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Abstract
Grau and Oller-Marcén have defined k-Lehmer and k-Carmichael numbers as gen-
eralizations of Lehmer and Carmichael numbers, respectively. We partially resolve
some of their conjectures by proving that for infinitely many k there are Carmichael
numbers that are k-Lehmer but not (k � 1)-Lehmer. We also prove an analogous
result for k-Carmichael numbers.

1. Introduction

Let ' denote Euler’s totient function. If n is prime then '(n) = n� 1. A Lehmer
number [11] is a composite integer n such that '(n) | (n�1). It is an open question
whether any such n exist [9, B37]. Clearly, if n is a Lehmer number then

for all a 2 N, if gcd(a, n) = 1 then a'(n) ⌘ 1 (mod n). (1)

Let C be the set of composite numbers satisfying (1). Elements of C are called
Carmichael numbers [19, A002997]. In contrast to Lehmer numbers, it was shown
in Alford, Granville and Pomerance’s seminal paper [1] that C is infinite.

Generalizing Lehmer’s definition, Grau and Oller-Marcén [7] define sets L1 ✓
L2 ✓ · · · ✓ L1 by

Lk =
�
n 2 N : '(n) | (n� 1)k

 
, L1 =

1[
k=1

Lk

and show that C ⇢ L1. (The containment is strict. For example 15 2 L3 \ C.)
For k  1 let L0k be the subset of Lk consisting of composite numbers, so L01

is the (possibly empty) set of Lehmer numbers. An element of L0k is called a k-
Lehmer number [19, A238574]. McNew has shown [13, Theorem 4] that for k � 2��L0k \ [1, x]

��⌧k x1� 1
4k�1 .
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Note that we have L01 ✓ C ✓ L01. In this notation Lehmer’s original problem is
whether the “lower bound” L01 for C is non-empty. More generally we can ask how
C is distributed among the Lk.

If n 2 L1, we define the level of n, `(n), to be the smallest k such that n 2 Lk.
McNew and Wright [14] have recently shown that for every k � 3 there are infinitely
many integers of level k, but none of the numbers they construct are Carmichael.
Grau and Oller-Marcén conjecture that for every k � 2 there are infinitely many
Carmichael numbers of level k. Thus, conjecturally, the set `(C) contains every
integer greater than one. In §2 we prove a weaker result by showing that `(C) is
infinite.

Theorem 1. For infinitely many k 2 N there exists a Carmichael number of level k.
That is, C \

�
L0k \ L0k�1

�
is non-empty infinitely often.

Lehmer’s condition '(n) | (n� 1) for composite n is so stringent that it may be
impossible to satisfy. Another weakening of this condition is to replace the order
'(n) of the multiplicative group (Z/nZ)⇥ by the exponent of this group, �(n). As
Carmichael showed [4], the resulting analogue of Lehmer’s condition is satisfied
precisely by the Carmichael numbers: for n composite, �(n) | (n� 1) if and only if
n 2 C.

In another paper, Grau and Oller-Marcén [8] weaken this condition further.
Given k 2 N, they define a composite number n to be a k-Carmichael number
if �(n) | k(n � 1). Thus a 1-Carmichael number is precisely a Carmichael number
in the usual sense.

In analogy to `, we define k(n) to be the smallest integer k such that n is a
k-Carmichael number. We believe it is natural to ask which integers occur in the
image of k. If k were surjective it would mean that there are natural numbers, n,
that are arbitrarily far away from being Carmichael in the sense that �(n) only
divides k(n� 1) for large k. In §4 we prove the following:

Theorem 2. For every finite non-empty set S of primes, there exists n such that the
prime factors of k(n) are exactly the primes in S. That is, the function rad � k : N !
{n 2 N : n is square-free} is surjective.

We record some results and notation for future reference. If m is a positive
integer, let !(m) be the number of distinct prime factors of m. If G is a finite
group, let �(G) denote its exponent. In the special case G = (Z/nZ)⇥, write �(n)
for �(G), and call � the Carmichael � function. As n ! 1 we have �(n) ! 1.
Indeed, from Erdős, Pomerance and Schmutz [6, Theorem 1], for su�ciently large n

�(n) > log(n)log log log n. (2)

It is easy to see that any Carmichael number n must be odd and square-free.
Korselt’s criterion [10] states that a square-free integer n > 1 is Carmichael if and
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only if for each prime p with p | n it follows that (p� 1) | (n� 1). Finally we have
a simple lemma.

Lemma 1. Let a and b be positive integers, and let c be the least positive integer
such that a | bc. Then c = a/gcd(a, b) = lcm(a, b)/b.

2. Carmichael Numbers of Level k

Lemma 2. Let n 2 C, n =
Qk

j=1 pj. Then

`(n) = max
q|(n�1)

8<
:
2
666

kX
j=1

ordq(pj � 1)
ordq(n� 1)

3
777
9=
; . (3)

Each fraction in the sum lies in the interval [0, 1].

Proof. By Korselt’s criterion (pj�1) | (n�1) for each j = 1, . . . , k, so ordq(pj�1) 
ordq(n� 1) and each fraction is in [0, 1].

By definition, ` = `(n) is the smallest positive integer such that '(n) =
Qk

j=1(pj�
1) | (n� 1)`. Equivalently, ` is minimal such that for all primes q | (n� 1) we have
ordq

Qk
j=1(pj � 1)  ordq(n� 1)`. That is,

Pk
j=1 ordq(pj � 1)  ` ordq(n� 1). So

` is the smallest integer greater than or equal to
Pk

j=1
ordq(pj�1)
ordq(n�1) for every q, as

claimed. 2

Example. The smallest Carmichael number is n = 3 · 11 · 17 = 561 with n � 1 =
24 · 5 · 7, and

`(n) = max
q2{2,5,7}

⇢⇠
ordq(2) + ordq(10) + ordq(16)

ordq(24 · 5 · 7)

⇡�

= max
⇢⇠

1 + 1 + 4
4

⇡
,

⇠
0 + 1 + 0

1

⇡
,

⇠
0 + 0 + 0

1

⇡�

= 2.

Indeed '(n) = 26 · 5, so '(n) | (n� 1)2 but '(n) - (n� 1), and so `(n) = 2.
Since each fraction in (3) is bounded above by 1 we have a simple bound for `(n).

Recall that !(n) is the number of distinct prime factors of n.

Corollary 1. If n 2 C then `(n)  !(n).

This inequality is not tight in general, as the example n = 561 = 3 ·11 ·17 shows.
However, under some additional hypotheses the inequality is actually an equality.

Corollary 2. Let q be any prime. Suppose n 2 C, n =
Qk

j=1 pj and n 6⌘ 1 (mod q2)
is such that pj ⌘ 1 (mod q) but pj 6⌘ 1 (mod q2) for j = 1, 2, · · · , k. Then `(n) = k.
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Proof. By Korselt’s criterion q | (pj �1) | (n�1), so q is one of the primes indexing
the set in (3). The hypotheses of the corollary imply that each of the k fractions
in the corresponding sum is equal to 1, so the sum is k, which is the maximum
possible (so no other q0 | (n� 1) can produce a larger value). 2

This result takes a particularly simple form if q = 2, since the condition pj ⌘ 1
(mod 2) is automatically satisfied.

Corollary 3. If n 2 C and n ⌘ 3 (mod 4), then `(n) = !(n). Moreover, in this
situation `(n) must be odd.

Proof. Let n =
Qk

j=1 pj . If some pj ⌘ 1 (mod 4) then 4 | (pj � 1) | (n � 1) by
Korselt’s criterion, but this is impossible since n�1 ⌘ 2 (mod 4). So ord2(pj�1) =
1 for each j. Putting q = 2 in Corollary 2 shows `(n) = k. Furthermore, each
pj ⌘ �1 (mod 4) so n ⌘ (�1)k (mod 4) and so k must be odd. 2

In a recent advance, Wright [20] proved “Dirichlet’s theorem for Carmichael
numbers.” That is, for all positive integers a and m with gcd(a,m) = 1 there
exist infinitely many Carmichael numbers n with n ⌘ a (mod m). It is implicit in
Wright’s proof that n may be chosen with many prime factors. For clarity, we make
this explicit.

Theorem 3 ([20]). Let a,m 2 N with gcd(a,m) = 1 and let k 2 N. Then there
exist infinitely many Carmichael numbers n with n ⌘ a (mod m) and !(n) � k.

Proof. This is implicit in Wright, but requires close reading. It is di�cult to sum-
marize the arguments without reproducing much of the exposition there.

Fix a and m. (In the notation of [20], also fix ✓.) It su�ces to show the existence
of one such n, since if n1 2 C, n1 ⌘ a (mod m) and !(n1) = k1 > k, then there
exists n2 2 C with n2 ⌘ a (mod m) and !(n2) = k2 � k1+1. In particular, n2 6= n1

and the result follows by repeating this argument.
We sketch Wright’s proof. Let y be an integer parameter that we ultimately let

become very large. Construct an integer L = L(y) with many divisors d such that
dk0 + 1 is prime for some k0. Collect a certain subset of these primes into a set P
whose cardinality may be estimated. From [20, Lemma 4.3] the construction yields

log L� y. (4)

The desired n is obtained from the following:

Theorem 4. Let G be a finite multiplicative abelian group of exponent �(G), and
let P be a length p sequence of elements of G\{1G}. Then there exist integers n(G)
and s(G) � �(G)2 and a subgroup {1G} 6= H ✓ G such that each of the following
hold.
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1. If p � s(G) then P \H is non-empty.

2. If p � s(G) and h 2 H then there exists a subsequence of P whose product
is h.

3. Let t be an integer with s(G) < t < p� n(G) and let

Nt =
✓

p� n(G)
t� n(G)

◆
·
✓

p

n(G)

◆�1

.

Then for each h 2 H there are at least Nt subsequences of P of length at least
t� n(G) whose product is h.

Proof. Parts (1) and (2) follow from Baker and Schmidt [3, Proposition 1] (see
discussion after (1.14) in that paper), and part (3) follows from Matomäki [12,
Lemma 6]. Explicit bounds for s(G) and n(G) are given in these references but we
shall not need them in this sketch. 2

Now apply Theorem 4 in (at least) two di↵erent ways. Let G = (Z/mLZ)⇥, so
�(G) = �(mL). One shows p > s(G), so by Theorem 4(1) H exists with P \H 6= ;.
Let pH 2 P \ H. It is not di�cult to find r such that h := pr

H satisfies h ⌘ 1
(mod L) and h ⌘ a (mod m). Then Theorem 4(2) implies there exists a product,
n, of primes from P whose image in G satisfies n = h. Finally this n is shown to
be Carmichael using Korselt’s criterion.

Furthermore, Wright gives an explicit positive integer t = t(M,L) to use in
Theorem 4(3), such that:

s(G) < t < p� n(G), t� n(G) � 2
3
t, log Nt � ty.

Thus, for y large enough, Nt � 1 certainly holds and hence there exists n 2 C
with n ⌘ a (mod m) and !(n) � 2t/3. In particular, as y ! 1, L ! 1 by (4),
and hence �(mL)!1 by (2). Since !(n) � 2

3 t > 2
3s(G)� �(mL)2 it follows that

if y is chosen large enough then !(n) � k. 2

Combining Wright’s result with Corollary 3 we can now prove Theorem 1.

Theorem 5. For infinitely many odd integers k there is a Carmichael number of
level k.

Proof. Let m 2 N. By Theorem 3 there exists a Carmichael number n ⌘ 3 (mod 4)
with !(n) � m. By Lemma 3 `(n) = !(n) � m, and `(n) is odd. So for every m
there exists odd k � m and a Carmichael number of level k. The result follows. 2

The limitation that k is odd comes from using q = 2 in Corollary 2. Below we
construct many Carmichael numbers of large known level, both even and odd.
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3. Examples of Carmichael Numbers of Level k

Alford, Grantham, Hayman and Shallue [2] give a probabilistic algorithm for pro-
ducing Carmichael numbers with a large number of prime factors. They find ex-
amples with almost 20 million factors. By implementing a modified version of their
algorithm we were able to find Carmichael numbers of known level exceeding 105,
including examples of even level. We give details in Table 1. Calculations were
carried out in Pari [15].

The algorithm uses the following variant of Corollary 2.

Lemma 3. Let q be prime and M be any positive integer not divisible by q. Let

P = {p = qd + 1 : d | M, p - M, and p is prime} .

Suppose there exist distinct elements p1, . . . , pk 2 P with k � 3 such that the
product n = p1 · · · pk satisfies n ⌘ 1 (mod qM) and n 6⌘ 1 (mod q2). Then n is a
Carmichael number of level k.

Proof. Observe that (p � 1) = qd | qM | (n� 1) for all p 2 P, and thus n satisfies
Korselt’s criterion, so n 2 C. We have p = qd + 1 ⌘ 1 (mod q) for all p 2 P, and
each d | M , so q - d and thus p 6⌘ 1 (mod q2). So n satisfies the conditions of
Corollary 2 and hence has level k. 2

Let L = qM . The algorithm works by choosing M with many small prime factors,
generating the set P, and then searching for long products n that are 1 modulo L
but not 1 (mod q2). In the case q = 2 this is equivalent to choosing a product of
odd length.

q = 2
M2 = 38 · 54 · 72 · 112 · 132 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47

= 84131794904721984023979375
k = 101015, |P| = 101208
n = 4459278357 . . . 1375428751 ⌘ 3 (mod 4)
q = 3
M3 = 29 · 54 · 72 · 112 · 132 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47

= 6565383171958185615040000
k = 109544, |P| = 109691
n = 1712274852 . . . 4645120001 ⌘ 7 (mod 9)

Table 1: Carmichael numbers with level k > 105

Although this works well in practice, we cannot prove that such products n must
exist. Let �(n) denote the number of divisors of n of the form p � 1 where p is
prime, and, for a specific example, let M2 be as in Table 1 and consider L = 2M2.
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For this L one finds that �(L) = 101217. It is shown in [1, Theorem 2] that there
exists a product that is congruent to 1 modulo L, provided

�(L) � �(L)
✓

1 + log
'(L)
�(L)

◆
. (5)

But �(L)
⇣
1 + log '(L)

�(L)

⌘
⇡ 3.4 ⇥ 1012 is much larger than �(L), and yet we still

easily found many subsequences with product 1. It appears that inequality (5) is
stronger than what is really needed to guarantee such subsequences exist. Similarly,
Prachar’s lower bound for �(n) in [16] seems much smaller than our computed value
of �(L). An improvement of these bounds might lead to a proof that there are
Carmichael numbers of every possible level.

We note here a method of producing natural numbers that are the product of
only two primes (and hence not Carmichael) that have large known level. It follows
from Grau and Oller-Marcén [7, Proposition 5] that the product of any two primes
of the form p = 2ad+1, q = 2bd+1 for some odd d and a < b, is of level k =

⌃
b
a

⌥
+1.

Primes of the form p = 2nd + 1 for odd k and 2n > k are called Proth primes [19,
A080076]. If we take p = 21 · 3 + 1 and let q be the large Proth prime q = 2b · 3 + 1
where b = 10829346, then pq has level b + 1, which exceeds 107.

4. k-Carmichael Numbers

Recall that a composite number n is a k-Carmichael number if �(n) divides k(n�1),
where �(n) is Carmichael’s lambda function, which can be calculated as follows:

�(2h) = '(2h) for h = 0, 1, 2,

�(2h) =
1
2
'(2h) for h > 2,

�(ph) = '(ph) for odd primes p,

�(ph1
1 ph2

2 · · · phs
s ) = lcm

⇣
�(ph1

1 ), �(ph2
2 ), . . . , �(phs

s )
⌘

for distinct primes pj .

(This may be remembered as follows. Let a ⇤ b denote lcm(a, b). Then except for
the prime 2, � is calculated in the semigroup (N, ⇤) in the same way as ' in the
semigroup (N, ·).)

Of course �(n) always divides k(n� 1) for some k (such as k = �(n)), so we are
led to the following definition.

Definition 1. Let k(1) = 1, let k(p) = 1 for any prime p and for composite n define
k(n) to be the smallest integer k such that n is a k-Carmichael number.

Thus for n composite, k(n) = 1 if and only if n is Carmichael in the usual sense.
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Putting a = �(n) and b = (n� 1) in Lemma 1 gives a formula found in [8, page 7]:

k(n) =
�(n)

gcd(�(n), n� 1)
=

lcm(�(n), n� 1)
n� 1

. (6)

(This also holds for n prime, but not for n = 1.) For example, if p is an odd prime
then k(2p) = p� 1 and so lim sup k(n) =1, while lim inf k(n) = 1. In analogy with
`, we make the following conjecture.

Conjecture 1. The function k is surjective.

Since �(pm+1) or �(pm+2) = pm, it is clear that the image of k contains every
prime power. Unfortunately, k is not multiplicative: k(15) = 2, k(28) = 2, but
k(15 · 28) = 12.

Lemma 4. Let p be an odd prime and k � 2 an integer. If q = k(p � 1) + 1 is
prime then k(pq) = k.

Proof. Applying (6)

k(pq) =
lcm(p� 1, q � 1)

gcd
�
lcm(p� 1, q � 1), pq � 1

� (7)

=
k(p� 1)

gcd(k(p� 1), (kp + 1)(p� 1))
(8)

=
k(p� 1)
p� 1

= k. 2

In practice this result gives us an easy way of finding an n 2 N such that k(n) = k
for a given k 2 N. We have used it to show that there exists an n 2 N such
that k(n) = k for every k  106. For example, taking k = 106, we find that
q = 106 · (23� 1) + 1 = 22000001 is prime and so k(23 · 22000001) = 106.

Unfortunately Lemma 4 does not lead to a proof that k is surjective. Let fk(x) =
k(x � 1) + 1, and let g(x) = x. If there exists an integer x such that fk(x) and
g(x) are simultaneously prime then k(xfk(x)) = k so k is in the image of k. The
existence of an integer x where r linear polynomials simultaneously take prime
values is Dickson’s prime r-tuple conjecture [5]. It is well known (see [17, p. 372])
that if there exists such an x and Dickson’s conjecture is true, then there must be
infinitely many such x. Hence:

Corollary 4. If Dickson’s prime r-tuple conjecture holds then k is surjective, and
indeed for each positive integer k there exist infinitely many n with k(n) = k.

Dickson’s conjecture with r = 1 is Dirichlet’s theorem on primes in arithmetic
progressions, and is open for all cases when r > 1. Its di�culty is clear since it
also implies the existence of infinitely many twin primes, infinitely many Sophie
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Germain primes and so on. Dickson’s conjecture is itself a special case of Schinzel’s
Hypothesis H [18] concerning prime values of arbitrary polynomials.

If k is also prime then the converse of Lemma 4 holds.

Lemma 5. If p < q are odd primes and k(pq) = k where k is prime, then q =
k(p� 1) + 1.

Proof. Let L = lcm(p�1, q�1), g = gcd(p�1, q�1), (p�1) = ga and (q�1) = gb
where gcd(a, b) = 1 and a < b. Assume k(pq) = k. From (7) L = k · gcd(L, pq� 1),
so L | k(pq�1) = k

⇥
(ag+1)(bg+1)�1

⇤
= kg(abg+a+b). Multiplying through by g,

abg2 = (p�1)(q�1) = Lg | kg2(abg+a+b). Hence ab | k(a+b). So a | kb, and since
gcd(a, b) = 1 we have a | k and similarly b | k. Since a < b and k is prime, a = 1
and b = k is the only possibility. Hence g = p�1 and q = bg +1 = k(p�1)+1. 2

For products of more than two primes, analogous formulas exist but are more in-
volved. (One reason for this is that the analogue of the formula gcd(a1, a2) lcm(a1, a2) =
a1a2 becomes more complicated.) For example, we have a sort of “Chernick for-
mula” in the case n = pqr.

Lemma 6. Let p be a prime and m a positive integer satisfying m | (kp + 1) for
some integer k � 2. If q = km(p� 1)+1 and r = k(pq� 1)+1 are both prime then
k(pqr) = k.

Proof. Suppose p, q = km(p � 1) + 1 and r = k(pq � 1) + 1 are prime, where the
integer k � 2 and m | (kp + 1). Then

�(pqr) = lcm
�
p� 1, km(p� 1), k(kmp + 1)(p� 1)

�
= km(p� 1)(kmp + 1).

So

k(pqr) =
�(pqr)

gcd(�(pqr), pqr � 1)

=
km(p� 1)(kmp + 1)

gcd
�
km(p� 1)(kmp + 1), (p� 1)(kmp + 1)(k2mp(p� 1) + kp + 1)

�
=

km(p� 1)(kmp + 1)
m(p� 1)(kmp + 1)

= k,

since m | (k2mp(p� 1) + kp + 1) but k - (k2mp(p� 1) + kp + 1). 2

It seems di�cult to make further progress in this direction. Instead we observe
that if S = {p1, . . . , ps} is a set of odd primes and M =

Qs
j=1 p

mj

j , we may have

k(M) = k(pm1
1 · · · pms

s ) ?= pm1�1
1 · · · pms�1

s =
M

rad(M)
. (9)
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(This equation should be slightly modified if one of the primes is 2.) Obviously if (9)
always held then k would be surjective. Unfortunately, an extra factor, F (M),
may also occur on the right hand side. For example, k(34 · 53) = 33 · 52, but
k(33 · 53) = 2 · 32 · 52. Nonetheless, for any M with {p : p | M} = S we can show
that only finitely many di↵erent F (M) occur, and that their occurrence is periodic
in the mj . This gives a more precise version of Theorem 2.

We need some notation. Let S = {p1, . . . , ps} be a non-empty set of (distinct)
primes. Let L = LS = lcm{pj � 1 | 1  j  s}. Let N = NS be a positive integer
such that for every prime q with ordq(L) = v > 0:

1. If q 62 S then � (qv) | N , and

2. If q 2 S then N � v + 2.

Suppose M is an integer with {p : p | M} = S. Say M =
Q

j p
mj

j where all the
mj > 0. Define

F (M) :=
k(M)
M 0 where M 0 =

(
M

2 rad(M) if M 6= 4 and ord2(M) � ord2(4L),
M

rad(M) otherwise.

We now show (condition (2) below) that F (M) depends only on the mj (mod NS).

Theorem 6. With M =
Q

j p
mj

j and notation as above:

1. If each mj ⌘ 0 (mod NS) then F (M) = 1.

2. Suppose for 1  j  s there exists an integer tj � 0 such that mj = rj + tjNS
with rj � NS . Let R =

Q
j p

rj

j . Then F (M) = F (R).

Proof. We drop the subscript S. If all the pj are odd, a small calculation shows
�(M) = lcm{L, M 0}. The definition of M 0 is made to ensure this holds in the case
pj = 2 also. Thus from (6) we obtain

F (M) =
k(M)
M 0 =

L

gcd
�
L, (M � 1)M 0

� .

Let q be any prime dividing L. Let

ordq(L) = v, ordq(R0(R� 1)) = r, ordq(M 0(M � 1)) = m.

If q 62 S then for 1  j  s we have pj 6= q, so pj is invertible modulo qv and
p�(qv)

j ⌘ 1 (mod qv). Then �(qv) | N by definition of N , so pN
j ⌘ 1 (mod qv) for

all j, and so
if q 62 S then

Y
pN

j ⌘ 1 (mod qv). (10)

We now prove statement (1) of the theorem. Suppose that mj ⌘ 0 (mod N) for
all j. If q 2 S then m � N � v + 2 so ordq(M 0) � ordq(M) � 2 � v. If q 62 S
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then M ⌘ 1 (mod qv) from (10) so m � ordq(M � 1) � v. Thus, in all cases
ordq(L)  ordq(M 0(M � 1)). Thus L | M 0(M � 1), so F (M) = 1.

To prove statement (2), we shall show

min{v,m} = min{v, r}. (11)

Thus ordq(F (M)) = v �min{v,m} = v �min{v, r} = ordq(F (R)) for every q | L,
and since F (m) and F (R) are positive integers dividing L, it follows that F (M) =
F (R).

Finally, we prove that equation (11) holds. Suppose q 2 S. Thus q = pi for some
i. By definition of N we have mi, ri � N � 2 + v > v, so both sides in (11) are
equal to v.

Now suppose q 62 S. If m, r � v we are done, so we assume v > r or v > m.
We show that m = r, so both sides in (11) are equal to m (= r). Since q 62 S
we have m = ordq(M � 1) and r = ordq(R � 1). Thus it su�ces to show that
M ⌘ R (mod qv), since then M � 1 ⌘ R � 1 (mod qv). Then, as one of M � 1,
R� 1 is non-zero mod qv, both are, and m = ordq(M � 1) = ordq(R� 1) = r. But
p

mj

j = p
rj

j · (pN
j )rj ⌘ p

rj

j (mod qv) for each j by (10), so M ⌘ R (mod qv). 2

Note: the definition of NS used in the proof is not necessarily minimal. For
example if q 2 S \ {2} then we only need N � v + 1.

Corollary 5. The function

rad � k : N ! {n 2 N : n is square-free}

is surjective.

Theorem 6 implies that in principle, for each set S, only finitely many cases are
needed to furnish a proof that every M with {p : p | M} = S is in the image of k.
But for each S an ad hoc argument is needed to deal with each of the finitely many
F (M) 6= 1 that may occur. We give two examples.

Example. Every number of the form k = 3a · 5b with a, b 2 N is in the image of k.
Indeed k(M) = k if

M =

(
3a+1 · 5b+1 if a ⌘ 1 (mod 2),
3a+1 · 5b+1 · 7 if a ⌘ 0 (mod 2).

To see this, first consider M1 = 3a+1 · 5b+1. Then M 0
1 = k, so if F (M1) = 1 then

k(M1) = k. In this case we can take NS1 = 2. Indeed, S1 = {3, 5} and L = 4,
so F (M1) = 4/ gcd(4, 3a+1 · 5b+1 � 1). But M1 ⌘ (�1)a+1 (mod 4), so F (M1) = 1
(and we are done) if and only if a is odd.

This leaves the case a even. We deal with this by putting M2 = 3a+1 · 5b+1 · z
where z is some auxiliary factor to be chosen. This will work well if z is square-free,
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gcd(z, 3 · 5) = 1 and F (M2) = 1. This leads to the choice z = 7. Then L2 = 12 and
M 0

2 is still equal to k so (M2 � 1)M 0
2 = 3a · 5b(3a+1 · 5b+1 · 7� 1) is divisible by L2.

Hence F (M2) = 1, which is to say, k(M2) = M 0
2 = k.

In the previous example if F (M) 6= 1 we could proceed by replacing M by Mz
for some z. This is not always possible.

Example. Let k = 3a · 19b and M = 3a+1 · 19b+1. Then M 0(M � 1) = 3a · 19b(3a ·
19b � 1) and L = 18, so F (M1) = 1 if and only if a � 2. The di�cult case is
k = 3 · 19b. (Instead of a congruence condition on a we have an inequality.) If
b = 1 we could try introducing a factor z as in the previous example. Thus consider
M = 32 · 192 · z where z is square-free, and gcd(z, 3 · 19) = 1. If F (M) = 1 then
32 | L | M 0(M � 1) which implies 32 | M 0 = 3 · 19 · z0, a contradiction. So in this
case no such z will work.

Instead, let M = 7 · 19b+1. Then M 0 = 3 · 19b, L = 18 and M 0(M � 1) = 19b(7 ·
19b+1�1) ⌘ 6 (mod 18), so gcd(L,M 0(M�1)) = 6. Thus k(M) = 3M 0 = 3·19b = k.
Hence

M =

(
7 · 19b+1 if a = 1
3a+1 · 19b+1 if a � 2

implies k(M) = 3a · 19b.
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