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Abstract
We isolate conditions on the relative asymptotic size of sets of natural numbers A,B
that guarantee a nonempty intersection of the corresponding sets of distances. Such
conditions apply to a large class of zero density sets. We also show that a variant
of Khintchine’s Recurrence Theorem holds for all infinite sets A = {a1 < a2 < . . .}
where an n n3/2.

1. Introduction

It is a well-known phenomenon that if a set of natural numbers A has positive upper
asymptotic density d(A) > 0, then its set of distances (or Delta-set)

�(A) = {a� a0 | a, a0 2 A, a > a0}

has a very rich combinatorial structure. An old problem attributed to Paul Erdős
was whether the distance sets of two sets of positive upper density must necessarily
meet.

• Does �(A) \�(B) 6= ; whenever d(A), d(B) > 0 ?

The answer was shortly shown to be positive, and in fact the following much
stronger intersection property holds:

• If the upper density d(A) = ↵ > 0 is positive, then �(A)\�(B) 6= ; whenever
the set B contains more than 1/↵-many elements.
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The proof consists of a straightforward application of the pigeonhole principle.
The key observation is that if one takes distinct elements b1, . . . , bN with N > 1/↵,
then the shifted sets A+bi cannot be pairwise disjoint, as otherwise d(

SN
i=1 A+bi) =PN

i=1 d(A + bi) = N · d(A) > 1. The argument is then completed by noticing that
(A + b) \ (A + b0) 6= ; for some b 6= b0 in B if and only if �(A) \�(B) 6= ;.

In the last forty years, the research on the combinatorial properties of distance
sets and di↵erence sets2 has produced many interesting results (see, e.g., [10, 5,
11, 13, 14, 15, 16, 1, 9, 3, 7, 12, 8, 4]) which are almost always grounded on the
hypothesis of positive density. In this paper, we look for general properties that
include the zero density case, and investigate the size of intersections �(A)\�(B)
depending on the relative density of A with respect to B. More generally, for k 2 N,
we will consider intersections Rk(A) \�(B) where

Rk(A) = {x 2 N : |A \ (A + x)| � k}

is the k-recursion set of A. Elements of Rk(A) are those natural numbers that
are the distance of at least k-many di↵erent pairs of elements in A; in particular,
R1(A) = �(A).

The main results presented here (see Corollaries 3.5 and 4.3) can be summarized
as follows.

Main Theorem. Let A = {an} and B = {bn} be infinite sets of natural numbers,
and let # : N ! R+ be such that lim supn!1

an
n·#(n) < 1.

1. If limn!1
#(bn)

n = 0, then Rk(A) \�(B) is infinite for all k.

2. If limn!1
#(n·bn)

n = 0, then there exists a sequence hxn | n 2 Ni of elements
of �(B) such that

lim sup
n!1

0
B@

|A\(A+xn)\[1,n]|
n⇣

|A\[1,n]|
n

⌘2

1
CA � 1 .

We remark that the above results apply to a large class of zero density sets; e.g.,
when B = N, (1) applies whenever an n n2, and (2) applies whenever an n n3/2.
By way of examples, we list below three consequences (see Examples 3.7, 3.9, and
4.5).

Example 1. If
P1

n=1
1

an
= 1 and B = {bn} is such that log bn n n1�" for some

" > 0, then the intersections Rk(A) \�(B) are infinite for all k.
2 By a di↵erence set is meant a set of the form A�B = {a� b | a 2 A, b 2 B}. So, the set of

distances �(A) is the positive part of A�A.
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Example 2. Let A = {bK · n
p

nc} and B = {M · n3}. If K2 · M < 4
27 then

Rk(A) \�(B) 6= ; for all k.

Example 3. Let A = {an} have the same asymptotic size as the set of prime
numbers, i.e., limn!1

an
n·log n = 1, and assume that B = {bn} is sub-exponential,

i.e., log bn n n. Then for every " > 0 there exist infinitely many n and elements
xn 2 �(B) such that

|A \ (A + xn) \ [1, an]| � n

log n
· (1� ").

Of course, the asymptotic conditions considered in our theorems about sequences
A = {an} may be reformulated by using the corresponding counting functions
A(u) = |{a 2 A | a  u}|. For instance, the role of an/n is played by u/A(u), and
so forth.

Notation. The natural numbers N are the set of positive integers. Letters
n,m, h, k, s, t, ⌫, µ,N will be used for natural numbers, and upper-case letters A,B,C,
will be used for sets of natural numbers. For infinite sets A ✓ N we use the brace
notation A = {an} to mean that elements an are arranged in increasing order:

A = {an} = {a1 < a2 < . . . < an < . . .}.

We write A + x = {a + x | a 2 A} to denote the shift of A by x. For func-
tions f : N ! R+ taking positive real values, we write an n f(n) to mean that
limn!1 an/f(n) = 0.3 By bxc = max{k 2 Z | k  x} is denoted the integer part
of a real number x. Finally, recall the notion of upper asymptotic density d(A) for
sets A ✓ N:

d(A) = lim sup
n!1

|A \ [1, n]|
n

.

2. Preliminary Results

Let us start with a straightforward consequence of the pigeonhole principle.

Proposition 2.1. Let A = {an} and B = {bn} be infinite sets of natural numbers.
If there exist N, ⌫ such that aN + b⌫  N · ⌫ then �(A) \�(B) 6= ;. In particular,
if lim infn!1

an+bn
n2 < 1 then �(A) \�(B) 6= ;.

Proof. Fix N, ⌫ as in the hypothesis. The sumset

{ai + bj | 1  i  N ; 1  j  ⌫} ✓ [2, aN + b⌫ ] ✓ [2, N · ⌫]
3 This is equivalent to Landau notation an = o(f(n)).
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contains at most N · ⌫ � 1 elements. So, by the pigeonhole principle, there exist
(i, j) 6= (i0, j0) such that ai + bj = ai0 + bj0 . Clearly i 6= i0, say i > i0. Then
ai � ai0 = bj0 � bj 2 �(A) \ �(B) 6= ;. If lim infn

an+bn
n2 < 1, pick N such that

aN+bN
N2 < 1, and apply the above argument with N = ⌫.

Remark 2.2. The above result is best possible because there exist infinite sets
A = {an} and B = {bn} such that lim infn

an+bn
n2 = 1 but �(A) \�(B) = ;. The

following example is due to P. Erdős and R. Freud [6].

• Let A be the set of all natural numbers that are sums of even powers of 2,
including 1 = 20.

• Let B be the set of all natural numbers that are sums of odd powers of 2.

It only takes a little computation to verify that:

• bn = 2 · an for all n ;

• lim infn!1 an/n2 = 1/3 is attained on the subsequence nk = 2k � 1 ;

• lim infn!1
an+bn

n2 = 1.

Besides, since every natural number is uniquely written as a sum of powers of 2,
an equality ai�aj = bs� bt , ai + bt = aj + bs holds if and only if i = j and s = t.
It follows that �(A) \�(B) = ;.

In order to improve on the previous result, we will use the following elementary
inequality.

Lemma 2.3. Let A = {a1 < . . . < aN} and B = {b1 < . . . < b⌫} be finite sets of
natural numbers. For every h  ⌫/2 there exists x 2 �(B) such that x � h and

|A \ (A + x) | � N2

aN + b⌫
� N · (2h� 1)

⌫
=

N2

aN
·
1� (aN+b⌫)(2h�1)

N ·⌫
1 + b⌫

aN

.

The above inequality is strict except when h = 1 and N · ⌫ = aN + b⌫ .

Proof. Let us first consider the case h = 1. Let I be the interval [1, aN + b⌫ ], and
for every i = 1, . . . , ⌫, let �i : I ! {0, 1} be the characteristic function of the shifted
sets A + bi ✓ I. Notice that

X
x2I

 
⌫X

i=1

�i(x)

!
=

⌫X
i=1

 X
x2I

�i(x)

!
=

⌫X
i=1

|A + bi| = N · ⌫.
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By the Cauchy-Schwartz inequality, we obtain:

N2 · ⌫2 =

 X
x2I

1 ·
 

⌫X
i=1

�i(x)

!!2


 X

x2I

12

!
·
X
x2I

 
⌫X

i=1

�i(x)

!2

= |I| ·
X
x2I

0
@ ⌫X

i,j=1

�i(x) · �j(x)

1
A = |I| ·

⌫X
i,j=1

 X
x2I

�i(x) · �j(x)

!

= (aN + b⌫) ·
⌫X

i,j=1

|(A + bi) \ (A + bj)|.

If M = max{|(A + bi) \ (A + bj)| : 1  i < j  ⌫} then
⌫X

i,j=1

|(A + bi) \ (A + bj)| =
⌫X

i=1

|A + bi| + 2 ·
X

1i<j⌫

|(A + bi) \ (A + bj)|

 N · ⌫ + 2 ·
✓
⌫

2

◆
· M = ⌫ · (N + (⌫ � 1) · M) .

(The above expressions are well-defined because we are assuming h  ⌫/2, and
hence ⌫ � 2.) By combining with the previous inequalities, we get that

N2 · ⌫  (aN + b⌫) · (N + (⌫ � 1) · M) ,

and hence

M � ⌫

⌫ � 1
· N2

aN + b⌫
� N

⌫ � 1
=

⌫

⌫ � 1
·
✓

N2

aN + b⌫
� N

⌫

◆
� N2

aN + b⌫
� N

⌫
.

Notice that the last inequality is strict provided that N2

aN+b⌫
�N

⌫ > 0 or, equivalently,
when N · ⌫ > aN + b⌫ . Notice also that, since M � 0, the strict inequality trivially
holds also when N · ⌫ < aN + b⌫ . Observe that if M = |(A + bs) \ (A + bt)| then
M = |A \ (A + x)| where x = bs � bt 2 �(B), and this completes the proof of the
case h = 1.

Now let h � 2. Let µ be such that µh  ⌫ < (µ + 1)h, and consider the set
B0 = {b01 < . . . < b0µ} ⇢ B where b0i = bih. Notice that µ � 2, because we are
assuming h  ⌫/2, and so we can apply the property proved above to prove the
existence of an element x 2 �(B0) such that

|A \ (A + x) | � N2

aN + b0µ
� N

µ
� N2

aN + b⌫
� N

µ
.

For suitable indexes 1  s < t  µ, one has that x = b0t�b0s = bth�bsh � th�ts � h.
Finally, notice that N

µ = N
⌫ · ⌫

µ < N
⌫ · (µ+1)h

µ , and since (µ+1)h
µ  2h� 1, the proof is

completed. Indeed, µh + h  2µh� µ , µh � µ + h, and the last inequality holds
because µ, h � 2.
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Theorem 2.4. Let A = {an} and B = {bn} be infinite sets of natural numbers
such that

lim inf
n!1

an + bn

n2
= 0 .

Then Rk(A) \�(B) is infinite for all k.4

Proof. Fix an arbitrary h 2 N. For every n � 2h, apply Lemma 2.3 to the finite
sets An = {a1 < . . . < an} and Bn = {b1 < . . . < bn}, and get the existence of an
element xn 2 �(Bn) such that xn � h and

|A \ (A + xn) \ [1, an + bn]| � |An \ (An + xn)| >
n2

an + bn
� (2h� 1) .

By the hypothesis, the sequence on the right side is unbounded as n goes to
infinity and so, for every k, there exists xn 2 �(Bn) ✓ �(B) with xn � h and |A\
(A + xn)| � k. As h was arbitrary, this proves that the intersections Rk(A)\�(B)
are infinite.

Next, we prove that when A has positive asymptotic density, the set of all possible
shifts x that yield “large” intersections A \ (A + x) is “combinatorially large,” in
the sense that it meets all su�ciently large Delta-sets.

Theorem 2.5. Let A be a set of natural numbers with d(A) = ↵ > 0. Then for
every " > 0 and for every set B with |B| � ↵/", one has

{x | d(A \ (A + x)) � ↵2 � "} \�(B) 6= ; .

Proof. Notice first that the limit superior for the upper asymptotic density is at-
tained along intervals of the form [1, an]; so, by passing to a subsequence if necessary,
we can directly assume that limn!1 n/an = ↵. Without loss of generality, let us
assume that B = {b1 < . . . < b⌫} is finite with ⌫ � ↵/". For every n, apply Lemma
2.3 to the finite sets An = {a1 < . . . < an} and B (with h = 1) and obtain the
existence of an element xn 2 �(B) such that

|A \ (A + xn) \ [1, an]| � |A \ (A + xn) \ [1, an + b⌫ ]|� b⌫ �

|An \ (An + xn)|� b⌫ � n2

an
·
1� an+b⌫

n·⌫
1 + b⌫

an

� b⌫ .

Since ⌫ is fixed, by passing to the limit as n goes to infinity, we get

lim
n!1

|A \ (A + xn) \ [1, an]|
an

�

4 Recall that Rk(A) = {x 2 N : |A \ (A + x)| � k}.
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lim
n!1

n2

a2
n

·
1� an

n⌫ �
b⌫
n⌫

1 + b⌫
an

� b⌫

an
= ↵2 ·

✓
1� 1

↵ · ⌫

◆
� ↵2 � " .

Now notice that the sequence hxn | n 2 Ni takes values in the finite set �(B),
and so there exists an element x 2 �(B) such that the limit superior is attained
along a subsequence {nk} where xnk = x for all k. Such an element x yields the
theorem because

d(A \ (A + x)) � lim sup
k!1

|A \ (A + x) \ [1, ank ]|
ank

=

= lim sup
k!1

|A \ (A + xnk) \ [1, ank ]|
ank

� ↵2 � " .

As a straight corollary, we obtain the well-known density version of Khintchine’s
Recurrence Theorem for sets of integers (see, e.g., Section 5 of [2]).

Corollary 2.6. Let A = {an} and B = {bn} be infinite sets of natural numbers. If
d(A) > 0 then for every " > 0 the following intersection is infinite:

{x | d(A \ (A + x)) � d(A)2 � "} \�(B).

In consequence:

1. All intersections Rk(A) \�(B) are infinite ;

2. lim supx2�(B)
d(A\(A+x))

d(A)2
� 1 .

Proof. For every h, by applying the previous theorem to A and Bh = {bhn}, one gets
the existence of an element xh = bhs�bht 2 �(Bh) ✓ �(B) with d(A\ (A+xh)) �
d(A)2�". Notice that xh � hs�ht � h. This proves that there are arbitrarily large
elements in the intersection {x | d(A \ (A + x)) � d(A)2 � "} \�(B), as desired.

(1). Every set of positive upper density is infinite, and so, for every k, we have
{x | d(A \ (A + x)) > d(A)2 � "} ✓ Rk(A) whenever 0 < " < d(A)2.

(2). By what is proved above, for every " > 0 there are infinitely many elements
x 2 �(B) such that d(A+(A+x)) � d(A)2� "; but then lim supx2�(B) d(A\ (A+
x)) � d(A)2 � ". Since " > 0 can be taken arbitrarily small, the result follows.

Further on in this paper, we will show that a result similar to (2) can be proved
for a large class of zero density sets (see Corollary 4.3).
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3. Intersection Properties

We saw in Theorem 2.4 that �(A)\�(B) 6= ; whenever both A and B are asymp-
totically larger than the set of squares. We now sharpen that result, and prove a
general intersection property that also applies when bn/n2 goes to infinity.

Theorem 3.1. Let A = {an} and B = {bn} be infinite sets of natural numbers
where an n n2. Let f(n) = an/n and g(n) = bn/n.

1. If there exists a constant c > 1 such that

lim inf
n!1

g(bc · f(n)c)
n

< 1� 1
c

then Rk(A) \�(B) 6= ; for all k.

2. If for arbitrarily large constants c one has

lim inf
n!1

g(bc · f(n)c)
n

= 0

then Rk(A) \�(B) is infinite for all k.

3. If there exists a constant " > 0 such that

lim inf
n!1

f(b" · bnc)
n

< 1

then Rk(A) \�(B) 6= ; for all k.

4. If there exists a constant " > 0 such that

lim inf
n!1

f(b" · bnc)
n

= 0

then Rk(A) \�(B) is infinite for all k.

Proof. In the following, without loss of generality, we will always assume that n n
an. Indeed, n n an fails if and only if the upper asymptotic density d(A) is
positive, and in this case the four properties above are all proved by Corollary 2.6.

(1). Let

lim inf
n!1

g(bc · f(n)c)
n

= l < 1� 1
c
.

For every n, let ⌧(n) = bc · f(n)c, and apply Lemma 2.3 with h = 1 to the sets
An = {a1 < . . . < an} and B⌧(n) = {b1 < . . . < b⌧(n)}. We obtain the existence of
an element xn 2 �(B⌧(n)) ✓ �(B) such that:

|A \ (A + xn) \ [1, an + b⌧(n)]| � |An \ (An + xn)| � n2

an
·
1� an+b⌧(n)

n·⌧(n)

1 + b⌧(n)
an

.
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Since we are assuming n n an, we have that limn!1 f(n) = 1, and so

lim
n!1

an

n · ⌧(n)
= lim

n!1
f(n)

bc · f(n)c =
1
c

.

Besides,

lim inf
n!1

b⌧(n)

n · ⌧(n)
= lim inf

n!1
g(bc · f(n)c)

n
= l ,

and
lim inf
n!1

b⌧(n)

an
= lim inf

n!1
bc · f(n)c

f(n)
· g(bc · f(n)c)

n
= c · l .

Notice that the two limit inferiors above are attained along the same subsequence,
and so

lim sup
n!1

1� an+b⌧(n)
n·⌧(n)

1 + b⌧(n)
an

=
1�

�
1
c + l

�
1 + c · l > 0 .

By using the hypothesis an n n2, i.e., limn!1 n2/an = 1, we can then conclude
that

lim sup
n!1

|A \ (A + xn) \ [1, an + b⌧(n)]| = 1 .

This shows that for every k one finds elements xn 2 �(B) such that |A\(A+xn)| �
k, and hence Rk(A) \�(B) 6= ;.5

(2). Fix h > 1. For every n, let ⌧(n) = b2h · f(n)c, and apply Lemma 2.3 to the
sets An and B⌧(n) so as to get the existence of an element xn 2 �(B⌧(n)) ✓ �(B)
such that xn � h and

|A \ (A + xn) \ [1, an + b⌧(n)| �
n2

an
·
1� (an+b⌧(n))(2h�1)

n·⌧(n)

1 + b⌧(n)
an

.

Now use the same arguments as in the proof of the previous property (1). Since in
our case c = 2h and l = 0, we obtain that

lim sup
n!1

1� (an+b⌧(n))(2h�1)
n·⌧(n)

1 + b⌧(n)
an

=
1�

�
1
c + l

�
(2h� 1)

1 + c · l = 1� 2h� 1
2h

> 0.

By the hypothesis an n n2, we conclude that

lim sup
n!1

|A \ (A + xn) \ [1, an + b⌧(n)]| = 1.

So, for every k, there exist elements xn 2 �(Bn) ✓ �(B) such that xn � h and
|A\(A+xn)| � k. Since h is arbitrary, this shows that the intersection Rk(A)\�(B)
is infinite, as desired.

5 We remark that the map n 7! xn may not be 1-1, and so the above argument does not prove
that Rk(A) \�(B) contains infinitely many elements.
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(3). The proof is entirely similar to the proof of (1), by applying Lemma 2.3 to
the sets A�(n) and Bn where �(n) = b" · bnc. Indeed, notice that

lim inf
n!1

a�(n)

�(n) · n = lim inf
n!1

f(b" · bnc)
n

= l < 1.

Besides,

lim
n!1

bn

�(n)
= lim

n!1
bn

b" · bnc
=

1
"

< 1 ,

and so

lim
n!1

bn

�(n) · n = 0 and lim
n!1

bn

a�(n)
= lim

n!1
bn

�(n)
· �(n)
a�(n)

= 0.

Thus we have the existence of elements xn 2 �(B) such that

lim sup
n!1

|A \ (A + xn) \ [1, a�(n) + bn]| � lim sup
n!1

�(n)2

a�(n)
·
1� a�(n)+bn

�(n)·n

1 + bn
a�(n)

= 1 ,

and the result is proved.
(4). For fixed h > 1, we proceed as in (3) and obtain the existence of elements

xn 2 �(Bn) ✓ �(B) with xn � h and such that

lim sup
n!1

|A \ (A + xn) \ [1, a�(n) + bn]| � lim sup
n!1

�(n)2

a�(n)
·
1� (a�(n)+bn)(2h�1)

�(n)·n

1 + bn
a�(n)

.

As we are assuming l = 0, the above limit superior is infinite. Finally, since h can
be taken arbitrarily large, the property is proved.

Remark 3.2. Under the (mild) hypothesis that g(n) be non-decreasing, one can
prove (3) and (4) as consequences of (1) and (2), which are therefore basically
stronger properties. Indeed, given " > 0, let us assume that ⌧(n) = f(b" · bnc)/n
satisfies the condition lim infn!1 ⌧(n) = l < 1. Then for every constant c such that
c · l < 1, we have that c · ⌧(n) · n < n for infinitely many n, and so

lim inf
n!1

g(bc · f(n)c)
n

 lim inf
n!1

g(bc · f(b" · bnc)c)
b" · bnc

= lim inf
n!1

g(bc · ⌧(n) · nc)
b" · n · g(n)c =

1
"
· lim inf

n!1
g(bc · ⌧(n) · nc)

n · g(n)

 1
"
· lim inf

n!1
g(n)

n · g(n)
= 0 .

Notice that, since l < 1, we can pick constants c > 1 such that c · l < 1, and this
completes the proof of (1) ) (3). Besides, if l = 0, every constant c > 1 trivially
satisfies c · l < 1, and also (2) ) (4) follows.
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As a consequence of the previous theorem, one can isolate a large class of sets B
such that Rk(A) \�(B) 6= ;, in terms of their density relative to A.

Corollary 3.3. Let A = {an = n ·f(n)} be an infinite set of natural numbers where
f : R+ ! R+ is an increasing unbounded function, and assume that the infinite set
of natural numbers B = {bn} is such that

lim
n!1

bn/n

f�1(" · n)
= 0 for all " > 0 .

Then the intersections Rk(A) \�(B) are infinite for all k.

Proof. Fix c > 1, and let ⌧(n) = bc ·f(n)c and " = 1/c. Then f�1(" · ⌧(n))  n and

0  lim
n!1

g(bc · f(n)c)
n

 lim
n!1

g(⌧(n))
f�1(" · ⌧(n))

= lim
n!1

b⌧(n)/⌧(n)
f�1(" · ⌧(n))

= 0 .

Thus (2) of the previous Theorem applies, and the corollary is proved.

When " = 1, items (3) and (4) in Theorem 3.1 have the advantage that they can
be reformulated in the following simpler form:

Corollary 3.4. Let A = {an} and B = {bn} be infinite sets of natural numbers
where an n n2, and let

lim inf
n!1

abn

n · bn
= l .

If l < 1 then Rk(A)\�(B) 6= ; for all k; and if l = 0 then Rk(A)\�(B) is infinite
for all k.

A consequence that is easily applied in several examples is the following:

Corollary 3.5. Given a function # : N ! R+ and infinite sets of natural numbers
A = {an} and B = {bn}, denote by:

lim inf
n!1

an

n · #(n)
= ` ; lim sup

n!1

an

n · #(n)
= ` ;

lim inf
n!1

#(bn)
n

= ` 0 ; lim sup
n!1

#(bn)
n

= ` 0 .

If ` · ` 0 < 1 or ` · ` 0 < 1 then Rk(A) \ �(B) 6= ; for all k; and if ` · ` 0 = 0 or
` · ` 0 = 0 then Rk(A) \�(B) is infinite for all k.6

6 By writing ` · ` 0 < 1 or ` · ` 0 = 0, it is implicitly assumed that both ` and ` 0 are finite; and
similarly in the other cases.
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Proof. It is a direct application of Corollary 3.4. Indeed, if ` and ` 0 are finite, then

lim inf
n!1

abn

n · bn
 lim inf

n!1
abn

bn · #(bn)
· lim sup

n!1

#(bn)
n

 ` · ` 0 ;

and if ` and ` 0 are finite, then

lim inf
n!1

abn

n · bn
 lim sup

n!1

abn

bn · #(bn)
· lim inf

n!1
#(bn)

n
 ` · ` 0 .

As witnessed by the results proved above, if A has zero density but still it is
“large” enough, then its set of distances intersect sets of distances of very “sparse”
sets B. We give below two examples to illustrate this phenomenon.

Example 3.6. Let P = {pn} be the set of prime numbers, and let B = {2n} be
the set of powers of 2. By the Prime Number Theorem,

lim
n!1

pn

n · log n
= 1.

Since (log 2n)/n = log 2 < 1, by the previous corollary we can conclude that for
every k, there exist numbers of the form 2m � 2n which are the distance of at least
k-many pairs of primes. Actually, there exist infinitely many such numbers, since
the function (n,m) 7! 2m � 2n is 1-1; indeed, first pick 2n1 � 2m1 2 Rk(P )\�(B),
then consider B(1) = B \ {2n1 , 2n2} and pick 2n2 � 2m2 2 Rk(P ) \�(B(1)), and so
forth.

Example 3.7. Let A = {an} and B = {bn} be infinite sets of natural numbers
such that

1X
n=1

1
an

= 1 and log bn n n1�" for some " > 0 .

Then Rk(A) \�(B) is infinite for all k.

Proof. If we let #(n) = (log n)
1

1�" , the hypotheses imply that

lim inf
n!1

an

n · #(n)
= 0 and lim sup

n!1

#(bn)
n

=
✓

lim sup
n!1

log bn

n1�"

◆ 1
1�"

= 0 ,

and the desired intersection property follows from Corollary 3.5.
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E.g., if A = {an} is such that
P1

n=1
1

an
= 1, then for every exponent ↵ < 1

and for every k, there exist infinitely many numbers of the form b10n↵c � b10m↵c,
everyone of which is the distance of at least k-many di↵erent pairs of elements of
A.

Let us now focus on powers of n.

Theorem 3.8. Let A = {an} and B = {bn} be infinite sets of natural numbers
such that, for all su�ciently large n,

an  K · n1+↵ and bn  M · n1+� .

1. If ↵ < 1 and � < 1/↵ then Rk(A) \�(B) is infinite for all k.

2. If ↵ < 1 and � = 1/↵ then Rk(A) \ �(B) 6= ; for all k whenever K�M <
↵

(1+↵)�+1 .

3. If ↵ = � = 1 then �(A) \�(B) 6= ; whenever KM < 1
4 .

Proof. Notice first that, without loss of generality, we can assume n n an, and
hence ↵ > 0. Indeed, otherwise d(A) > 0, and the thesis is proved by Corollary 2.6.

(1). This property follows from (2) of Theorem 3.1 since an n n2 and for every
constant c > 1 one has that

lim inf
n!1

g(bc · f(n)c)
n

 lim
n!1

M · (c · K · n↵)�

n
= lim

n!1
M · c� · K� · n↵�

n
= 0 .

(2). We use (1) of Theorem 3.1. Given a constant c > 1, under our hypotheses
one has that

lim inf
n!1

g(bc · f(n)c)
n

 M · c� · K� .

Now,

M · c� · K� < 1� 1
c
() M · K� <

c� 1
c�+1

,

and the greatest possible value of the last expression is attained when c = 1 + ↵,
namely ↵

(1+↵)�+1 , as one can directly verify.

(3). Fix a constant c > 0. For every given n, let N = n and ⌫ = ⌧(n) =
bc ·

p
K/M · nc. By Lemma 2.3, there exists an element xn 2 �(B) such that

|A \ (A + xn) \ [1, an + b⌧(n)]| �
n2

an + b⌧(n)
� n

⌧(n)
�

� n2

Kn2 + Mc2 · K
M · n2

� n

bc ·
q

K
M · nc

=
1
K

·
 

1
1 + c2

�
p

KM

c
·  (n)

!
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where  (n) = c·
p

K/M ·n
bc·
p

K/M ·nc
�! 1 as n !1. So, the last quantity above is positive

for all su�ciently large n if and only if
p

KM < c
1+c2 . Now, it is easily checked that

the greatest possible value of the latter expression is 1/2, which is attained when
c = 1. This means that if KM < 1/4 then there exist elements xn 2 �(A)\�(B),
and the proof is completed.

Example 3.9. Let A = {bK · n
p

nc} and B = {n3}. If K2 · M < 4/27 then
Rk(A) \�(B) 6= ; for all k. Indeed, we can apply (2) of the theorem above, where
1/↵ = � = 2.

4. A Variant of Khintchine’s Theorem

In this final section we exploit further consequences of Lemma 2.3 and prove a result
for a class of zero density sets that resembles Khintchine’s Recurrence Theorem.

Let us first introduce some notation. For sets A ✓ N, we write d(A)n to denote
the relative density of A on the interval [1, n], i.e.,

d(A)n =
|A \ [1, n]|

n
.

As already pointed out, the limit superior given by the upper asymptotic density is
attained along intervals of the form [1, an]; so one has

d(A) = lim sup
n!1

d(A)an = lim sup
n!1

n

an
.

Theorem 4.1. Let A = {an} and B = {bn} be infinite sets of natural numbers,
and assume that

lim inf
n!1

an·bn

n2 · bn
= l <

1
2

.

Then there exists a sequence hxn | n 2 Ni of elements of �(B) such that

lim sup
n!1

✓
d(A \ (A + xn))an

(d(A)an)2

◆
� 1� 2l > 0 .

Proof. For every n, let �(n) = n · bn, and apply Lemma 2.3 with h = 1 to the sets
A�(n) = {a1 < . . . < a�(n)} and Bn = {b1 < . . . < bn}. We obtain the existence of
an element xn 2 �(Bn) ✓ �(B) such that:

|A \ (A + xn) \ [1, a�(n)]| � |A \ (A + xn) \ [1, a�(n) + bn]|� bn �
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|A�(n) \ (A�(n) + xn)|� bn � �(n)2

a�(n)
·
1� a�(n)+bn

�(n)·n

1 + bn
a�(n)

� bn .

By combining, one gets

d(A \ (A + xn))a�(n)

(d(A)a�(n))2
=

|A \ (A + xn) \ [1, a�(n)]|
�(n)2

a�(n)

�
1� a�(n)+bn

�(n)·n

1 + bn
a�(n)

�
a�(n) · bn

�(n)2
.

Now notice that:

• lim infn!1
a�(n)
�(n)·n = lim infn!1

an·bn
n2·bn

= l ;

• limn!1
bn

�(n)·n = limn!1
1

n2 = 0 ;

• limn!1
bn

a�(n)
= limn!1

n·bn
an·bn

· 1
n  limn!1

1
n = 0 ;

• lim infn!1
a�(n)·bn

�(n)2 = lim inf an·bn
n2·bn

= l .

By considering the inequalities proved above, and by passing to the limit supe-
riors as n goes to infinity, we finally get:

lim sup
n!1

✓
d(A \ (A + xn))an

(d(A)an)2

◆
� lim sup

n!1

 
d(A \ (A + xn))a�(n)

(d(A)a�(n))2

!
�

lim sup
n!1

 
1� a�(n)

�(n)·n �
bn

�(n)·n

1 + bn
a�(n)

�
a�(n) · bn

�(n)2

!
= 1� 2l > 0 .

Corollary 4.2. Let A = {an} be an infinite set of natural numbers. If an n n3/2

then there exists a sequence of shifts hxn | n 2 Ni such that

lim sup
n!1

0
B@

|A\(A+xn)\[1,n]|
n⇣

|A\[1,n]|
n

⌘2

1
CA � 1 .

Proof. Let B = N. Then the previous theorem applies where l = 0, and the desired
result easily follows.

Similarly as Corollary 3.5 is derived from Theorem 3.4, one proves the following
property as a straight consequence of Theorem 4.1.
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Corollary 4.3. Assume that, for a suitable # : N ! R+, the infinite sets of natural
numbers A = {an} and B = {bn} satisfy

lim sup
n!1

an

n · #(n)
= l1 < 1 and lim inf

n!1
#(n · bn)

n
= l2 < 1

where l1 · l2 < 1/2. Then there exists a sequence hxn | n 2 Ni of elements of �(B)
such that

lim sup
n!1

✓
d(A \ (A + xn))an

(d(A)an)2

◆
� 1� 2 l1l2 > 0 .

Proof. Theorem 4.1 applies, since

lim inf
n!1

an·bn

n2 · bn
 lim sup

n!1

an·bn

n · bn · #(n · bn)
· lim inf

n!1
#(n · bn)

n
 l1 l2 <

1
2

.

To illustrate the use of the above corollary, let us see a property that holds for
all sets A = {an} having the same asymptotic size as the set of primes.

Proposition 4.4. Let A = {an} and B = {bn} be infinite sets of natural numbers
such that

lim
n!1

an

n log n
= 1 and lim inf

n!1
log bn

n
= 0.

Then for every " > 0 there exist infinitely many n and elements xn 2 �(B) such
that

|A \ (A + xn) \ [1, an]| � n

log n
· (1� ") .

Proof. Let #(n) = log n. By the hypotheses,

lim
n!1

an

n · #(n)
= 1 and lim

n!1
#(n · bn)

n
= lim

n!1
log n + log bn

n
= 0 .

So, the previous corollary applies, and we get the existence of elements xn 2 �(B)
such that

lim sup
n!1

✓
d(A \ (A + xn))an

(d(A)an)2

◆
� 1 .

Now notice that

d(A \ (A + xn))an

(d(A)an)2
= |A \ (A + xn) \ [1, an]| · an

n2
.

So, for every � > 0, there exist infinitely many n that satisfy

|A \ (A + xn) \ [1, an]| · an

n2
� 1� � .



INTEGERS: 16 (2016) 17

By our hypothesis on {an}, we know that n·log n
an

� 1� � for all su�ciently large n,
and so we can conclude that there exist infinitely many n and elements xn 2 �(B)
such that:

|A\ (A+xn)\ [1, an]| � n2

an
· (1� �) =

n

log n
· n log n

an
· (1� �) � n

log n
· (1� �)2 .

The proof is completed by choosing � in such a way that (1� �)2 � 1� ".

Example 4.5. Let P = {pn} be the set of prime numbers. Then, for any given
" > 0, there exist arbitrarily large n such that one finds “nearly” (n/log n)-many
pairs of primes p, p0  pn which have a common distance p � p0 = d. Moreover,
such a distance d can be taken to belong to any prescribed set of distances �(B),
provided B = {bn} is not too sparse in the precise sense that log bn n n (e.g., one
can take bn = b10

n
log n c).
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