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Abstract

A variant of the object redistribution game Bulgarian Solitaire may be defined
using rules for pile reduction which vary among piles of different sizes, but remain
consistent for piles of a particular size throughout a single game. Such a variant may
produce behavior that deviates significantly from that established for the original
version. Bounds on maximum cycle length found in such variants are provided, as
are conditions associated with cycles of positions which are “isolated,” in the sense
that no position outside the cycle leads to any position within it.

1. Introduction

The game known as Bulgarian Solitaire came to the attention of mathematicians in
the early 1980s. The papers about it from that time include [2, 8, 1]. In Bulgarian
Solitaire, a set of cards (or any other type of stackable objects) is separated into
any number of piles, each of any desired size. One “turn” of the game involves
removing the top card from each pile, and using the collected cards to make a new
pile, which is then reduced on subsequent turns along with whatever piles remain.
Turns are taken until a repeating cycle of identical positions is reached. The original
interest in the game came from the desire to explain the empirical observation that
when a triangular number T, = 1+ 2 + --- + k of cards is used, one inevitably
reaches the “triangular position” consisting of piles of size 1,2,...,k — 1, and k,
regardless one’s choice of starting position. If the number of cards is not triangular,
then different starting positions may lead to different cycles of positions which are
“nearly” triangular. Characterizing these cycles is the main contribution of Akin
and Davis [1]; some of their results are summarized in Theorem 3 below. Because
players only follow rules mechanically, and do not choose between different possible
courses of action, Bulgarian Solitaire is not really “solitaire” in the sense most
people mean the word. (Nor is it particularly Bulgarian! See [5] for information on
the game’s origins.)
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Many modifications of this basic game have been suggested in the literature.
Both Carolina Solitaire [4] and Montreal Solitaire [3] distinguish not just the size of
piles but also the order of their creation; the latter also keeps track of some vacated
positions. Austrian Solitaire [1] collects cards in a “bank,” from which new piles
are created only of a certain fixed size. In [9], a stochastic version is analyzed in
which piles are reduced only with a certain probability. In another version [7], the
player creates several new stacks via some fixed number of rounds of pile reduction
before adding them all simultaneously to the playing field. Still another [5] requires
the player to reduce only those piles which have at least a certain fixed height. (We
are grateful to Brian Hopkins for sharing his knowledge about these variants.)

Common to all variants mentioned is that piles are reduced by either one or no
cards. We wish to put forward what we believe is a novel variant of Bulgarian
Solitaire — actually, a whole family of variants — based on rules for pile reduction
which allow one to remove any number of cards from a given pile. The number
removed varies among piles of different sizes, but remains fixed for all piles of a
particular size throughout the game. As in the original, the collected cards are used
to create a single new pile, which is reduced on subsequent turns, according to the
rule for piles of its size. To give one simple example, a player could remove two
cards from every pile, except for piles with a single card, which are eliminated. In a
more interesting example, a player could remove three cards from any pile divisible
by four, and otherwise remove one card. In this game, a player beginning with piles
of sizes 11, 9, 8, 4, and 2, would, after a single move, have reduced piles of sizes 10,
8, 5, 1, and 1, and a new pile of size 9. The next position would have piles of size
9,8, 8,5, and 4.

Many of the questions asked and answered for Bulgarian Solitaire thirty years
ago can be looked at anew with each such variant: How many turns until a position
is repeated? How long can cycles of positions be? How many cycles are possible?
To discuss some of these questions, we introduce notation and terminology for the
formal representation of these variants.

Unless noted otherwise, n is a fixed but arbitrary positive integer. A partition
of n is a way of writing n as a sum of positive integers, in which the order of
the addends is irrelevant. We think of partitions as multisets of positive integers,
written p = (p1,p2,.-.,Pm). By convention, p; are placed in non-increasing order.
Each p; is called a part of p. The set of all partitions of n is denoted by P,,. A rule
(for n) is a function o : {1,2,...,n} — {0,1,...,n — 1} for which o(i) < . For a
rule o and i < n, let Ai =i — o(i). Also, for p € P,, let Ap =" Ap,. (We should
write something like A7 and so on, but o will always be apparent from context.)
A rule ¢ may be used to define a function ¢ with domain P, as follows:

ap=(o(p1), o(p2), ..., c(pm), Ap).

So @ p is a partition, and as such its parts may need reordering to conform with
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convention. It follows that ¢ p € P,,, because

Ap=Y Api=> (pi—op) =Y pi—Y op)=n—> o)

and therefore

(Do) +ap= (D o)) +n=> o) =n

Thus & is an operator on P,. The intuition for our purposes states that the piles
of n cards represented by p are each reduced according to rule o, and the collected
cards are deposited in a new pile, Ap. Each rule for n can be thought of as defining
one possible variant of Bulgarian Solitaire. (From now on, when we speak of a
variant of Bulgarian Solitaire, we mean one defined this way.) The original version
is given by the rule which we call g, defined as 8(i) = ¢ — 1. It is easy to see
that there are n! distinct rules for n. However, many rules which are distinct as
functions produce identical operators. For example, if o and 7 are rules for n which
are identical except that o(n) = n — 7(n), it follows that ¢ = 7.

Example 1. Consider the rule for n =8
(12345678
7“1 21303 6)
that is, 0(1) = 0(6) =0, 0(2) = 0(4) = 1, and so on. Beginning with the partition
= (4,4), we have 6 p = (0(4),0(4),Ap) = (6,1,1). Since the parts 1 and 6 are

sent to zero by o, we have & (6,1,1) = (8). One may check that the following
sequence of partitions results from successive applications of ¢ (indicated by —):

N W

(4,4) = (6,1,1) = (8) = (6,2) — (7,1) — (5,3)
— (3,3,2) — (3, 2,2, 1) (4, 2,1, 1) (67 1, 1)

The sequence of positions following (6,1,1) will continue repeating with further
applications of &.

For p = (p1,...,pm), let £(p) = m, i.e., £(p) is the number of parts in p.

Proposition 2. Let p € P,,, and let o be a rule for n. Then
(@p)1 = Ap = {(p) = (ap) — 1.

Proof. First, Ap is a part of & p, and so it is not more that the maximum of those
parts, which by convention is (¢ p);. Because p; > o(p;), we have Ap; = p;—o(p;) >
1, and so Ap = > Ap; > 1-£4(p) = {(p). It may be that o(p;) > 0 for all 4; in this
case, & p has one part for each part of p, plus a new part, Ap. If o(p;) = 0 sometimes,
then & p has even fewer parts. Therefore, ¢( p) < {(p)+1,i.e., {(p) > L(cp)—1. O
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2. Bounds on Cycles

If o is a rule for n and i is a positive integer, then &' represents i-fold application
of the operator to members of P,. If 3° p = p for some positive integer i, then p is
called cyclic (with respect to &) . The orbit of a cyclic element under & is called
a cycle (with respect to ). The length of a cycle C' is just |C|. For every p € P,
&' p must be cyclic for some 4, because P, is finite.

Much of our interest in variants of Bulgarian Solitaire is directed at cycles.
Length of cycles in many variants differs from that of cycles found in the origi-
nal version. In particular, cycles of significantly greater length can be found. In
order to compare, let us briefly review the relevant results for Bulgarian Solitaire.
Define t;, = (k,k — 1,...,2,1) (so obviously t; € Pr,). Also, let d € {0,1}**1,
and define t;, + d to be the partition which results from coordinate-wise addi-
tion, where t; is “padded” with a zero on the right if necessary. For example,
ty +(1,0,0,1,1) = (5,3,2,2,1). If d = (dy,da,...,dxr1), then d" is defined as
the sequence resulting from applying a rightward, wrap-around shift to d, i.e.,

d" = <dk+1,d1, ey dk> Similarly, JZ = <d2, dg, ey dk+1, d1>

Theorem 3 ([1]). Let p € P, and let k be greatest such that n > Ty,. Then for
Bulgarian Solitaire with n cards (with rule 8(i) =14 — 1),

1. p is cyclic if and only if p =ty +d for some d € {0,1}F+1.
2. In this case, B (ty, +d) = tx +d" and B (tx + d°) =t} +d.
8. As a consequence, B (), +d) = t1, +d, and

4. Bp=p if and only if n = Ty, and p = t.

Example 4. Since 12 lies between Ty = 10 and T5 = 15, the cyclic positions in
Bulgarian Solitaire for n = 12 have the form ¢, + d, where Y. d; = 2; there are
(g) = 10 distinct d € {0,1}> with this property. With a little scratch work, one
finds that the cyclic partitions form two cycles, both of length 5, which are the
orbits of (5,4,2,1) = ¢4+ (1,1,0,0,0) and (5,3,3,1) = t4 + (1,0,1,0,0).

Since T}, = %(/ﬁ:2 + k), we can deduce that maximum cycle length in Bulgarian
Solitaire with n cards is bounded above by 1 + v/2n, using Theorem 3. Of course,
cycle length should be compared to | P, |, which due to results of Hardy, Ramanujan,
and Rademacher [10] is known to be asymptotic to exp(m+/2n/3)/(4n+/3). Another
point of interest in Bulgarian Solitaire is the difference in these two rates of growth;
cyclic partitions are a striking minority for large values of n.

Let p,, be the maximum cycle length found as ¢ varies among all rules for n.
Example 1 demonstrates both that pug > 8, and that u, in general may be greater
than maximum cycle length in original Bulgarian Solitaire; by Theorem 3, the
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n Lim tn /| Pl Example rule

3 2 0.66666 (603)

4 4 0.80000 (6152)

5 4 0.57142 (67363)

6 7 0.63636 (67318%)

7 8 0.53333 (633636%)

8 10 0.45455 (61033508%)

9 12 0.40000 (613353648%)
10 18 0.42857 (5334355289
11 23 041071 (334567891011

Table 1: Maximal cycle length and an example of a rule producing one.

longest cycle for n = 8 has four partitions. Table 1 shows the values of u, for
n < 11, based on exhaustive computer-based searches. It also gives an example of
a rule producing a cycle of maximal length. We have determined with computer
search that p, exceeds n for all 6 < n < 100; exceeds 2n for 11 < n < 100; exceeds
3n for 22 < n < 100; and exceeds 4n for 28 < n < 100. Many conjectures are
suggested by these findings, in particular, ones concerning upper and lower bounds
on maximum cycle length. The remainder of this section provides such bounds,
although we feel confident that better ones may be found. We begin by showing
that growth in pu,, is at least linear.

Proposition 5. For each value of n, a rule T may be found with respect to which
there is a cycle of length at least 5 + %

Proof. For a given n, let 7 be the rule defined as

0 if k< ntl
(k) = rr=
k —1 otherwise.

When 7 is applied to the parition (n), the result is (n — 1,1). Then 7(n — 1,1) =
(n —2,2), assuming n > 3. For ¢ < %, we have 7 (n) = (n — i,i). If n is even,
then 72 (n) = (%,%), in which case 727 (n) = (n). If n is odd, then 7T (n) =

(2, 2-1) and then 7 (n) = (n). Thus the orbit of (n) under 7 is a cycle of

length at least 5 + % O
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Our strategy for bounding cycle length from above is to show that many parti-
tions cannot be part of any cycle. One example of this approach is the following:

Corollary 6. Letp € P, and let o be a rule for n. If py < {(p) — 1, then there is
no q € P, such that dq = p. As a result, p is not cyclic when p; < £(p) — 1.

This is a straightforward consequence of Proposition 2, and reflects the intuitive
wider” than they are “tall” tend to have
few or no predecessors. (In the context of Bulgarian Solitaire, partitions with no
B-predecessor have been called “Garden of Eden” partitions, e.g., in [7].) This idea
is generalized in the following results.

[43

observation that partitions which are

Proposition 7. Let o be a rule for n, and suppose p € P, is cyclic with respect to
0. Then the number of parts of p equal to 1 is not more than 2v/n+1 — 1.

Proof. Let k be the number of parts in p equal to 1, and to arrive at a contradiction,
suppose k > 2y/n+1—1. Let ¢, € P, be such that ¢ = p and 6r = q. (The
existence of r and ¢ is assured because p is cyclic. Note that p, ¢, and r need not
be distinct.) It may be that Ag =1, so let ¢;,,...,q;,_, be parts of ¢ which we are
sent to 1 by 0. Since g;; > 0(g;;) = 1, each of these k — 1 parts has size at least 2.
Therefore, > q; > 2(k — 1), i.e., n > 2k — 2.

Now considering r, it may be that Ar = ¢;, for some j. Still, for m # j, some
part of r is reduced to make ¢; . Thus, we can say with certainty that r has k — 2
parts of size at least 3, and therefore n > 3k — 6.

We can iterate this reasoning for an arbitrary predecessor of p. Let i be a positive
integer with ¢ < k, and let s € P, be such that 6°s = p. Then s has k — i parts of
size at least i + 1. As a result, we deduce that

n=> s> (k—i)(i+1)=ik—i+k—i. (1)

Suppose k is odd. When i is equal to %, the right side of (1) takes the value
i (k‘2 + 2k — 3). Now k = 2v/n+1 — 1 is readily seen to be a solution to n =
1(k? + 2k — 3); since k > 2y/n+ 1 — 1, we have shown that n > n, a contradiction.
Now suppose k is even. Setting i = g, we get n > i(/ﬁ:2 + 2k) from (1). But
since (k% + 2k) > (k% + 2k — 3) > n, we have a similar contradiction. By this

contradiction, k < 2y/n+1— 1. O

Corollary 8. Let o be a rule for n, and let C C P, be a cycle with respect to o.
Then no member of C' has more than 2v/n+ 1 — 1 parts equal to 1.

Proposition 9. Let C C P, be a cycle with respect to rule o. If m is any integer
greater than 2v/n+ 1 — 1, then |C| < |P,| — |Po—m|.

Proof. Define D C P, as all partitions with at least m parts equal to 1. By Corol-
lary 8, C C P, \ D, and so |C| < |P, \ D| = |P,| — |D|. Thus it suffices to show
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that |D| = |P,,—m|. For every partition p € D, there is a unique partition in P,,_,,
which results from dropping m copies of 1 from p. On the other hand, adding m
parts equal to 1 to a partition in P,_,, identifies a unique member of D. Thus
|D| = |Pn—m| 0

Allowing m to be the least integer greater than 2v/n+ 1 — 1, and using the
asymptotic formula for |P,| mentioned above, the value of |P,_,,|/|P.| will tend

towards
— /2 1+1 2
%-@(p(ﬂ\/%(\/n—%/n—f—l—kl—\/ﬁ))

for large values of n. Standard analytic methods show that this expression ap-
proaches exp( —77\/2/_3) ~ 0.0769 as n approaches infinity. Thus, Corollary 8 may
be understood (roughly) as forbidding cycles which include more than 93 percent of
all partitions of n. Available evidence suggests a much better bound may be found.

3. Isolated Cycles

In Bulgarian Solitaire with two cards, each turn alternates between the only two
positions, (2) and (1, 1), and so all partitions are cyclic. For any larger value of n,
Bulgarian Solitaire has both cyclic and non-cyclic partitions. However, every cycle
is “lead to” by at least one partition outside of it. Stated more carefully,

Theorem 10 ([6]). In Bulgarian Solitaire with n > 2 cards, if p € P, is cyclic,
then there is some non-cyclic ¢ € P, and some positive integer i such that 5°q = p.

Not surprisingly, many variants of Bulgarian Solitaire lack this property. Con-
sider the rule p = ({23 83). For it, the positions (3,1), (2,2), and (2,1,1) form a
cycle; since p(1,1,1,1) = p(4) = (4), no other partition of 4 leads to a member of
this cycle. If o is a rule for n, we call C C P, an isolated cycle (with respect to &)
if C' is a cycle, and every g-predecessor of an element of C' is also in C.

Proposition 11. For all even n except 6, there is a rule for n which has an isolated
cycle.

Proof. The cases for n = 2 and n = 4 have been treated by the examples above.
Theorem 15 below handles the case for n = 8.

Let n > 10 be even. It follows that n —4 > 3 — 1 > 2. Define a rule o by
on—4)=5—1,0(5 —1)=2,0(2) =1, and otherwise o(k) = 0. (By the above
inequality, o is well-defined as a rule.) For the partition p = (n — 4,2,2) we have
op=(5—-1,5—-1,1,1) and o%p = p. We show that p and &p have only each other

for predecessors. Suppose g € P, is such that ¢ = p. Since o(k) # n — 4 for all k,
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it must be that Aq = n—4. It follows that ¢ has two parts which o sends to 2; those
parts must be equal to § —1. Asn —2(5 — 1) = 2, g either has one remaining part
equal to 2, or two parts equal to one. In the former case, g = (n — 5,2,2,1) # p.
Therefore, ¢ has two parts equal to one, and so ¢ = dp. Next, suppose g € P, is
such that 6q = op. Because n —4 > 7, g cannot have two parts equal to n — 4,
and so it has one part equal to n — 4 (sent to § — 1 by o), and Ag = § — 1. The
remaining parts of ¢ must be reduced to the remaining parts of ap, both equal to
1; the only possibility is that ¢ = (n —4,2,2) = p. This shows that the two-element

cycle containing p is isolated. O

Thus we can find isolated length-2 cycles for arbitrarily large even n. We next
develop another approach which identifies isolated cycles of arbitrary length, many
of which are for odd values of n.

In the remainder, let k& be a fixed positive integer greater than 2. Define a rule

«y, for n as follows:
. 1—1 i<k
o (i) =

0 otherwise.

Proposition 12. Let p =t,_1 +d for some d € {0,1}*. There is a unique q such
that &y g = p if any of the following hold:

1. k is a part of p,
2. 4(p) =k, or
8. k —2 is not a part of p.

Proof. Begin by observing that aj, agrees with 5 on the parts of t;,_; + d¢, because
they are all equal to k or less. Therefore by Theorem 3, ay, (t_1 +d’) = B (tx—1 +
d*) = p, and we may conclude that p has at least one ay-predecessor. For the
remainder, let ¢ be any ag-predecessor of p.

First suppose k is a part of p. Since ay(i) # k always, it must be that Aq = k.
It follows also that no other part of p can be equal to k, so all other parts of p
are strictly less than k. Thus the remaining parts of p have unique preimages with
respect to ag, so ¢ must contain these preimages. All other parts of g are sent to 0
by ax, and so these parts are either equal to 1, or greater than k. However, if any
of them were greater than k, then Ag would be as well; as it is not, all remaining
parts are equal to 1. The number of such parts (which may be zero) is determined
by Aq = k and the other parts of q. This shows that ¢ is uniquely determined, i.e.,
that p only has one predecessor.

Second, suppose £(p) = k. We may assume that k is not a part of p, as that
case has already been handled. Then Ag must be k — 1, since Ag > £(ax q) — 1 =
£(p)—1=k—1. As in the previous case, all other parts of p have unique preimages,
and all parts sent to 0 by a must be equal to 1. Therefore, ¢ is determined uniquely.
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Finally suppose k — 2 is not a part of p, and assume that k is not a part of
p and that £(p) # k (from which we may infer that ¢(p) = k — 1). As before,
Ag>{l(p)—1=k—2,s0 Ag =k —1. All other parts of ¢ are uniquely determined
as in the previous cases. ([l

Proposition 13. Suppose p = ti,_1 + d where d € {0,1}*. Also suppose that the
three conditions of Proposition 12 fail, i.e., k is not a part of p, k — 2 is, and
£(p) < k. Then p has at least two predecessors with respect to &y.

Proof. As already observed, ay (t,_1 + d°) = p, so we need only identify another
ag-predecessor of p. Let ¢ be the partition resulting from dropping the part equal
to k—2 from p, and adding one to the remaining non-zero parts. Since ¢(p) = k—1,
£(q) = k— 2. All parts of p are less than k, and so all parts of ¢ are less than k + 1;
clearly then we have ay (i) =i — 1 for all parts of g. As there are k — 2 such parts,
Aq=k—2,and so ayq = p. Finally, q # t),_1 +d’, because £(q) =k—2< k—1<
Uty +d"). a

Suppose p = ti_1 + d fails the three conditions of Proposition 12. We observe

some consequences for d. Note that p; = (t_1 +d); = (k — i) + d;.

e First, because k is not a part of p, we have k # p; = (k—1i)+d;, and so i # d;,
for all 4. This inequality is trivially true for ¢ > 1; for ¢ = 1, we must have
d; # 1. Therefore, d; = 0.

e From /(p) # k we may immediately infer py, = 0, so dy = 0.

e Finally, because k — 2 is a part of p, we must have k —2 =p; = (k — i) + d;
for some i. Solving, we have d; = i — 2. Either do =0 or d3 = 1.

Together, these facts imply that either

d= <0,0,d3,...,dk,1,0> or LZ: <0,d2,1,d4,...,dk,1,0>.

Other partitions in the orbit of p by aj have the form t,_; 4+ d’, where d’ may be
derived from d be sufficiently shifting its components (with wrap-around). Thus we
have:

Proposition 14. Suppose p = t;,_1 + d for some d € {0,1}*. Then the following
are equivalent:

1. d does not contain a subsequence of the form {...,0,0,0,...) or
(...,0,0,d;,1,...) (with or without wrap-around).

2. The orbit of p is an isolated cycle with respect to ay.

Theorem 15. There is an isolated cycle with respect to &y, when n satisfies Ty 1+
% <n<Tjg.
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Proof. Define d € {0,1}* as follows:

(0,0,1,0,0,1,...,0,0,1) ifk=0 (mod 3)
d=1{0,0,1,0,0,1,...,0,0,1,0,1,0,1) ifk=1 (mod 3)
(0,0,1,0,0,1,...,0,0,1,0,1) if k=2 (mod 3).

(Recall k > 3; d should be truncated appropriately from the left, depending on k.)
It follows that t;,_1 +d € P, for the least n’ > Th_1 + % Inspection shows that
d lacks either of the prohibited subsequences, so by Proposition 14, the orbit of
tp_1 + d is an isolated cycle with respect to ay. If n’ < n < T}, one may change
0 to 1 in n — n’ positions of d judiciously to avoid the patterns of Proposition 14.
(To do so, replace any 0 appearing immediately to the right of another; once all are
replaced, any 0 may be replaced thereafter.) For the resulting d’, ty_; +d € P,
and t;_1 + d’ has an isolated cycle with respect to ay. O

Corollary 16. Isolated cycles of arbitrarily large length may be found among vari-
ants of Bulgarian Solitaire.

Proof. Let n = T}, — 1, and define d € {0,1}* by d = (1,1,...,1,0). The proof of
Theorem 15 shows that p = t;_1 + d lies in an isolated cycle, the length of which is
k, using Theorem 3. O

It remains to settle the question of isolated cycles for the values of n not covered
by Proposition 11 and Theorem 15. It has been determined via computer-based
search that when n € {3,6,7}, no rule for n produces an isolated cycle. (Thus the
omission of n = 6 from Proposition 11 is unavoidable.) However, for odd values of
n lying between Tj_; and T + %, k > 5, the question remains open.
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