Relpa(et)] = Ro(Ls 1) + B3(L:1)

for

L—-1

+ Z (Am(t) cos(2mmt) + B, (t) sin(Zﬂ'mt)) ,

m=1

2 2wp 1
=27 t :
Am(t) := e (W‘LS”“G(T‘LW))’

2 1
By (t) :== e 2™ cos 6 L —
t m2mpt3

7(24d + 1) sin 6

Ro(L;t) := — T

and
—2m Lot

e 1 2 2mp
RY(L;t)| < Eo(L;t) := — + =),
|1B2(Lit)] < Ea(Lit) 1 — e—2mvt <7rpL2t3+Lt2 T )
We see that Fy(L;t) is a decreasing function of L and ¢. We have A,,(t) a positive
and decreasing function of t. Also B,,(t) is a positive and decreasing function of ¢

when t > ﬁ\/g . The above formulas for Ry(L;t) use (1.17), which is valid since
Tpm
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|e?™%| < 1 when Im(z) > 0. For a ray z = ct with Im(c¢) < 0, the functional
equation (4.1) must be applied first and then similar formulas are found.
Let v1 = 0.15 and vy = 0.16. Writing plewl =1+ iv; and pgewz =14 ivy we
have
1 < p1 < p<pog, 0<91<9<92<7‘(/2.

For v in the interval [v1, v2], we may bound A,,(t), By (t) and E2(L;t) from above
and below by replacing v, p and 6 appropriately by v;, p; and 6;, j = 1,2. For
example

0<AL(t) S An(t) SAL®M) (v E [or,v2))

2 27, 1

— 6

mit? sin 1( it m27rp2t3)>7
2

27Tp2 1
0
+ sin 2< n + m27rp1t3)>

m
Bn(t) < B,

with
A- (t —27rmv2t

AJr ( 727rmv1t <
<

and similarly write 0 < B, (%)
ES(L;t).

(t) and 0 < Ej (L;t) < Bo(Lit) <

Lemma 5.9. Let ¢ = 1+ iv with 0.15 < v < 0.16. Then %Re[p(ct)] > 0 for
t e [2,2.35].

Proof. Break up [2,2.35] into n equal segments [z;_1,x;]. Then

d2

— > mi i 1) | — ES(L; : :

o Re[p(ct)] > nin, ((te[irjnrll@j] Rg(L,ﬁ)) E; (L,xj_l)) (5.37)
Let t = =7, correspond to the minimum value of cos(2rmt) for t € [v;-1, ;]

(so that z7,,

t = 77, correspond to the minimum value of sin(27wmt) for t € [x;_1,z;]. Then

equals z;_1, x; or a local minimum k/2m for k odd). Similarly, let

L—-1

7 sin Oy
Ro(Lst — A 2 B, 2
te[gurll’m o(Lit) = 6p1x?71 +mz::1( m(@j) cos(2mma} )+ B, (z;) sin(2mma]; m))
(5.38)
where we must replace A, (z;) in (5.38) by A} (x;-1) if cos(2mma},,) < 0 and

replace B, (z;) in (5.38) by By (x;-1) if sin(2rma7s,) < 0.
A computation using (5.37) and (5.38) with n = 10 and L = 3 for example shows
4 Re[p(ct)] > 0.09. O

We may analyze the first derivative in a similar way. We have

4 Relpa(et) = B (Lt) + Bi (Let)



INTEGERS: 16 (2016) 37

for
Ri(Lit) := m(24d + 1) sin6 + Lz:_l (—C’ (t) cos(2mmt) + D, (t) sin(ZWmt))
1 ) o 12pt2 ] m m )
1 sin @ cos 6
Cm t) = —2mmut [ _~ Dm t) = —2mmut
(1):=e (mt * m227rpt2> ’ (t):=e m22m pt?
and
6727ert 1 1
(L) < E(L;t) := — .
|1 (L; 1) 1(L31) 1 — g—2mut (Qﬂpptz + Lt>

We see that Ey(L;t) is a decreasing function of L and ¢. Also C,,(t) and D,,(t) are
positive and decreasing functions of ¢.

Lemma 5.10. Let ¢ = 1+ iv with 0.15 < v < 0.16. Then LRe[p(ct)] > 0 for
t € [2.35,2.5).

Proof. Break [2.35,2.5] into n equal segments and, as in the proof of Lemma 5.9,
bound < Re[p(ct)] from below on each piece. Taking n = 10 and L = 3 shows
4 Re[p(ct)] > 0.03 for example. O

Corollary 5.11. Let ¢ = 1+iv with 0.15 < v < 0.16. There is a unique solution to
4 Relp(ct)] = 0 fort € [2,2.5] that we label as to. We then have Re[p(ct) —p(cto)] >
0 fort € [2,2.5] except at t = tg.

Proof. Check that %Re[p(ct)] < 0 when ¢t = 2 and %Re[p(ct)] > 0 when t = 2.35.
By Lemma 5.9 we see that < Re[p(ct)] is strictly increasing for ¢ € [2,2.35]. It
necessarily has a unique zero that we label to. By Lemma 5.10, 4 Re[p(ct)] remains
> 0 for ¢t € [2.35,2.5] . Hence Re[p(ct) — p(cto)] is strictly decreasing on [2,ty) and

strictly increasing on (tg,2.5] as required. O
Proposition 5.12. For0.15 < v < 0.16 we have Re[—p(2)] < 0.024 for z € Q;UQj3.
Proof. We have z fixed as 2.01 on Q7 and 2.49 on Q3. Write

fy) +9W)

27| z)?

Re[—p(2)] =

for
f(y) =Y (L12(1) - Re(LiQ(GQWiZ))) , g(y) — xIm(LiQ(GQﬂ'iz)).

If © = 2.01 or 2.49 it follows from Lemma 4.1 that g(y) is positive and decreasing.
Similarly, it follows from Lemma 4.2 that f(y) is always positive and increasing for
y > 0.
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For z € 91, so that z =2.01 and 0 < y <Y :=2.01 x 0.16 = 0.3216,

(F(Y/3) + g(0))/(272.012) ~ 0.0232 y €0,Y/3]
Re[—p(2)] < (F(Y)+ 2 2) o
g(Y/3))/(2m(2.012 + (Y/3)?) ~ 0.0226  y € [Y/3,Y].
For z € O3, so that z =249 and 0 <y <Y :=2.49 x 0.16 = 0.3984,
Re[—p(2)] < (f(Y) + ¢(0))/(272.49%) ~ 0.021, y €[0,Y]. O

Proof of Theorem 5.8. Let v be given by Im(z1)/Re(z1). Then

= Re[ep'(cRe(z1))] = Re[ep’(21)] = 0.

d
—Re[p(ct)]
dt t=Re(z1)

It follows from Corollary 5.11 that Re[p(z) — p(21)] > 0 for z € Qs and z # z;. We
also note that Re[—p(z1)] = 0.0256706.

For z € Q1 U Q3, Proposition 5.12 implies Re[p(z) — p(z1)] > —0.024 4 0.0256 >
0. O

5.4. Applying the Saddle-point Method

For j € Zx( put

Ug,j(2) i = > @mioz 4+ g1(2))"™ ga2(2)™ | g5(2)"™ . (5.39)

iy mq! mo! m;!
m1+3ma+5mz—+---=j

with u,0 = 1. Recalling the definition of ge(z) in (5.4), we see that u, ;(z) is
holomorphic for z ¢ Z. The proof of the next proposition uses Corollary 5.3; see [9,
Sect. 5.3].

Proposition 5.13. For 2.01 < Re(z) < 2.49 and |Im(z)| < 1, say, there is a
holomorphic function (q(z; N, o) of z so that

d—1
exp(ve(z; N, 0)) = Z UUNJ—EZ) +Ca(z;N,0) for (4(z;N,0)=0 <$)
=0

with an implied constant depending only on o and d where 1 < d < 2L — 1 and
L =0.0067e- N/2]|.

We now have everything in place to get the asymptotic expansion of Co(N, o).

Theorem 5.14. With cg = —z1e”"*1/2 and explicit c¢i(c), ca(0),... depending
on o € Z we have
w(0, —2)~N c1(o) em—-1(0) lw(0, —2)|~N
CQ(N7J)_R6|:T(CO+T+'”+W +0 W
(5.40)
for an implied constant depending only on o and m.
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Proof. Recall from (1.33) that eP(*1) = w(0, —2). Proposition 5.13 implies

d—1

1 —N-p(z
) =Te| 3 sy [N ) wge)
§=0

1 / _N.
n e NPE) L go(2) - Calz N, o) dz|  (5.41)
2N3/2 o

where the last term in (5.41) is

/‘ —N-p(z)
N3/2

by Theorem 5.8, (5.20) and Proposition 5.13. Applying Theorem 1.8 to each integral
in the first part of (5.41) we obtain

_NRe(p(er)) _ |w(0,=2)[7V

—dz<< e = N3/

1
Nd+3/2

/QeN'p(z) gc(2) - uo,j(2) dz

_Np(z GQS((]C ua,]) 1
p(z1) (er+1/2 T3 +O<W . (5.42)

The error term in (5.42) corresponds to an error of size O(|w(0, —2)|~~ /N5+i+2) for
C4(N, o). We choose S = d so that this error is less than O(|w(0, —2)|~N /N4+3/2)
for all 7 > 0. Therefore

d—1

C4(N,0) =Re Z 1 szl)z (s +1/2)ass(qc - uo,j)

NJ+3/2 B Ns+1/2
o (|w<o,—2>|N>

7=0 s=0
Nd+3/2

and we may rewrite the sums inside the square brackets as

2d—2 min(t,d—1)

Z Nt+2 Z I'(s +1/2)azs(qc - Uo,t—s)-

s=max(0,t—d+1)

Hence

d—2 t
1
Cs(N,0) =Re |w(0,-2)~N E: Nt+2 E (s +1/2)aas(qc - ua,t—s)‘|
t=0 s=0

+0 <7"‘”(0]’V233'N> .
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Recalling (5.35) and with
¢

ci(o) ==Y (s + 1/2)azs(qe - toi—s), (5.43)
s=0

we obtain (5.40) in the statement of the theorem.
Use the formula (1.30) for ag to get

co(0) =T(1/2)ao(ge - ug0) = VT

w
2(w2po) /2 90

which is independent of o. The terms py and ¢ are defined in (1.27), (1.28). Using
the identity

1 27 - 272
") =—==1{2p - 5.44
p (Z) e ( P (Z) + 1 — e2miz ) ( )
we obtain
i 2Tz .
"(21))2 = ——= 2 = e — 5.45
po=p"(z1)/ 2w(0, —2)’ a5 = qc(z1) w(0,-2) ( )
Therefore ) )
2 _ Ty . *
Co

= 4_]70 - 4627ri21 :
We may take w = z; since the path Qs is a segment of the ray from the origin
through z;. A numerical check then gives us the correct square root:

C():\/E w Z1

2wpe) 2 T T emi H

For example, Table 1 compares both sides of (5.40) in Theorem 5.14 with ¢ =
1 and some different values of m and N. For other values of o we get similar
agreement.

N | m=1 m =2 m=3 m=4 | C3(N,1)
800 293.204 301.757 303.016 303.119 303.112
1000 | —263123. —261461. —261486. —261493. | —261493.

Table 1: Theorem 5.14’s approximations to Co(N, 1).

6. The Asymptotic Behavior of C;(IN, o)

We find the asymptotic expansion of
C3(N,o) = 2Re > Qaro (N),

k odd : 2N/k€[3,4)

the second component of C; (N, o), in this section.
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6.1. Approximating the Sine Product

From (5.2), Q210(N) contains the sine product H;Ll(Z/k;) for m = N — k and
k/2 < m < k. The next result expresses this product in terms of a new variable a.

Proposition 6.1. Let k be an odd positive integer. Write m = a + (k — 1)/2 for
1<a<(k—1)/2. Then

N
—
=

a

o (2/k

H;nl(Q/k‘): (\/1%)(1 g ; ; for k/2<m <k.

Proof. The formula
1
[T, (k) = (-1 D60/

from [9, Sect. 2.2] implies H,Z_ll(2/k) = (=1)*=1/2/k and therefore, by symmetry,

H@171)/2(2/k) = %
Hence
-1 1
IL,. (2/k) = H(k /2 (2/k) 1;[ 2sin(m —1)/2)2/k)
1

- ﬁg 2sin(w(2j — 1)/k + )

_ (=D 1

= ]1;[1 2sin(r (2 — 1)/k)
and the result follows. =

In this subsection we define 2 = 2(N, k) := 2(N 4 1/2)/k because of (6.3) below.
The next result is the sine product approximation we need here.

Theorem 6.2. Fix W > 0. Let A be in the range 0.0048 < A < 0.0079 and set
a = Ame. Suppose § and &' satisfy

, 0<d < and Slog1/s, &§'logl/d’ < W.

A <(5<1
1-A e
Then for all N > 3 - Ra we have

[T (2/k) = O (eWN/3) for 2€[3, 3+6]U[1/2—5, 4) (6.1)
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and also for z2 € (349, 7/2—10)

) NH(k1)/2
H;k@/k):(”Texp (T cnens))

L-1 L*—1 A
X exp <Z N+ 1/2 T ; %) +0 (eWN/z) (6.2)

1

with L = |a-2N/3] and L* = |- N/3|. The implied constants in (6.1), (6.2) are
absolute.

Proof. We have 2N/k € [3,4) so that N/2 < k < 2N/3. For m = N — k this
corresponds to k/2 < m < k. In terms of a this means

1<a<k/2, 2a/k =% — 3. (6.3)
For L =1, Proposition 4.5 implies

1/2
Hg_al(l/k) = (m) exp (% C12(47Ta/k)) exp (—=T1(2a,1/k)),

T 2/k) = (m) Y (ﬁ 012(47ra/k:)> exp (=T (a, 2/ )

so that

% = 21% exp <£ C12(47ra/l<:)> exp (—T1(2a,1/k) + T1(a,2/k))

& 1/2 )
= <§ sin(27ra/k)) exp (=11(2a,1/k) + 2T (a,2/k)) - T[], (2/F).

Therefore, employing Lemma 4.6,

—1
1/k
M <EVATL N2k (1<a<k/2) (6.4)
1. (2/k)
with an absolute implied constant. A similar argument proves
[0 (k) a1 1/2
—L <k [L5, (1/F) (I1<a<k/2). (6.5)
TREEA D)

Then using Proposition 4.7 to bound H;l(Q/k) on the right of (6.4) and noting
that k& < 2N/3 proves (6.1).
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For positive integers L;, Lo, Proposition 4.5 implies

[l (1/k) _ 1 k
m =% exp (E Cl2(47m/k)>

Li—1
BQ@ m\ 2¢-1 (20—2) 2am
— — t -
x eXp( ; 20)! (k) « 2
Ly—1 201
BQE 27 (20—2) 2am
XeXp(;(%)!(k) cot A

% exp (T, (20, 1/k) + Tu, (a,2/K)) . (6.6)

Use Proposition 4.8 with h = 2, m = a and s = 2N/3 to show that we have, for
AN/3 < a < k/4,

1, ' (2/k)Tr,(a, 2/k) < VN/3 (6.7)

Tr,(a,2/k) < 1 (6.8)

with absolute implied constants, Lo := |[wreA - N/3] and N > 3 - Ra. The above

inequality (6.7) is valid with H;I(Q/k) replaced by H;al(l/k‘)/ H;I(Q/k) using

(6.4):

(TTa (/) L 2/0)) Tra(a, 2/k) < N1 26N, (69)

Use Proposition 4.8 with h = 1, m = 2a and s = 2N/3 to show that, also for
AN/3 < a < k/4,

[oa (1/k)Tr, (20,1 /k) < e2WN/3 (6.10)

Tr,(2a,1/k) < 1 (6.11)

with absolute implied constants, Ly := [weA - 2N/3] and N > 3 - Ra/2. Taking

square roots of both sides of the inequality (6.10) and using (6.5) and that we have
Ty, (2a,1/k)| < |1, (2a,1/k)|"/? shows

(H2a (1/k)/ L (2/k) )TLl(Za 1/k) < NY4eWN/3, (6.12)

With the inequalities (6.7) - (6.12) established, the arguments of Proposition
4.10 now go through, applied to (6.6). This allows us to remove the factor in (6.6)
of exp (—=Tr, (2a,1/k) + Tr,(a,2/k)) at the expense of adding an O(e"V™/3) error.
The interval AN/3 < a < k/4 corresponds to

A

3+ —5 <2< 3
TTTAB SN

EN{

SO we require

A
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The inequality (6.13) is equivalent to 1/A —1/§ > 1/3. Since our assumption
A/(1 — A) < § is equivalent to 1/A —1/§ > 1, we have that (6.13) is true. This
completes the proof of (6.2). O

We rewrite (5.2) as

e mi/4 —T
Quua (V) = e (V412 = 542/3))
<oxr (G ) TR e/0

and combine with (6.2) from Theorem 6.2 as follows. With (4.2) for m = 3 we
obtain

Cly(272) = —i Lig(e*™*) +in?(22 — T2+ 73/6) (3 < z<4).

Hence

Cl(2mz ¢! ) 1 . ; .
ST B a5 2/2) = —mi 5o [Lia(e?™) — Lig(1) - 1077).

Define the following functions

ro(2) = 5o [Liae?™) — Lin(1) — 1027],

g(z) = eI,
Ny B0 D S el NN ele)
CEIIT RN TL2) T A RN+ /22T & (N4 127

for L =|a-2N/3] and L* = |a- N/3]. Set

1
(N +1/2)1/2

(_1)(k+1)/2 . . o
xRe > e (N +1/2)r8(2)) g2 (2) exp(ve (35 N, ).
kodd : 2€(3+98,7/2—5")

Ci(N,o):=

It follows from Theorem 6.2 that

C3(N,0) = Ci(N,o) + O(eWN/3), (6.14)

6.2. Expressing C3(IN, o) as an Integral

Similarly to Proposition 5.2 we have
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PropOSItlon 6.3. Suppose 5/2 < Re(z) < 7/2 and |z — 3| > € > 0 and assume
max{l +1, 16} < Z£. Then for d > 2,

_ L*—1
_ ge(2) [ p——
N+1/2 e ZZ; (N +1/2)201 < Jaa-i¢

(6.15)

M

where L = La -2N/3|, L* = |a- N/3] and the implied constant depends only on €,
o and d.

Fixing the choice of constants in (5.17) and with € = 0.0061 and
geu(z) = go(z)(27Y - 1) (6.16)
we obtain:

Corollary 6.4. With 6,0’ € [0.0061,0.01] and z € C such that 3 + 6 < Re(z) <
7/2 — &' we have

d—1
1(160 + 1)z gc.e(z 1
* . N -
UC(Z’ aU) 8(N+1/2 +§1: N+1/2 26 1+O<N2d—1>
for2 < d < L* =10.006me - N/3]| and an implied constant depending only on d.

Next,
76 (2) 4 22— 1/2) = o [~ Tia(1) + Lin(e7) - ar( + 2)],

e (2)+ 2—( +1/2) = 5 [Lis(1) - Lia(e72%) — 4%(j - 3)| — mi(22 = 7)

(6.17)

2miz
where (6.17) follows from (4.1) when 3 < Re(z) < 4. Then with a similar proof to

Theorem 5.4 we have

Theorem 6.5. The functions 15(z), q5(z) and vi(z; N,o) are holomorphic for
3 < Re(z) < 7/2. In this strip, for j € R,

211

Re <r; CRELTE 1/2)> ﬁ <x Cly(272) + 72y { 40 + 2)])
(6.18)
when y > 0 and

Re <7~C( )+ @(g + 1/2)) L (a:Clg(Zwa:) + 72y [ 4G +3/2) D

27| z|?
(6.19)
when y < 0. Also, in the box with 3+ 6 < Re(z) < 7/2—-¢" and —1 < Im(z) < 1,
qt(2), exp(vé(z;N,0)) <1 (6.20)

for an implied constant depending only on o € R.
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By the calculus of residues,
> L p(2)
(—1)*FD/25(k) = _/ o8 .
a<k<b, k odd 2 Jo 2icos(nz/2)

for ¢(z) a holomorphic function and C a positively oriented closed contour sur-
rounding the interval [a,b] and not surrounding any integers outside this interval.
Hence

(cynre - o
A w1 | T e

(6.21)
for C' now surrounding {2(N + 1/2)/k | a < k < b} with a > 0. Therefore
Ci(N,o) = ——
SN.0) = TN T
; g (2) .
x Re /02 exp((N +1/2)r5(z2)) 2 cos(7(N +1/2)/7) exp(vg(2;N,0))dz  (6.22)

where Cy is the positively oriented rectangle with horizontal sides Cy, C; having
imaginary parts 1/N2, —1/N? and vertical sides Cs 1, Ca g having real parts 3 + §
and 7/2 — ¢’ respectively, as shown in Figure 4.

Arguing as in Proposition 5.5 proves the contribution to (6.22) from integrating
over the vertical sides Cs 1., Ca g is O(e%016N) " We have

- _ o I e (BN 4 1/2)(5 - 1/2)) - Tmz >0
2i cos(m(N +1/2)/z) S so(—1)Y exp (224N +1/2)(j +1/2)) Imz < 0.

(6.23)
Therefore

— 4(N +1/2)%/%C3(N,0) =

Z(—l)jlm/cg_eXp ((N + 1/2)[ré(z) + ?(j - 1/2)D ¢ (2) exp(vg(z; N, o))dz

J<0

+Z(—1)j1m/c2exp ((N + 1/2)[ré(z) + ?(j + 1/2)D q¢(2) exp(vg (2 N, 0))dz

Jj=0
4 0(60'016N).

A similar proof to Proposition 5.6’s, employing Theorem 6.5, shows that the total
size of all but the j = —1, —2 terms above is O(e®-13V). Let d = j + 2 and we see
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pa(z) = —(r§(z) + 2mi(j — 1/2)/2) so that

4(N +1/2)*/2C5(N, 0)
3.49
- Z (—1)"Im o exp(—(N+1/2)pa(2))¢¢ (2) exp(vg (23 N, o)) dz+0(e™010N),
d=0,1 01
(6.24)

6.3. Paths Through the Saddle-points

We treat the d = 0 case of (6.24) first. The unique solution to p/'(z) = 0 for
5/2 < Re(z) < 7/2is

log(1 — w(0,—3
2y =3+ 8 %E ) 3.21695 + 0.402898i

by Theorem 1.9. Let v = Im(z2)/Re(z2) ~ 0.125269 and ¢ = 1 + iv. The path we
take through the saddle point 29 is R := R UR2 URs3, the polygonal path between
the points 3.01, 3.01¢, 3.49¢ and 3.49.

A similar proof to that of Theorem 5.8 shows that Re[p(z) —p(z2)] > 0 for z € R
except at z = 29, as seen in Figure 7. Hence

Re[—p(z)] < Re[—p(z2)] = 0.013764 (z€R)

and it follows that the term corresponding to d = 0 in (6.24) is O(e%-014N).

T Re[—p(2)]
0.01 A
| 22 |
1 . 1
Rl R2 RS
Figure 7: Graph of Re[—p(z)] for z € R
Define
1 3.49
(N =1 —(N+1/2 ; 5(z; N
C4( 50) 4(N + 1/2)3/2 m 301 exp( ( + / )pl(z))QC(Z) eXp(UC(Z7 ’0)) dZ

(6.25)
and we now know from (6.14), (6.24) and the above that

C3(N,0) = Ci(N,0) + O(e"VN/3). (6.26)
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The unique solution to pj(z) =0 for 5/2 < Re(z) < 7/2 is

N log (1 — w(l, -3))
2m

by Theorem 1.9. Let v = Im(z3)/Re(z3) ~ —0.027027 and ¢ = 1 + 4v. The path we

take through the saddle point z3 is S := &1 U S U S3, the polygonal path between

the points 3.01, 3.01¢, 3.49¢ and 3.49. A similar proof to that of Theorem 5.8 shows

that Re[p1(z) — p1(z3)] > 0 for z € S except at z = z3. This is seen in Figure 8.

0.04 +
0.03 A
0.02 A
0.01 A

~ 3.08382 — 0.0833451¢

z3:=3

Figure 8: Graph of Re[—pi(z)] for z € S

6.4. Applying the Saddle-point Method
Recall (6.16) and for j € Z>o put

5 (wi(160 +1)2/8 + ge1(2)™ gea(2)™  gei(2)™
ml! mg! mj!

u:](z) =

Y
mi1+3mz+5mg+---=j

with uy o = 1. Similarly to Proposition 5.13 we have

Proposition 6.6. For 3.01 < Re(z) < 3.49 and [Im(z)| < 1, say, there is a
holomorphic function (z; N, o) of z so that

d—1 .
exp(vé(z;N, a)) = Z % +j(z;N,0) for (j(z;N,0)=0 (%)

§=0
with an implied constant depending only on o and d where 1 < d < 2L — 1 and
L = |0.0067e - N/2].

Theorem 6.7. With ¢ = —23e~ ™% /4 and explicit ¢;(0), c3(c),... depending on
o € Z we have

5oy = [ (GO k)] g (el

N2 0 N Nm—1 Nmt2
(6.27)
for an implied constant depending only on o and m.
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Proof. As in Theorem 5.14, applying the saddle-point method to (6.25), with the
path of integration moved to S, yields

d—2 t
_ 1 T(s+1/2) .
CH(N —R (N+1/2)-p1(23) E E * L ak
i) ah t=0 (N +1/2)t+2 s=0 2 el ua,tiS)

+0 <7'“’(1]’V;ff']v> .

From (1.33) we know that eP1(*3) = (1, —3). Hence, set

¢
(o) = e 1 (2)/2 ZF(S +1/2)ags(iq - uy ,o)/2- (6.28)
s=0

We want to convert the above series in 1/(N + 1/2) to one in 1/N. With the

o0

Binomial Theorem we have (1 + 2)~7 = $°°° (77)z" for |2| < 1. Also, by Taylor’s
Theorem,

=0

s

With z = 1/(2N) above we find

o _i": —j=2\27"
(N +1/2)i+2 ~ r Ni+2+r

for any «a;s, and can write

a0 aq _ Bo B
N+122 (Nriep TNt T
with
j—2 L -2 ‘ t+1
— T - R T =t . — _9\j—t )
/Bt_,z ( . )2 T-ozj—Z(t_j )23 aJ—Z( 2)7 (j—i—l)aj'
Jjt+r=t Jj=0 j=0
So we set

i) = (o)

=0

<.

and with (6.26) we obtain (6.27) in the statement of the theorem. Note that the

omitted terms satisfy
= i (o) B 1
> L2 -0(5)

t=m

by (6.29) and can be incorporated into the error term of (6.27).
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A similar computation to that of ¢g in the proof of Theorem 5.14 shows that
(c3(0))" = z3e 77 /16

and a numerical check then indicates that the correct square root has a minus
sign. O

For example, Table 2 compares both sides of (6.27) in Theorem 6.7 for some
different values of m and N. This is for o = 1 and the results for other values of o
are similar.

N | m=1 m=2 m=4 |  C3(N,1)
800 | 1.43938 x 105 1.39381 x 105 1.39341 x 10° | 1.39341 x 10°
1000 | 1.7278 x 10  1.74062 x 109 1.74028 x 10° | 1.74028 x 107

Table 2: Theorem 6.7’s approximations to C5(N, 1).

A consequence of Theorem 5.14 is that
Co(N,0) = O(eYN/N?)  for  Ue := —log|w(0,—2)| ~ 0.0256706. (6.30)

Since —log|w(1,—3)| &~ 0.0356795 we see that C3(N,o) is much smaller than
C5(N,o) (despite appearances in Figure 3) and is bounded by the error term
in (6.27). Therefore, Theorem 1.5 on the asymptotic expansion of Ci(N,o) =
C2(N,0) + C5(N, o) follows from Theorems 5.14 and 6.7.

7. The Sum Dy (N, o)

Let 0 € Z. In this section we prove Theorem 1.6, giving the asymptotic expansion
as N — oo of

Di(N,0):= > Quko(N) =2Re > Q1y40 (V).

h/k€ED(N) & <k<N, k odd

With k odd, setting h = (k — 1)/2 in Proposition 4.4 yields

Q(%)ka(N) = %exp <7TZZ {W])

X exp <T7” [(N —E)(N —k+1) -3k — 3}) [T ((e = 1)/2k). (7.1)
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7.1. D1(N,o) for N Odd

If N is odd then N — k is even and (N — k)(N — k + 1) = (k — N) mod 8. Hence
(7.1) becomes

Qo) = o (3 [2 (Y14 2]
X exp (”IZ (% + 3>) exp (% {-m%]) [Ty ((k—1)/2k). (7.2)

We next get H&ik((k — 1)/2k) into the right form to apply Proposition 4.5.

Proposition 7.1. For k odd and m even with 0 < m < k we have

I, (/%) TLs(1/%)

Tk —1)/2k) = : 7.3
R VR M TmAETE %)
Proof. Since
. . _ (—1)j/2+1 sin(mj/2k) j even
sin(mj(k = 1)/2k) = {(—1)(j_1)/2 cos(mj/2k)  jodd
we have
1 _ (—1)7/2+1 (—1)G-D/2
I ((k = 1)/2k) = léljlm 2sin(mj/2k) léljlm 2cos(mj/2k)’ (74)
j even j odd
Hence
-1 —1 1
[L, ((k—=1)/2k) = Hm/2(1/k) 1g1j_£m m
7 odd
1 1 1
= Hm/2(1/k) lglj_im 2cos(7rj/2k)/1<jl;[m/2 2COS(7Tj/k).
(7.5)

Use the identity 2sin 20 = 2sinf-2 cos 6 to convert the cosines in (7.5) back to sines
and complete the proof. [l

Recall the definition of g¢(z) in (5.4), define

Boyy

gi(2) = ~ @i (72/2)* ' cot®2) (n(z — 1)/2) (7.6)

and set 2 = Z(N, k) := N/k. The sine product approximation we need is as follows.
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Theorem 7.2. Fiz W > 0. Let A be in the range 0.0048 < A < 0.0079 and set
a = Ame. Suppose & and &' satisfy

A 1 1
— < - <= log1/s, ¢'logl/é’ <
1—A<6 670<6 p and dlogl/d, ¢§'logl/é' < W.

Then for all N odd > 2 - Ra we have
I, (k= 1)/2k) = O (eWN/2) for zell, 1+6]U[3/2-06,2) (1.7)

and

[Tns (0 = 1)/2k)
Cla(272) 3 1/2 ge(
= exp <N 247r£' > <2Ns1n( (2 - )/2)) xp (Z = N20— 1 )

L*—1
297 (2) — 9:(2) . ,
><eXp<;:1 W) +O(eWN/2) for ze(1+94, 3/2-0)
(7.8)

with L = |a- N| and L* = |a- N/2|. The implied constants in (7.7), (7.8) are
absolute.

Proof. Applying Proposition 4.5 to each of the factors on the right of (7.3) shows

<m> Y (% C12(27rm/l<:)>

X exp —Lil Ba (E)% 1cot(22 2)( ) p(=Tr,(m,1/k))
— (20! \k ’
L2l 20-1
><exp< 2 Z B% (—) cot?- 2) ))
Ll g rom\ 2! wm
m (20— 2)
X exp(Z o0) (k‘) cot I<; )exp Tr.,(m/2,2/k))

[T, ((k —1)/2k) =

ex
exp (—2T7,(m/2,1/k))

=1

Ly—1
Bog (N2 o 2)
X exp <Z 20)! (ﬁ) cot

exp (Tr,(m,1/(2k))) (7.9)

for 1 < m < k and positive integers L1, Lo, L3, Ly.
First we set each L; to 1 in (7.9) to see

1/2
Hr_nl((k —1)/2k) = (m) exp (% C12(27Tm/k:)>
x exp (—=Th(m,1/k) — 2T (m/2,1/k) + T1(m/2,2/k) + T1(m,1/(2k))). (7.10)
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Comparing (7.10) with the expansion of H;Ll/Q(Q/k) from Proposition 4.5 then
shows

[T ((k — 1)/2k) = (cos(mm/(2K)))"/*
x exp (=T1(m. 1/k) — 2Ty (m/2, 1/k) + 2T1(m /2. 2/k) + Ty (m. 1/(2k)))
% Ly (2/k). (7.11)

It follows from (7.11) and Lemma 4.6 that for 0 < m < k,

[T, (k= 1)/2k) < T1,,.}»(2/k) (7.12)

with an absolute implied constant. Similarly, by comparing (7.10) with the expan-
sion of H;ll(l/k:) from Proposition 4.5,

1 1 1/2
[T (6 = 1)/20) < (IT, (/R)) (7.13)

Using Proposition 4.7 to bound H;Ll/Q (2/k) on the right of (7.12) and noting that
k < N proves (7.7).

To prove (7.8) we wish to apply the argument of Proposition 4.10 to (7.9). This
requires finding L1, Lo, L3 and L4 so that, for m = N — k,

I, ((k — 1)/2k)
% (1T, (mo LR+ T (/2,1 /B) T2, (m )2, 2/R)|+ | T (m, 1/ 2R))] ) < € N/2
(7.14)

and
To, (m, 1/R)[ + T, (m/2, 1/ k)| + [Try (m)2,2/k)| + [Tp, (m, 1/(2k))| < 1. (7.15)
We examine the four terms T, in (7.14) and (7.15) separately:

e The term T7,(m/2,2/k). Use Proposition 4.8 with h = 2 and s = N to
show that, for AN/2 < m/2 < k/4,

[1,.)2(2/k) - Toy(m/2,2/k)| < VN2 (7.16)
|Tr,(m/2,2/k)| < 1 (7.17)

with absolute implied constants, L3 := |[7eA-N/2] and N > 2-Ra. Inequality
(7.16) is valid with H;LI/Q(2//<:) replaced by H;l((k —1)/2k) using (7.12):

TNk —1)/2k) - Tp,(m)2,2/k)| < eV N/2, (7.18)

m
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e The term T7,(m/2,1/k). To prove

L (k= 1)/2k) - Tp,(m/2,1/k)| < eV N/? (7.19)
|Tr,(m/2,1/k)| < 1 (7.20)

for AN/2 < m/2 < k/4, choose Ly = L3 and note that (7.16) and (7.17) are
valid with 2/k replaced by 1/k using Corollary 4.9.

e The term T7,(m,1/k). Use Proposition 4.8 with h = 1 and s = N to show
that, also for AN < m < k/2,

[ (1 /k) - Tr, (m, 1/k)| < VN (7.21)

[T, (m,1/k)| < 1 (7.22)

with absolute implied constants, Ly := |meA-N| and N > Ra. Taking square
roots of both sides of (7.21) and using (7.13) shows

[0 (k= 1)/20) - T, (m, 1/B)] < ™72 (7.23

e The term Ty, (m,1/(2k)). To prove

|TL, (k= 1)/28) - T (m, 1/ (20)) | < VN2 (7.24)
Tr,(m, 1/(2k))] <1 (7.25)

for AN < m < k/2, choose Ly = Ly and note that (7.21) and (7.22) are valid
with 1/k replaced by 1/(2k) using Corollary 4.9.

The inequalities (7.17) - (7.25) establish (7.14), (7.15) and the arguments of
Proposition 4.10 now go through, applied to (7.9). This allows us to remove the
exp(Ty,) factors in (7.9) at the expense of adding an O(e"V/2) error. Write L for
Ly, Ly and L* for Ly, Ls. The interval AN < m < k/2 corresponds to

A

1
t1-A

< 2<3/2.

This completes the proof of (7.8). O

It simplifies things to work with the conjugate of (7.2):

ég;ﬁjﬁﬁzéem<N[%?(é+1+§”>
mmcﬁﬁwomC%gnﬁmmnmyaw
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From (4.2) we have

Cly(272) = —i Lig(e*™) +im?(2? = 324+ 13/6) (1 <z2<2)

so that
0124(:;2) L (z—l— 1+ %) — i+ ﬁ [Liz(e?"%) ~ Liz(1)
Set
rp(2) =1 [LiQ(e%”) - L12(1)} (7.27)
)= <2sm< = >/2>)1/2 o (-5 +9)
vp(z: N, o) 1= T Z: N% 9i )+L21W (7.28)

for L=|a-N] and L* = |a- N/2]. With N odd, define

Dy(N,0) = NTiRe Z %exp(N-rD(é))qD( )exp(vp(%; N, 0)).
k odd : 2€(1+6, 3/2—5")
(7.29)
It follows from (7.26) and Theorem 7.2 that for ¢ € Z and an absolute implied
constant

Dy(N,0) = Dy(N,0) + 0(eWN/2) (N odd). (7.30)

7.2. Expressing D2(N, o) as an Integral for N Odd
Similarly to Proposition 5.2 we have

Proposition 7.3. Suppose 1/2 < Re(z) < 3/2 and |z — 1] > ¢ > 0 and assume
max{1+ 1, 16} < Z&. Then

ge(z " 2g; (2 (2) L 2
Z Nze 1 + Z N/2 24 < N2d—1°¢ i/ (7.31)

ford > 2 where L =|a-N|, L* = |a-N/2] and the implied constant depends only
on e, a and d.
Fixing the choice of constants in (5.17) and with ¢ = 0.0061 and
gp.(2) = ge(2) = g7 (2) + 2271 (27 (2) — 90 (2)) (7.32)

we obtain:
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Corollary 7.4. With 6,6 € [0.0061,0.01] and z € C such that 1 + § < Re(z) <
3/2 — 0" we have

d—1

TioZ gp,0(2) 1
N N2e-1 +0 (N2d1>
(=1

<
)
>
=
2

[
_|_

for2 < d < L*=0.006me- N/2| and an implied constant depending only on d.
Similarly to Theorem 5.4 we have

Theorem 7.5. The functions rp(z), qp(z) and vp(z; N,o) are holomorphic for
1 < Re(z) < 3/2. In this strip

mij 1 R
)l — — >
Re <7’D (z) + . > S T <x Cla(27mz) + 7°|y| [3 +4‘7}> (y =0)
(7.33)
mij 1 1 .
V)<« — — — < 0).
Re <rp (z) + . > S T <xC12(27rx) + 77y [3 4(y 1/2)}) (y<0)
(7.34)
for j € R. Also, in the box with 1+ < Re(z) < 3/2 -9 and —1 < Im(z) <1,
qp(2), exp(vp(z;N, J)) <1 (7.35)

for an implied constant depending only on o € R.

Let C be the positively oriented rectangle with horizontal sides C*, C~ having
imaginary parts 1/N2, —1/N? and vertical sides Cr, Cr having real parts 1+ 4 and
3/2 — &' respectively, as used in [9, Sect. 4.4]. Recalling (5.22), (5.29) and arguing
as in Proposition 5.5, we find

DQ(N, O’)
—9) (~1 ;
= ](\71/3 %Re/ceXp(N -rp(2)) % tan(w?]’if(/z)— 072) exp(vp(z; N, 0)) dz

= #Re ;0’(_1)1 /C+ exp(N[rp(z) + 7ij/z])qp(z) exp(vp(z; N, o)) dz

- Z/(—l)j /Ci exp(N[rp(z) + mij/z])qp(z) exp(vp(2z; N, o)) dz

j=0
+0(eVN/2),

With Theorem 7.5, and reasoning as in Proposition 5.6, we see that the two j = 0
terms above dominate and Dy(N, o) = D3(N, o) + O(eVN/?) for

_ 1.49
Ds3(N,o0) := NT}QRG/101 exp(—N -p(2)/2)qp(z) exp(vp(z; N, 0)) dz (N odd)
' (7.36)
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since rp(z) = —p(z)/2.

7.3. D1(N —1,0) for N Odd

Let N be odd. If v is even then v—k is odd and (v—k)(v—k+1) = (v—k+1) mod 8.
Hence, with v = N — 1, the conjugate of (7.1) becomes

Qimy VD) = g exp (N {_Tm (z 1+ g)D
X exp (% (2 — 3)) exp (”;3’") Tl (k= 1)/2k). (7.37)

For m even, (7.4) implies
[L (k= 1)/(28))
(—1)7/2+1 (_1)(1'—1)/2

= 2(=1)"/2* 1 sin(rm/(2k)) H WKII 2 cos(mj /2k)

1<j<m
j even 7 odd

=2(=1)"/** " sin(wm/(2k)) - TL,,, ((k = 1)/(2k)).

m

It follows that for N odd we have

[Tvo 1o k((k = 1)/(2k) = 2(=1) VN2 sin(n(N/k —1)/2) - TTy (k= 1)/(2k)
(7.38)
and can use our results from the last subsection. Recall rp(z) and vp(z; N, o) from

(7.27), (7.28) and set

gote) = 25t~ 0/2) (gt ) oo (D).

With N odd, define

-2
DQ(N— 1,0') = W

(_1)(k+1)/2 A - . .
xRe A Z P N |rp(2) — 2 ap(2) exp(vp(2; N, 0)).
k odd : 2€(1+6, 3/2—4")
It follows from (7.37), (7.38) and Theorem 7.2 that
Di(N —1,0) = Do(N — 1,0) + O(eWN/2) (N odd).

The next result is mostly a restatement of Theorem 7.5.
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Theorem 7.6. The functions rp(z) — 3%, g5 (z) and vp(z; N, o) are holomorphic
for 1 < Re(z) < 3/2. In this strip, for j € R,

Re (rp () — ;T—; LT ; 1/2)> < 47T|1Z|2 <x Cla(27z) + 72|y [% +4(j - 1)})
(7.39)

when y > 0 and
m mi(j+1/2) 1 9 1 .

_ < Z_ _

Re (rp (%) 7 . S T x Cla(2mz) + 7 |y| 3 45 —1/2)
(7.40)

when y < 0. Also, in the box with 1+ 6 < Re(z) < 3/2—¢" and —1 < Im(z) < 1,

qp(2), exp(vzj(z;]\f7 U)) <1 (7.41)

for an implied constant depending only on o € R.
With the rectangle C' from the last subsection and recalling (6.21), (6.23)

DQ(N - ].,O') =
(=2) (=1) i p(2)
/8 WRQ/CQXP (N [rp(z) — ﬂ}) m exp(vp(z; N, 0)) dz =

N_T;Re i%(—l)j /C+ exp <N [m (2) — ;r—; LTl —1/2) 1/2)]> ap(2) exp(vp(2; N, 0)) dz
mio | milj +1/2) 1/2)]> 45 (2) exp(vp(z: N, 0)) d2

+iz(_1)j /C_ exp (N {TD (2) - 2 z

320
+0(eVN/2),

With (7.39), (7.40) we see the j = 0 term on C'~ dominates and in this way
Dy(N —1,0) = D3(N — 1,0) + O(e"N/2) where we define, for N odd,

-1
IDg(N—l,O') = WRG o1

1.49

/ exp(—N-p(2)/2)igp(2) exp(vp(z; N, 0)) dz. (7.42)
1

Thus, with the definitions (7.36) and (7.42) we have shown that for all N

Dy (N,0) = D3(N,0) + O(eVN/?), (7.43)
7.4. The Asymptotic Behavior of Dy (N, o)
Recall (7.32) and for j € Z>o put
(mioz + gp,1(2))™ gp2(2)™  gp,i(2)™
m2! mj' ’

UD,e;(2) = Z p—

mi1+3ma+5mg+--=j
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with up 50 = 1. The proof of the next proposition is similar to Proposition 5.13’s
and uses Corollary 7.4.

Proposition 7.7. For 1.01 < Re(z) < 1.49 and [Im(2)| < 1, say, there is a
holomorphic function (p 4(z; N,o) of z so that

¥
D)

exp(vp(z;N, 0)) = w;fij(z) +(p,a(z;N,0) for (pa(z;N,0)=0 (%)
J

Il
=]

with an implied constant depending only on o and d where 1 < d < 2L* — 1 and
L* ={0.0067e - N/2|.

We restate Theorem 1.6 here. Recall that zo = 1 4 log(1 — wy)/(27i) where wg
is the dilogarithm zero w(0, —1).

Theorem 1.6. Let N denote N modulo 2. With

do(N) = zo\/2e*7”'20 (e=mizo 4 (=1)N) (7.44)

and explicit dy (U, N), dg(a, N),... depending on ¢ € Z and N, we have
N di(o,N) dm—1(0,N)
w 110, m—1\0;

e (do(N)+7+~~+T

—N/2
+0 (%) (7.45)

Dyi(N,0) = Re

for an implied constant depending only on ¢ and m.

Proof. Let v = Im(z)/Re(z0) = 0.216279 and ¢ = 1 4 iv. We replace the path of
integration [1.01,1.49] in (7.36) and (7.42) with the path P through 2z made up of
the lines joining 1.01, 1.01¢, 1.49¢ and 1.49. This path is used in [9, Sect. 5.2] and
it is proved there that Re(p(z) — p(20)) > 0 for z € P except at z = 2.

For N odd, applying the saddle-point method to (7.36), as in Theorem 5.14,
gives

d—2 t
—2
Ds(N,0) = Re [e NP0)/2 ) Y T(s +1/2)ass(gp - up,g,ts)]
t=0 s=0

Nt+2
|w0|7N/2
+0 <7Nd+1 .

Therefore we set

di(o,N) 1= -2 Z I'(s+1/2)a2s(qp - uD,6,1—s) (N odd). (7.46)
s=0
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Since \/wg = eP*0)/2 and (7.43) is true, we obtain (7.45) in the statement of the
theorem in this odd case.
For N even, (7.42) implies

Dg(N,O')

_ 1.49
= WRG/M exp(—(N +1) - p(2)/2)igp(2) exp(vp(2; N +1,0)) dz

and applying the saddle-point method yields

d—2

t
-2
_ —(N+1 z 2 . ox
Do(N:0) =Re |e"HIENED (r gy 2 P (s + 1/ Daasliah una,t—s)]
|w0|—N/2
Define ;
d; (0) := —2e7 P2 N " (s + 1/2)ass(igh - up o1—s) (7.47)

s=0

and we want to convert the above series in 1/(/N + 1) to one in 1/N. The method
to do this is given in the proof of Theorem 6.7. Let

di(o0,N) == Z(—l)t*j (t + 1) d; (o) (N even) (7.48)
=0

; j+1

and with (7.43) we obtain (7.45) in the statement of the theorem in this even case.
To calculate dy (o, N), we begin with N odd and see from (7.46) and (1.30) that

do(0: V) = ~2V/Taolan 1) = =2y s

for go = qp(20), po = P"'(20)/2 and the direction w = z¢. Short computations (see
(5.44)) provide
e — Ttz

ZO(]- _ 6727rizo)’

—120€

bo = 677\'7;2:0 + 1

@ =

so that
do (o, W)Q = 2z5e” T (e7 0 — 1) (N odd)

and (7.44) follows in this case. The N even case is similar: from (7.47), (7.48) and
(1.30)

N\ o.—p(20)/2 - o, —1/2 w .
do (0, N) = —2e7 P2 /mag(iqp - 1) = —2w, \/E_Z(Lquo/Z)l/quO
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for ¢ = qp(z0). We see that (q8)? = izo(e™* + 1) and so
do (o, N)Q = 2z5e 70 (e7 0 + 1) (N even)
and (7.44) follows in this case also. O
Table 3 gives an example of the accuracy of (7.45) in Theorem 1.6.
N | m=1 m =2 m=4 | Dy(N,1)

1000 | —1.7713 x 109 —1.7785 x 109 —1.77778 x 109 | —1.77778 x 10°
1001 | —2.10996 x 10° —2.11483 x 10° —2.11418 x 10° | —2.11418 x 10°

Table 3: Theorem 1.6’s approximations to Dy (N, 1).

8. The Sum &, (N, o)

Let 0 € Z. In this section we prove Theorem 1.7, giving the asymptotic expansion
as N — oo of

gl(N, 0’) = Z Qhka(N) = 2Re Z Qlkg(N).
h/keE(N) %<k<%
8.1. Higher-order Poles
Recall from (1.6) that

2miocz

€
S(N):=2mi R : : :
Qnko (N) i z:}??k (1 — e2miz)(1 — e27i2z) ... (1 — e2miNz)

and the expression on the right above has a pole at z = h/k of order s = | N/k|. We
calculated Qpre (N) in the case of a simple pole (s = 1 or equivalently N/2 < k < N)
in Proposition 4.4 and require the double pole case (s = 2 or N/3 < k < N/2) in
this section. In general, we have

TioZ Tio — (27Ti0—)r r
2oz — o2 h/’“z;)T(z—h/k)
r=

and for m € Zyq write

1 2. Br(m, h/k) . GE=n/k) i km
:TZ:(:) " (z—=h/k)" x {1

1 — e2mimz if k J( m.
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Therefore, for any k,

Qhka(N) - oi - e27riah/k

o Bri (L, h/K)Bry (2, R/ K) - - - Bryy (N, h/K)
x TO+T1+.Z;TN=S_1(2MU) rolry! - 7! (8.1)
where
Br(m, h/k) = —(2mim)" "' B, (k| m),
dr 1
Br(m, h/k) = Tor 1 ozmim o (ktm). (82)

Formula (8.2) implies for example,

Bo(m, h/k) = 1_62%

Bi(m,h/k) = —27rim,6’0(m,h/k)(1—6o(m,h/k))

Balm.h/k) = (2wim)*Bo(m, h/k) (1 = 380(m. h/k) + 2Bo(m, h/k)?)
for ktm.

8.2. Second-order Poles

For N/3 < k < N/2 (and s = 2), formula (8.1) shows that

Bi(1,h/k) L ,81 (N, h/k) ] ﬁ G h/R)

_ . 2mich/k . .
Qnio(N) =2mi-e [2mo+ Bo(L, h/F) NI

and hence, recalling the root of unity identity after (3.12),

—e2mioh/k [ N(N +1) — 3k — 20 m
Qnio (N) = okA4 9 - Z 1 _ g2mimh/k
1<m<N, ktm
N—2k

1
j=

For the case we need, h =1,

m - m - e*ﬂ'im/k
Z e2mim/k _ 1 Z emim/k _ g—mim/k
1<m<N, ktm 1<m<N, ktm
1 Z m(cos(—mm/k) + isin(—mm/k))
26 sin(mm/k)
1<m<N, ktm

=5 Z im + 2i Z m cot(mm/k).

(3 1
1<m<N, ktm 1<m<N, ktm
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Therefore
1 —im [N k
Qo (N) = 2—]€2¢(N7ka0—) exp <N [T <? -1+ 2N)]>
—im N 1 . N —1
X exp <T E) exp <N |:217T0'?:|> HN—Qk(]‘/k) (84)
for
N RNC RN 1 TS ot (™
d(N, k, o) := PTE (N“+ N —4o) + omih T cot ( . ) . (8.5)
1<GKN, kg
Also note that 1
Queo(N)] = 55 |#(N.k, ) - TTN i (1/R) - (8:6)

Lemma 8.1. For N/3 < k < N/2 and an implied constant depending only on o
d(N,k,0) = O(N).
Proof. Verify that 1/|sin(wj/k)| < 2k/m for ktj (as in [9, Sect. 3.3]). Therefore
|cot(mj/k)| < 2k/m  (k1j)
and the lemma follows. O

Set z = 2(N,k) := N/k. Applications of Propositions 4.7 and 4.10, with m =
N — 2k and s = N/2, prove the following.

Theorem 8.2. Fiz W > 0. Let A be in the range 0.0048 < A < 0.0079 and set
a = Ame. Suppose & and &' satisfy

A
1-A

Then for all N > 2 - Ra we have

<§<1, 0<d < and Slogl/s, &logl/d" < W.
e

[Tnto(1/k) = O (eWN/Q) for se2 2+6Up/2-08, 3) (8.7)

e (1/B) = Ni/2 P (NClz(:gé)) (2 sin(ﬂfﬁ - 2)))1/2

L—-1 ~
X exp ( 9:(%) ) +O(MN2) for ze(2+06,5/2-0) (88)

N20—1
=1

with L = |a - N/2]. The implied constants in (8.7), (8.8) are absolute.
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8.3. Estimating ¢ (N, k, o)
With Lemma 8.1 and (8.7), we see that

E1(N,0) = 2Re > Q1o (N) + O(NeWN/2) (8.9)
k : 2€(2+4, 5/2—45")

and so we may restrict our attention to indices k corresponding to this range. Let
f(z) := x cot(z),

a smooth function of z € R except at x = +m, 27 ... and with f(0) = 1. Note the
identities

f(=z) = f(2), [flm+z)=f(x)+mcot(z), f(r—x)=f(x)—mcot(z)

for example. Let m = N — 2k as before, so that 0 < m < k. With (8.9) we may
assume
0k <m < k/2 -k,

and in particular, m # 0. For m < k/2, the sum we need from (8.5) is

> (F)- = ((F) ()

1<GEN, kfj m<j<k—m

> (@) (5) = (58) o (5 ) 0 (5))
=5 1§<:mf <%) + 2m<jz<;€7mf <%> . (8.10)
With p(z) := log((sin 2)/z), we have
fl@)=1+zp/(2)
and for d € Z,

FD(z) = zcotD(z) + dcotd=V(z) (8.11)
= 2p' Y (2) 4+ dp'¥ (). (8.12)

Since p(¥(0) equals 0 for d odd, (and equals —2%|By|/d for d even), we see
F9D0)=0  (dodd). (8.13)
Also note the relation

FD(r — ) = (1) (f<d> (z) — 7 cot@ (x)) . (8.14)
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Applying Euler-Maclaurin summation to (8.10), as in [12, Chap. 2] or [7, p. 285],
and simplifying with (8.13), (8.14) produces

S r(Z) = [ (5 as

ISGSN, Kty
e[ 1) -Gy () e ()

L—1
Bag (m\21 g a0y (T (20—1) (T
for
2L m k=m1 By, — Bap(z — | x
er(m,1/k) == (%) l5/0 +2/ 2L (;z()! 2)) pear) (%) d.
(8.16)
With the evaluation
¢
/ x cot(z) dx = %Clg(Zt) — tCly(2t)
0
we find
momx k=m k ,
5/0 f (7) dx+2/m f (7) dz = o Clo(2mm/k) — N Cly(2am/k).

Using (8.11) also, (8.15) becomes
TN ™

Z f (%) = %Clg(Zwm/k)—NClé(Zwm/k)— g—l—%cot (T)

ISGEN, ki

+z_: 5;;' (%)2#1 {% cot =) (%) + (20— 1) cot*~2) (%) }—l—EL(m, 1/k).

(8.17)
Define
Go(z) == % (m2)2! {7rz otV (m2) + (20 — 1) cot¢-2) (m)} .
With (8.5) and (8.17) we have demonstrated that
Cly(272)  2Cly(272) 22 1 [2%cot(m2) 22 52
N = — _— | — _— —
(N, k,0) [ An?i omi 4| TN | @ 1 4mi
022 2 R gs)  en(m,1/k) (518)
N2 2mi N2t 2mik '
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which we write as

BN ko) = Y GntlD) ol b

though only ¢, 2(Z) depends on o.
Proposition 8.3. For 1 < m < k/2 we have

ler.(m,1/k)]|
21k

2L—1
<27r2(2L—1)<2L_1> .

2mem

Proof. The arguments here are similar to those in [9, Sect. 3]. Use the inequalities

|Bgn| < 7T2
(2n)! = 3(27)2n
from [7, Thm 1.1, p. 283] and [12, (9.6)] to see that

len(m, 1/k)| < % (%)QL [5 /Om +2/:_m] 2 (”—;)‘ dr.  (8.19)

By [12, (11.1)]

|Ban — Ban(2 — |2])] < 2[Baal,

/ _ - 22T|B2T| 2r—1
) =3 w (jul < ) (3.20)
so that
pl@ () <0 forall ze€l0,7), de Zso.
Hence (8.12) implies
f(d)(a:) <0 forall =ze€(0,7), d€Zx

and ‘f(QL) (TFJ)/]C)‘ = —fCL) (rx/k) in (8.19). On integrating and applying (8.13),
(8.14) we obtain

leL(m,1/k)| < —g (%)Ml (f(zL—1) (%) + 27 cot LD (%)) _

F(3) " (o () 2 () - - (22

with the last line coming from (8.12) and the further identity

—1)4a!
coi@(e) = S 4 )
Use d
2rd! [ 2
‘p(dﬂ)(x)‘ < =5 <;> (Jlz| < 7/2, d € Zxo)

from (8.20), and (n —1)! < 3(n/e)" from Stirling’s formula, to complete the proof.
(|
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8.4. Approximating &; (N, o)

With (4.2) for m = 2 we find, for 2 < z < 3,

12(2 j ,
% - %r(z —1+2/2)=—2mi+ . {Lig(e%”) — Liy(1) — 472,
Put

1

2miz
1/2 . 2L—1
z —miz ¢a€(z)
N = — . .22
ae (2 N, o) (QSin(wz)) exp( 2 )X ;:;) Nt (8.22)

omicy = ge(2)
ve(z; N,0) :== N + N2 (8.23)
=1

re(z) : [Lig(ez’”z) ~ Lig(1) — 4#2} (8.21)

for L := |- N/2] in (8.22) and (8.23). Also set

1 1 . . 5
Ey(N,0) = WRe Z ﬁexp(N'rg(z))qg(z;N, o)exp(ve(%; N, 0)).
k : 2€(2+4, 5/2—45")

The terms summed for £ (N, o) above differ from the terms in & (N, o) only
in the removal of the error terms from the approximations of H]_\,172k(1 /k) and
¢(N,k,0). The next proposition lets us control what happens on removing the
error term for ¢(N, k, o).

Proposition 8.4. Suppose A and W satisfy 0.0048 < A < 0.0079 and Alogl/A <
W. For the integers k, s and m we require

1<k<s, Ra<s, As<m<k/2.

Then for L := |weA - s| we have

[T, (/0 L) (e
ulm /) _
=00

Proof. We may copy the proof of Proposition 4.8 in [9, Sect. 3.4]. The bound

used for Ty (m,h/k) in that result is (gﬁe_nll)%fl. The corresponding bound for
er(m,1/k)/(2mik) in Proposition 8.3 is bigger by a factor 2L — 1 < s. O

Choosing s = N/2 and m = N — 2k in Proposition 8.4 shows
€L (ma 1/k)

T oe (1) 2R v (820
% — O(N) (8.25)

for N>2-Ra, L=|a-N/2| and 2+ A/(1 - A/2) < 2 < 5/2.
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Proposition 8.5. For an implied constant depending only on o
E1(N,0) = & (N, o) + O(NeVN/2),

Proof. Starting with (8.9), write

Z Qlka(N)

k : 2€(2+6, 5/2—4')
_ Z Qlko’
o(N, k,0) 0)

k: 2€(248, 5/2—6")

2L—-1

m,1/k
Zd) (3) L<2m_k/ >>

where
(N s . -
(z}\;; ]i 0)) B 2112 exp <N im(2 21 +2/2) W;Z 2maz> HN L (1/K)

by (8.4). We have

Z Qiro(N) er(m,1/k)
X o(N,k,0) 2mik
k : z2e(2446, 5/2—¢")

>

k: 2€(248, 5/2—6")

er(m,1/k) WN/2
(1/]6)72771'1@ < Ne

using (8.24) and that
A A

1—A2 S1-A
so the bound (8.24) is valid for 2 € (2+ 6, 5/2 — §’). Therefore,

E(N )—2R Z Q1iro (N <2§:1¢ )—I—O(N WN/Q) (8 26)
14V, 0) = 2he d)(Nk'a e - (8.

k : 2€(2+4, 5/2—45")

<46

Next note that

2L—-1

Z QSUZ,\l;Ez)

£=0

er(m,1/k)
2mik

< |o(N ko) +

‘ <N (8.27)

by Lemma 8.1 and (8.25). With (8.27) we see that replacing Hx,l_%(l/k) in (8.26)
by the main term on the right of (8.8) changes &£ (N, o) by at most O(NeVN/2),
as required. O

Comparing (8.21)-(8.23) and (5.9)-(5.11) gives the relations

2L—1
re(z) = re(2), qe(z;N,0) = qc(z Z d) , ve(z; N,0) =ve(z; N, o)
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so that we may reuse our work from Section 5. We fix the choice of constants as in
(5.17).

Lemma 8.6. The function qg(z; N, o) is holomorphic for 2 < Re(z) < 5/2. In the
box with 2+ 6 < Re(z) < 5/2—¢" and —1 < Im(z) < 1,
qge(z; N, o) < 1 (8.28)

for an implied constant depending only on o € R.

Proof. The first issue is that ¢, o(z) has only been defined in (8.18) for z € R. Use
(4.2) and its derivative with m = 2 to show
1 X )
bo0(2) = g [Liz(1) — Liz(e*™*) + 67% — 2mizlog(1 — €*™*%)] (8.29)
™
giving the analytic continuation of ¢, o(z) to all z with 2 < Re(z) < 5/2. It follows,

as in Theorem 5.4, that ge¢(z; N, o) is holomorphic in z as required. The bound
(8.28) follows from

]3722(;?1 < N(FME(Z( —1)+ FN7E(2€))6—W|y|7

with Fy . defined in (5.16), as in Proposition 5.2 and Corollary 5.3. O

With the rectangle C from Figure 4 we find

-1 ge(z; N, 0) .
52(N, O') = WRG /C1 exp(N . TC(Z))W exp(vc(z, N, O')) dz
where
1 243 e NE i Tmz >0
2itan(mN/z) | —-1/2 — dis1 e2™iiN/z if Tmz < 0.
The arguments of Propositions 5.5, 5.6 and 5.7 now go through almost unchanged:
EQ(N, O')
-1 ! .
= WRG ;} /C+ exp(N(re(z) + 2mij/z])qe (z; N, o) exp(ve(z; N, 0)) dz
]\ 1

B Z//_ exp(N[TC(Z) + 27Tij/z])q5(z;N7 o) exp(’uc(,z;N7 o’)) dz +O(6WN/2)’
J=20 1

the term with j = —1 is the largest and
Ey(N,0) = E(N, o) + O(eWN/?) (8.30)

for W = 0.05, an implied constant depending only on o, and

1 2.49
E(N,o) := WRe/201 exp(—N-p(z))qg(z;N, o) exp(vc(z;N, 0)) dz. (8.31)
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8.5. The Asymptotic Behavior of & (NN, o)

Arguing as in Lemma 8.6 shows the next result.

Proposition 8.7. For 2.01 < Re(z) < 2.49 and [Im(z)| < 1, say, there is a
holomorphic function &.(z; N,0) of z so that

Dok 1
ge(z;N,o) = Z —|—£TzNJ) for &.(z;N,0) =0 N
with an implied constant depending only on o and r where 1 < r < 2L — 1 and
L = |0.0067e - N/2].
We restate Theorem 1.7:
Theorem 1.7. With ey = —3z1e~ "1 /2 and explicit e;(0), e2(0),... depending
on o € Z we have

(8.32)
for an implied constant depending only on o and m.

Proof. With Propositions 5.13 and 8.7, write

r—1 d—1 (5
qe(z; N, o) exp(vc(z;]\f7 U)) =qc(z) ( ¢GJ\’;£Z)> ' uw(. )

k=0
+qe(2;N,0)Ci(z; N,0) + &-(2; N, o) exp(vc(z; N, U)) —&(z;N,0)Ca(z; N, 0).

Then putting this into (8.31) and moving the line of integration to Q (see Figure
5) gives

r—1 d—1
£s(N,0) = N3/2Re/QeXp(_N'p(z))qC(Z> (kz %NL'EZ)> UJUN;EZ) dz
=0

Jj=0

lw(0,-2)|7N /1 1 1
+0 ( N3/2 ‘Nd + NT + Nd+r - (8.33)

The integral in (8.33) is
d—

r—1 1

ZN3/2+k+J / eXp(—N-p(z)) ( )¢a k( )uo'j( )dz

k=0 7=0

and applying the saddle-point method, Theorem 1.8, gives

r—ld- 1 —N-p(z1) ags( .
25(qc - Pok - Us ;) L
3 e (Soro i et o ([ ).

k=0 j=0
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Letting S = r = d we obtain, as in the proof of Theorem 5.14,

t—s

E(N,0) =Re |e szl)ZNiQZZF (s +1/2)a2s(qc - ok - Vo, t—s— k)]

s=0 k=0
w(0. —2)|~N
+0<|(]’V%2|). (8.34)

Hence, recalling Proposition 8.5, (8.30) and with

t—s

t
=2 ") "T(s+1/2)a2(gc - bok  Uot—s—k); (8.35)

5=0 k=0

we obtain (8.32) in the statement of the theorem.
Computing eq(o) with (8.35) gives

co(0) = 2Vmao(ac - do0 - 1) = 275 202 )I/Qqc(zl)%o(%)

With the identity
27miz*p' () = Lip (e*™%) — Lis(1) + 2mizlog (1 — ™)
from [9, Sect. 2.3] we find that

672 — 27miz2p/(21)

3
boo(er) = ) 2

Combine this with the calculations in (5.45) to get eg(0)? = 922e~2™*1 /4 and the
formula for ey = eg(0) in the statement of the theorem follows. O

For example, a comparison of both sides of (8.32) in Theorem 1.7 with 0 = 1
and some different values of m and N is shown in Table 4.

N | m=1 m =2 m =3 m=4 | &(N,1)
800 | 879.611 905272  909.048  909.358 | 909.337
1000 | —789369. —784383. —784458. —784480. | —784480.

Table 4: Theorem 1.7’s approximations to & (IV, 1).

Proof of Theorem 1.3. Recall the sets B(K,N), C(N), D(N) and E(N) from
(3.33), (1.14), (1.15) and (1.16) respectively. Then

~ — (100 UA(N)) = B(101,N)UC(N) UD(N) U E(N).
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Summing Quk, (N) for h/k € B(101,N) is O(eWN) for any W > Cly(r/3)/(67) ~
0.0538 by Theorem 3.5. Since

—log |w(1,—3)| ~ 0.0356795,
—log |w(0,—1)|/2 ~ 0.0340381,
—log |w(0, —2)| ~ 0.0256706

we see from Theorems 1.5, 1.6 and 1.7 that the sums of Qpro(N) for h/k € C(N),
D(N) and E(N) are O(e®0357N)  O(e0-0341N) and O(e%02°7V) respectively. This
completes the proof. O

As a final remark, comparing Tables 4 and 1 we notice that & (N,1) is almost
exactly 3 times the size of C2(V, 1) and that their asymptotic expansions also seem
to match. This is true for other values of ¢ too. From Theorems 5.14 and 1.7 we
have

3-ci(o) = et(o) (8.36)

for the first expansion coeflicients at t = 0. Numerically, (8.36) seems to be true for
all ¢, as we mentioned before in (1.25).
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