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Abstract
Let ' denote the Euler ' function. We prove that for all n � s � 2 there exist
infinitely many Sierpiński numbers k such that 2nk = '(N) holds with some positive
integer N that has exactly s distinct prime factors. This extends previous work of
the last two authors.

1. Introduction

An odd positive integer k is called a Sierpiński number if k2n + 1 is composite for
every positive integer n. These numbers are named after Wac law Sierpiński who
discovered their existence in 1960 (see [10]). In 1962, John Selfridge found the
Sierpiński number k = 78557, which is conjectured to be the smallest Sierpiński
number (see [9]). This number was found by using the method of covering systems
of congruences used earlier by Paul Erdős in order to prove that there are infinitely
many odd integers not of the form 2k + p with p prime (see [3]). We review this
method in Section 2.

If k is a Sierpiński number, then 2nk 6= q � 1 = �(q) for any prime q, where '
is the Euler function. In [7, Theorem 1], it is shown that if k is a Sierpiński prime
and 2nk = '(N) holds for some positive integers n and N , then k is a Fermat
number. It is natural to ask whether or not we can fix both n � 1 and the number
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of distinct prime factors s (� 2) of N and still obtain infinitely many examples of
such Sierpiński numbers k. We shall be interested only in the case when N is odd,
because if N is even, then writing N = 2aN1 with N1 odd, the equation

2nk = '(N) = '(2aN1) = 2a�1'(N1),

yields
2n�a+1k = '(N1),

which is a similar problem with a smaller exponent of 2 in the left–hand side. So,
we assume that N is odd. Clearly, if N has s distinct prime factors, then 2s | '(N),
showing that, in order for the equation 2nk = '(N) to hold, it is necessary that
n � s. The following result shows that the answer to the above question is in the
a�rmative.

Theorem 1. For all integers n � s � 2 there exist infinitely many Sierpiński
numbers such that

2nk = '(N)

holds with some positive integer N having exactly s distinct prime factors.

The case n = s = 2 was proved in [7, Theorem 1, (i)]. For more results on
Sierpiński numbers, see [2, 5, 8]. We hope our work will inspire further work on
Riesel numbers with a fixed number of prime factors, or numbers which are simul-
taneously Riesel and Sierpińsky with a fixed number of prime factors, etc.

2. Covering Systems

Typically, the way to find Sierpiński numbers is the following. Assume that
{(aj , bj , pj)}t

j=1 are triples of positive integers with the following properties:

cov for each integer n there exists j 2 {1, 2, . . . , t} such that n ⌘ aj mod bj ;

ord p1, . . . , pt are distinct prime numbers such that pj |2bj �1 for all j = 1, 2, . . . , t.

Next, one creates Sierpiński numbers k by imposing that

2aj k ⌘ �1 mod pj for j = 1, 2, . . . , t. (1)

Since the primes pj are all odd for j = 1, 2, . . . , t, it follows that for each j, the
above congruence (1) is solvable and puts k into a certain arithmetic progression
modulo pj . The fact that the congruences (1) are simultaneously solvable for all
j = 1, 2, . . . , t follows from the fact that the primes p1, p2, . . . , pt are distinct via
the Chinese Remainder Theorem. Every odd positive integer k in the resulting
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arithmetic progression has the property that k2n + 1 is always a multiple of one of
the numbers pj for j = 1, 2, . . . , t, and if

k > max{pj : j = 1, 2, . . . , t},

then k2n + 1 cannot be prime.
The original system of triples considered by Sierpiński [10] (see also [4]) is

{(1, 2, 3), (2, 4, 5), (4, 8, 17), (8, 16, 257), (16, 32, 65537), (32, 64, 641),
(0, 64, 6700417)} . (2)

In the following lemma, we exhibit a family of systems generalizing the above system
of triples.

Lemma 1. Given a composite Fermat number Fm, there exists a covering system of
congruences {(aj , bj , pj)}m+1

j=0 , such that the solution k of the system of congruences
2aj k ⌘ �1 mod pj, j = 0, 1, . . . ,m + 1, has k ⌘ 1 (mod pj) for j = 1, . . . ,m and
k ⌘ �1 (mod pm+1).

The proof of the above lemma can be found in Section 4.

3. Proof of Theorem 1

Choose some m such that Fm = 22m
+ 1 is a Fermat number having at least two

distinct prime factors. For example, by a recent computation, m = 2747497 has
this property because p = 57 · 22747499 + 1 | Fm, and certainly Fm > p. We fix n
and search for solutions to the equation

2nk = '(N), (3)

where
N = r`q1 · · · qs�1 (4)

with r, q1, . . . , qs�1 primes and ` some suitable positive integer. For this, we first
write n = 1 + �1 + · · · + �s�1 with positive integers �1, . . . ,�s�1, which is possible
since n � s. We fix j = 0, . . . ,m + 1, and choose

qi � 1
2�i

⌘ 1 mod pj (i = 1, . . . , s� 1).

These lead to qi ⌘ 2�i + 1 mod pj , which is a valid choice (namely the congruence
class is nonzero) as long as pj - 2�i + 1. In the unfortunate case when pj | 2�i + 1,
we change our mind and ask instead that

qi � 1
2�i

⌘ �1 mod pj ,
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which leads to qi ⌘ �(2�i�1) mod pj ⌘ 2 mod pj . This fixes nonzero congruence
classes of q1, . . . , qs�1 modulo pj for j = 0, . . . ,m + 1. We also choose qi ⌘ 1 + 2�i

(mod 2�i+1), which ensure that (qi � 1)/2�i is an odd integer for i = 1, . . . , s � 1.
By the Chinese Remainder theorem, this fixes the congruence classes of qi modulo
2�i+1p0 · · · pm+1 and the fact that one may choose s�1 distinct primes in the above
congruence classes is a consequence of Dirichlet’s theorem on primes in arithmetical
progressions. Now it remains to comment on r and `. Equation (3) yields

2nk = '(N) = r`�1(r � 1)(q1 � 1) · · · (qs�1 � 1),

which implies

k =
r`�1(r � 1)

2

s�1Y
i=1

✓
qi � 1
2�i

◆
. (5)

Reduced modulo pj , the left–hand side is ±1 and the product in the right hand side
over i = 1, . . . , s� 1 is also ±1. Thus, it remains to show that we can find r and `
such that each of the two congruences

r`�1(r � 1)
2

⌘ ±1 mod pj (6)

has a nonzero solution rj mod pj . An obvious choice is to choose

` = lcm[p0 � 1, . . . , pm+1 � 1].

Then the above equations via Fermat’s little theorem imply that congruences (6)
become (r � 1)/2r ⌘ ±1 mod pj , leading to r ⌘ �1, 3�1 mod pj . This works
except when j = 0, since when j = 0 we have p0 = 3, and we cannot invert
3 modulo p0. In this case k ⌘ 1 mod 3, and (qi � 1)/2�i ⌘ 1 mod 3 for all
i = 1, . . . , s� 1, except when �i is odd (case in which 3 | 2�i + 1), in which case the
sign in the right–hand side of the last congruence above is �1. Thus, the unsolvable
congruence

r � 1
2r

⌘ �1 mod 3

is a consequence of relation (5) and of our previous choices only when there are
exactly an odd number of i 2 {1, . . . , s � 1} such that �i is odd. Since

Ps�1
i=1 �i =

n � 1, it follows that our construction so far fails when n is even but is successful
when n is odd.

So, from now on we only work with even n. If n � s + 2, then we write 3 +Ps�1
i=1 �i = n with some positive integers �1, . . . ,�s�1. We take ` = 1, write

k =
(r � 1)

8

s�1Y
i=1

✓
qi � 1
2�i

◆
,
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and choose q1, . . . , qs�1 as before. We are then led to solving

r � 1
8

⌘ ±1 mod pj for j = 0, . . . ,m + 1. (7)

The solutions are r ⌘ �7, 9 mod pj , and these nonzero modulo pj except when
j = 0 and the sign in the right–hand side of the above congruence (7) is 1 (note
that 7 is not one of the primes pj for j = 0, . . . ,m+1). However, when j = 0, since
n is even, it follows that n � 3 is odd, therefore there are exactly an odd number
of i 2 {1, . . . , s� 1} such that �i is odd. So, at j = 0, the congruence to be solved
is in fact (r � 1)/8 ⌘ �1 mod 3, whose solution is the convenient r ⌘ 2 mod 3.
We now choose r ⌘ 9 mod 16 to insure that (r � 1)/8 is odd, leading to r ⌘ 41
mod 48, which is acceptable. Then we find one (or infinitely many) such r using
Dirichlet’s theorem on primes in arithmetical progressions.

Finally, we are left with the cases in which n is even and n = s, s + 1. Suppose
that n = s. Then �1 = · · · = �s�1 = 1, we take ` = 1, and we work with

k =
✓

r � 1
2

◆ s�1Y
j=1

✓
qj � 1

2

◆
.

Since n is even, it follows that s is even. So, when j = 0, modulo p0 = 3, we can
take r ⌘ qi ⌘ 2 mod 3 for i = 1, . . . , s� 1 and we obtain k ⌘ 1 mod 3, as desired.
For j � 1, we need to solve (r�1)/2 ⌘ ±1 mod pj , which has the nonzero solutions
�1, 3 mod pj .

Suppose finally that n = s + 1. We then take �1 = · · · = �s�1 = 1, ` = 1, and
work with

k =
(r � 1)

4

s�1Y
i=1

✓
qi � 1

2

◆
.

For j = 0, since n is even, we get that s is odd, so s � 1 is even. So, we need to
solve

r � 1
4

⌘ 1 mod 3,

which leads to the convenient solution r ⌘ 2 mod 3. For j = 1, we have p1 = 5
and 5 - 21 ± 1. So, with our choices, we may choose qi such that (qi � 1)/2 ⌘ 1
mod 5 for all i = 1, . . . , s�1, except for one of them, say the first one, for which we
choose (q1 � 1)/2 ⌘ �1 mod 5. This works if s� 1 � 1, which is our case because
s � 2. Now we only need to solve

r � 1
4

⌘ �1 mod 5,

which has the convenient solution r ⌘ 2 (mod 5). Finally, for j � 2, we need to solve
(r � 1)/4 ⌘ ±1 mod pj , which lead to r ⌘ �3, 5 mod pj which are both nonzero
congruence classes modulo pj because j � 2. Now we fix as before congruence classes
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for qi modulo 2�i+1 for i = 1, . . . , s� 1 to ensure that the amounts (qi � 1)/2�i are
odd, as well as for r modulo 8 to ensure that (r� 1)/2 (when n = s) and (r� 1)/4
(when n = s+1) are odd and proceed as before via the Chinese Remainder theorem
and Dirichlet’s theorem on primes in arithmetical progression to justify the existence
of infinitely many primes r, q1, . . . , qs�1 with all the congruence properties specified
above.

This finishes the proof of the theorem.

4. Proof of Lemma 1

It is well-known that Fm cannot be a perfect power of integer exponent larger than
1 of some other integer. Hence, since Fm is not prime, it follows that it has at least
two distinct prime factors. We choose for every j = 0, 1, . . . ,m a prime factor pj

of the Fermat number Fj . Since Fm is composite with at least two distinct prime
factors, we choose a second prime factor of Fm which we denote by pm+1. Then,
we consider the system of triples

(aj , bj , pj) =
⇢

(2j , 2j+1, pj), if j  m,
(0, 2m+1, pm+1), if j = m + 1. (8)

By considering the binary expansion n =
P1

i=0 ai2i of a positive integer n, we see
that either n ⌘ 0 mod 2m+1, or n ⌘

Pm+1
i=0 ai2i ⌘ 2j0 mod 2j0+1, where j0 is the

smallest index 0 < j  m for which aj 6= 0. This shows that the system of triples
(8) fulfils condition cov. On the other hand, the fact that pj |Fj = 22j

+ 1, for j =
0, 1, . . . ,m, tells us that 22j ⌘ �1 mod pj . This congruence implies that 22j+1 ⌘ 1
mod pj and consequently ordpj (2) = 2j+1. Here, ordp(2) is the multiplicative order
of 2 modulo the odd prime p. Similarly, ordpm+1(2) = 2m+1. The fact that the
prime numbers pj , for j = 0, 1, . . . ,m,m + 1, are pairwise distinct follows because
the orders of 2 modulo these primes are all di↵erent except for pm and pm+1 which
are distinct as well. Therefore, the system of triples (8) also fulfils condition ord.
Finally, let us solve for k. For j = 0, 1, . . . ,m, we have that 22j

k ⌘ �1 ⌘ 22j

mod pj and consequently k ⌘ 1 mod pj , while 22m
k ⌘ �1 ⌘ �22m

mod pm and
consequently k ⌘ �1 mod pm+1.

This finishes the proof of the lemma.
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