
#A81 INTEGERS 16 (2016)

AN ASYMPTOTIC ROBIN INEQUALITY

Patrick Solé
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Abstract
The conjectured Robin inequality for an integer n > 7! is �(n) < e�n log log n, where
� denotes the Euler constant, and �(n) =

P
d|n d. Robin proved that this conjecture

is equivalent to the Riemann hypothesis (RH). Writing D(n) = e�n log log n��(n),
and d(n) = D(n)

n , we prove unconditionally that lim infn!1 d(n) = 0. The main
ingredients of the proof are an estimate for the Chebyshev summatory function,
and an e↵ective version of Mertens’ third theorem due to Rosser and Schoenfeld.
A new criterion for RH depending solely on lim infn!1D(n) is derived.

1. Introduction

1.1. History

The conjectured Robin’s inequality for an integer n > 7! = 5040 is �(n) < e�n log log n,
where � ⇡ 0.577 · · · denotes the Euler constant, and � is the sum-of-divisors func-
tion �(n) =

P
d|n d. This inequality has been shown to hold unconditionally for

7! < n  N with N ⇡ ee26
[1], and for infinite families of integers that are

• odd and greater than 9 [4];

• square-free and greater than 30 [4];

• a sum of two squares and greater than 720 [2];

• not divisible by the fifth power of a prime [4];

• not divisible by the seventh power of a prime [11];

• not divisible by the eleventh power of a prime [3].
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Ramanujan showed that the Riemann Hypothesis implies Robin’s inequality for
n large enough [8]. Robin proved the converse statement [9], thus making that
conjecture a criterion for RH. This criterion was made popular by [6] which derives
an alternate criterion involving harmonic numbers.

1.2. Contribution

Denote the di↵erence between the right-hand side and the left-hand side of Robin’s
inequality by D(n) = e�n log log n��(n). Let d(n) = D(n)

n . The main result of this
note is

Theorem 1. We have lim infn!1 d(n) = 0.

The proof of Theorem 1 will depend on the following intermediate result.

Theorem 2. For large n, the quantity lim infn!1 d(n) is finite and nonnegative.

The main ingredients of the proof of Theorem 2 are a combinatorial inequality
between arithmetic functions (Lemma 1), an e↵ective version of Mertens’ third
theorem due to Rosser and Schoenfeld (Lemma 2), and an asymptotic estimate
of Chebyshev’s first summatory function (Lemma 4). Also needed is a result of
Ramanujan of 1915, first published in 1997 [8].

We also study the asymptotic behavior of D(n). Recall that a number is colossally
abundant (CA for short) if it is a left-to-right maximum for the function with domain
the set of integers x 7! �(x)

x1+✏ , where ✏ is a real parameter. Thus n is CA if m < n

entails �(m)
m1+✏ < �(n)

n1+✏ .

Theorem 3. We have the following limits when n ranges over the set of CA num-
bers:

• If RH is false then lim infn!1D(n) = �1

• If RH is true then limn!1D(n) =1.

This result constitutes a new criterion for RH. Its proof will depend, for the RH
false part, on an oscillation theorem of Robin [9], modelled after and depending
upon an oscillation theorem of Nicolas [7] for the Euler totient function. For the
RH true case, we use a result of Ramanujan from 1915, first published in 1997 [8].

1.3. Organization

The material is arranged as follows. The next section contains the proof of Theorem
1, Section 3 that of Theorem 2, and Section 4 that of Theorem 3. Section 5 concludes
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and gives some open problems.

2. Proof of Theorem 1

The result will follow from Theorem 2 if we exhibit a sequence of integers nm with
limm!1D(nm) = 0. We follow the approach of [4, §4, proof of Lemma 4.1, 1), p.
366]. Consider n of the shape n =

Q
px pt�1, with t > 1 integer and x real, both

going to infinity, and to be specified later. By this reference, we have

d(n) = e� log log n

✓
1� 1

⇣(t)
+ ot(1)

◆
,

with ⇣ denoting the Riemann zeta function. The error term can be made e↵ective
as follows. By [10, (3.28),(3.30)] we have

e� log x(1� 1
2 log2 x

) 
Y
px

(1� 1
p
)�1  e� log x(1 +

1
log2 x

).

From the Euler product of ⇣ and [4, Lemma 6.4] we derive

1
⇣(t)


Y
px

(1� 1
pt

) 
exp( tx1�t

t�1 )
⇣(t)

.

Combining these four bounds together we can take ot(1) = O
�
exp( tx1�t

t�1 )� 1
�

=
O(x1�t). Now it is elementary to show that for an integer t > 1 we have ⇣(t) =
1 + h(t), with h(t) = O(1/2t). Indeed

1
2t
 ⇣(t)� 1 

1X
m=1

1
2mt

=
2�t

1� 2�t
.

Thus, summarizing, we get

d(n) = e� log log n
�
O(1/2t) + O(x1�t)

�
.

To achieve d(n) ! 0, we need both log log n ⌧ 2t, and log log n ⌧ xt�1, where
⌧ stands for o() (“little-oh”) notation. This is ensured if we take x = pm, and
t = m + 1. In that case we have log log n = log m + log ✓(pm). By Lemma 4 below,
log ✓(pm) ⇠ log pm. On the other hand, pm ⇠ m log m as is well-known (see e.g. [5]).
Combining the last two estimates we see that log log n ⇠ 2 log m << 2m. Similarly,
log log n << pm

m.
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3. Proof of Theorem 2

If lim infn!1 d(n) = 1 then limn!1D(n) = 1, and, by Robin’s criterion, RH
holds. We know then by [8, p.25] that the sequence d(n)

p
log n admits finite upper

and lower limits when n ranges over the set of CA numbers (see §4), which is a
contradiction.

Assume therefore that lim infn!1 d(n) is finite, and let us show that it is non-
negative. For any integer n write its decomposition into prime powers as

n =
mY

i=1

qai
i ,

where the qi’s are prime numbers, indexed by increasing order, and ai’s are positive
integers. Denote by pi the ith prime number, and for any integer n, let

n̄ =
mY

i=1

pai
i .

Note that, by definition, for each i = 1, 2, · · · ,m we have qi � pi, and that, therefore,
n � n̄. With this notation observe that

�(n̄) =
mY

i=1

pai+1
i � 1
pi � 1

= n̄
mY

i=1

pi � p�ai
i

pi � 1
.

In particular

d(n̄) 
mY

i=1

pi

pi � 1
 2m,

and, likewise, �(n)
n  2. Thus, if m is bounded and n!1, we see that d(n)!1.

We can thus assume when considering lim infn!1 d(n) that m!1.

We prepare for the proof of Theorem 2 by a series of Lemmas.

Lemma 1. For any integer n � 1, we have d(n) � d(n̄).

Proof. Let d(n) = f1(n) � f2(n), with f1(n) = e� log log n, and f2(n) = �(n)
n .

The monotonicity of the log and n � n̄ yields f1(n) � f1(n̄). Write f2(n) =Qm
i=1 g(ai, qi), where g(a, x) = x�x�a

x�1 . Writing

g(a, x) =
1 + x + · · · + xa

xa
=

aX
i=0

1
xi

,

we see that, for fixed a, the function x 7! g(a, x) is nonincreasing in x. This implies
that g(ai, qi)  g(ai, pi) for each i = 1, 2, · · · ,m and, therefore, multiplying m
inequalities between nonnegative numbers, that f2(n)  f2(n̄). The result follows
then by d(n) = f1(n)� f2(n). 2
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Lemma 2. For any n large enough we have �(n̄)
n̄ < e� log pm(1 + 1

log2 pm
).

Proof. Note that, with the notation of the proof of Lemma 1, we have g(a, x)  x
x�1 ,

for x � 2 and a � 1, and, therefore

f2(n) =
mY

i=1

g(ai, qi) 
mY

i=1

pi

pi � 1
.

The result follows then by [10, Th. 8, (39)]. 2

Recall the Chebyshev summatory function #(x) =
P

px log(p).

Lemma 3. For all n � 1, we have log n̄ � #(pm).

Proof. By definition

log n̄ =
mX

i=1

ai log pi �
mX

i=1

log pi = #(pm).

2

A classical result, related to the Prime Number Theorem, is

Lemma 4. For large x, we have #(x) = x + O( x
log x ).

Proof. An e↵ective version is in [10, Th. 4]. See for instance [5, Th. 4.7] for a
sharper error term in O(x exp(�

p
log x
15 )). 2

We are now ready for the proof of Theorem 1.

Proof. By Lemma 1 d(n) � d(n̄). By Lemma 2 we have

��(n̄)
n̄

> �e� log pm(1 +
1

log2 pm

). (1)

By Lemma 3 and 4 we have

e� log log n̄ � e� log #(pm) = e� log
✓

pm + O(
pm

log pm
)
◆

= (2)

e�

✓
log pm + log(1 + O(

1
log pm

))
◆

= e�

✓
log(pm) + O(

1
log pm

)
◆

, (3)

where the last equality results from log(1+u) ⇠ u for u! 0. Adding up inequalities
1 and 3, after cancellation of the terms in log pm, we obtain the inequality

d(n̄) = e� log log n̄� �(n̄)
n̄

� O(
1

log pm
)� e�

log pm
,

the right hand side of which goes to zero for large n. 2
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4. Proof of Theorem 3

Recall the standard notation for oscillation theorems [5, p. 194]. If f, g are two real
valued functions of a real variable x, with g > 0, then we write

• f(x) = ⌦+(g(x)), if lim supx!1 f(x)/g(x) > 0

• f(x) = ⌦�(g(x)), if lim infx!1 f(x)/g(x) < 0

• f(x) = ⌦±(g(x)), if both f(x) = ⌦+(g(x)), and f(x) = ⌦�(g(x)) hold

By [9, Proposition,§4] if RH is false then, for CA numbers we have

D(n) = ⌦±(
n log log n

(log n)b
),

for some b 2 (0, 1). This would imply, using the infinitude of CA numbers [9], that
lim infn!1D(n) = �1.

If RH holds then by [8, p.25] the sequence D(n)
p

log n
n admits upper and lower

limits for colossally abundant n that are finite and greater than 0. Thus there are
reals greater than 0 say A, and B such that

A
n

log n
 D(n)  B

n

log n
,

when n is CA. Therefore limn!1D(n) =1.

5. Conclusion and Open Problems

In this note we have studied the quantity D(n) which is the di↵erence between
the two sides of Robin’s inequality, and its normalization d(n) = D(n)

n . While the
asymptotic behavior of d(n) can be determined unconditionally (Theorem 1), that
of D(n) depends crucially on the truth of RH (Theorem 3). It would be desirable to
extend Theorem 3 to integers that are not CA. It seems impossible to use Theorem
1 and Theorem 3 together to prove that RH holds. For instance, one cannot rule
out the case that D(n) behaves like �pn when n!1, which would not contradict
the fact that lim infn!1 d(n) = 0.
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[11] P. Solé, M. Planat, The Robin inequality for 7-free integers, Integers 12, article A65.


