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THE USE OF YOUNG MEASURES FOR
CONSTRUCTING MINIMIZING
SEQUENCES IN THE CALCULUS OF
VARIATIONS

M. CHIPOT

Abstract. The goal of this note is to construct — via the notion of Young
measure—minimizing sequences for problems of calculus of variations that
do not admit minimizers.

1. Introduction. We denote by © a bounded domain of R? with
boundary T'. If W1°(€) is the set of Lipschitz continuous functions with
values in R, and WO1 "*°(€)) the set of functions in W1°°(£2) vanishing on the
boundary of © (see [15] for information on these spaces), we would like to
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consider the following model problems:

(1.1) W1i,gof(9) /Q v2 + (UZQJ —1)? dzdy,
0
(1.2) W1i,£1of(9) /Q v + (vi —1)% +0? dady,
(1.3) inf / v2 + (U; — 2%)? dady,
Wy Q) Ja
(1.4) W1i,{.1of(9) /Q v2 + (vf/ — %)% +0? dady,

where v;, v, denote respectively Ov/dz, dv/dy. (See [17] for the link with
austenite-martensite transformation). The usual issue in the Calculus of
Variations is to find a minimizer i.e. a function u for which one of the above
infima is achieved. In fact here, all these problems are sharing the same
property to have their infima equal to 0 but no minimizer to achieve it. So,
there exist minimizing sequences with energy converging toward 0. As we
will see, for a given problem all the minimizing sequences have the same
pattern. Information about these minimizing sequences can be discovered
through the Young measures that they are generating. This is one of the
issues that we would like to address here: we will establish that each of the
above problems has minimizing sequences defining a unique Young measure.
From this we will show how to built corresponding minimizing sequences.
Problems of the above types arise in material science. We refer for instance
to [9] for a more complex situation. However, the main features of these
problems can be carried out in the context of these four simple problems.
For more general consideration we refer to [2], [3], [7].

2. Minimizing sequences. Let us first show:

THEOREM 2.1. Fach of the above infima is equal to 0. None of the above
problems admits a minimizer.

Proof. Let us show that the infimum (1.1) is equal to 0. The fact that the
other ones are also equal to 0 will be a consequence of subsequent analysis.
Set

(2.1) pl61.6) =€ + (& - 1%
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If ** denotes the convex envelope of ¢ i.e. the largest convex function
below ¢ and if || denotes the measure of €2 it is well known (see [13]) that

1
(2.2) inf —/ ©(vg,vy) dady = ¢**(0,0).
wh=@) 12 Jo

Since 0 < ¢ and since the function identical equal to 0 is convex one has
clearly
0 <™.
Moreover, since
e(0,£1) =0
one has
0 < ¢™(0,£1) < p(0,£1) =0.
From the convexity of ¢** it then follows that

¢(0,0) =0

and by (2.2) the infimum (1.1) is equal to 0. This completes in this case the
proof of the first part of Theorem 2.1.
Let us assume next that the infimum (1.1) is achieved for some u €

WOI’OO(Q) i.e. assume

/ uz + (ul — 1)* dady = 0.
Q

Necessarily u; = 0 so that u is independent of x. But since u vanishes on
the boundary of Q w is identical to 0. Clearly, if v is a minimizer of (1.2) one
must have also u = 0 and similarly for u solution to (1.3), (1.4). So, the only
possible minimizer for the above problems is the function identical equal to
0. Now, for v = 0 all the integrals in (1.1)—(1.4) are equal to |Q] # 0. Hence
a contradiction. O

In the absence of minimizer we turn to the study of the minimizing se-
quences. Due to the fact that the only “possible” minimizer has to be 0
they have a behaviour connected to this point. We have:

THEOREM 2.2. Fvery uniformly bounded minimizing sequence of the
problems (1.1)—(1.4) converges uniformly towards 0.

Proof. By a uniformly bounded sequence we mean a sequence v, such that

(2.3) [veloos [[Ve|loo < C
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where C' is a constant independent on € and | |o the usual L (€)-norm.
Now, for such a sequence, one can extract a subsequence that we will still
label by v. such that

(2.4) ve — v uniformly in @, Vv, —= Vo in L*(Q) * weak.
Since v, is a minimizing sequence one has
Ver — 0 in L2(Q)
and in cases (1.2), (1.4)
v. — 0 in L*(9).
By uniqueness of the limit in L?(Q) we then deduce that v = 0 (in cases

(1.1), (1.3) vy = 0 implies v = 0 since v vanishes on the boundary of Q).
Thus, the only possible limit for v, is 0 and the result follows. O

REMARK 2.1 . From (2.4) one deduces that
Vv =0 in L*™(Q) * weak.

3. Young measures. A uniformly bounded “sequence” w, € (L>(€2))™
i.e. such that

(3.1) |[welloe < C

where C' is a constant independent on € and | | the usual euclidean norm in
R defines a Young measure in the sense that there exists a subsequence
of w, still labelled by € and a probability measure v, on R parametrized
by z such that

(3.2) olws) — - ©(N)dvg(A) in L°(Q) * weak
for any continuous function ¢ (see [1], [18], [14], [16], [13]). For instance,

a bounded minimizing sequence w, = v, of (1.1) or (1.2)—(1.4) defines a
unique Young measure given for any = by

vy = 0o
where g denotes the Dirac mass at 0. Indeed, since
ve — 0 uniformly in
one has for any continuous function ¢
»(v:) — ©(0) uniformly in

thus also in L>°(Q2) * weak so that for any continuous ¢ one has

/R PN dva(A) = (0)
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which concludes.

For a uniformly bounded minimizing sequence of (1.1)—(1.4), i.e. satisfy-
ing (2.3), w. = Vu. defines also a Young measure. This Young measure is
unique and we have:

THEOREM 3.1. Let v. a uniformly bounded minimizing sequence of (1.1)-
1.4), then Vv, defines a unique Young measure on R? given b
(1.4), e q g g y

1 1
(3.3) Uy = E(Swl + §5W2 , Wi = (0, 1) , Wo = (0, —1)

in cases (1.1), (1.2) and
1 1
(3.4) Uy = §6W1(93) + §5W2(a:) , Wl(ac) = (0,.73) , Wo = (0, *I)

in cases (1.3), (1.4). As before d4 stands for the Dirac mass at A.

Proof. Let us first consider the case of (1.1), (1.2). Since v, is a minimizing
sequence and if ¢ denotes the function defined by (2.1) one has

/ P(Veg, Vey) dzdy — 0
Q

hence from (3.2) it follows that

Jor e (3) =0,

This implies that the support of v, is included in Wy U Wy where the W;
are defined in (3.3). Since v, is a probability measure one has

vy = a1 (z)ow, + (1 — a1(x))dw,.

Note that -above and latter- when no confusion is possible z denotes in
fact for simplicity the point (x,y). Now, from remark 2.1 and (3.2) for any
function f € L'(2) one deduces

O—Iim/ Verf dxdy = / f/ Adv,(N) dzdy,

e Ja o JR?

0= lim/ Vey [ dady = / f/ Aodv, () dxdy.
e Jo o JR?

Since this is true for any f it follows that
0= /R2 Advg(N) = aq ()W + (1 — o (z))Wa = (201 (z) — 1)Wh.

From this it results that oy = % which completes the proof in case of prob-
lems (1.1), (1.2).



76 M. CHIPOT

If now v, is a minimizing sequence for (1.3) or (1.4) then

lim/ v2, + (vgy —2?)? dxdy = 0

from which by (3.2) and expending (vZ, — 2?)* we deduce

//2)\ + (A3 — 2%)2dv,()\) = 0.

Hence for almost every (z,y)

/R 24 (A2 = 22)2dua(A) = O,

Thus

Ve = a1(2,Y)0w, () + (1 — a1(z,9))dw, @)
where the W;(z) are defined in (3.4). Using again the remark 2.1 we obtain
as above that a1 = % O

REMARK 3.1. If v, is a Young measure defined through a bounded
sequence w; then v, () is the probability that -at the limit- the function w,
takes the value A. So, in case of (1.1) and (1.2) and if v, is a minimizing
sequence at the limit Vv, takes around any points the values Wi, Wy with
the same probability 3. In the case (1.3), (1.4) if v. is a minimizing sequence
at the limit Vo, takes around any points the values Wi(x), Wa(z) with the
same probability. Of course here W1 (z), Wa(x) are changing with z, the
associated Young measure is not homogeneous.

4. Construction of minimizing sequences. The analysis conducted
in the previous paragraph gives us some information on the minimizing
sequences associated to the problems (1.1)—(1.4). First, the uniqueness of
the associated Young measure is the indication that they all have the same
pattern. This pattern can be predicted as soon as we know what are the
gradients used at the limit. Let us first consider the case of problem (1.2).
For € > 0 set

Y if ye(0,¢e),
(11) e tue )
—y+2 if ye€ (g 2e).

Suppose now that v, is extended by periodicity of period 2¢ in the y-direction
on the whole R?. Let us denote again by v, this new function. Clearly
(4.2) 0<wv: <e,
so that

/ vgx + (vgy — 1)2 + v? dxdy < 52|Q|

Q



THE USE OF YOUNG MEASURES FOR CONSTRUCTING MINIMIZING SEQUENCES7

and the above integral converges towards 0 with €. This provides us with a
minimizing sequence (it is clear that the infimum (1.2) is nonnegative) and
shows at the same time that the infimum (1.2) is indeed 0. We also can see
that the “wells” W) = (0,1), Wy = (0, —1) are used -at the limit- with the
same probability around each points.

To construct a minimizing sequence corresponding to problem (1.1) we
replace the sequence v, in (4.1) by the same function cut-off by the distance
to the boundary i.e. by

(4.3) Ue = vz Adist(.,T")
where A denotes the minimum of two numbers. Clearly this function is in
W()l’oo(ﬂ). Moreover, since by (4.2) when e < dist(z,I') one has 0. = v,
(4.4) / 02, + (02, — 1) dady < CV.

Q
where V. denotes a volume of size € around the boundary I and C a constant
depending on the gradient of 0. which is uniformly bounded independently
of e. It follows from (4.4) and theorem (1.1) that 9. is a minimizing sequence
for the problem (1.1). Again, at the limit and around each point, 9. uses
with the same probability W7 = (0,1) and Wy = (0, —1). We turn now to
the case of problems (1.3) and (1.4).

A minimizing sequence for (1.3) or (1.4) has to have a more complicated
pattern than in the previous cases since the wells used have to change with
the position in €. Let us consider first the case of problem (1.3). Define for
0<e<l1

x! if ye(0,¢e),
(4.5) ve(z,y) = y, , ) y€ (0
—2'y + 22’ if y € (g, 2¢).

Suppose now that v, is extended by periodicity of period 2¢ on R2. If Q is
a square of side § > ¢ and center (z,y’) define by ©. the function

(4.6) Ve = vz A dist(.,0Q)
where 9@ denotes the boundary of Q). § will be chosen latter on. It is clear
from (4.4) that

ey

(4.7) / 82, + (02, — 2'*)? dady < Ceb
Q

where C'is a constant independent of € and §. Then we cover ) by squares
Q; of center (x;,y;) (see Figure 1).

On each square Q); that is completely included in €2 define v. as the
function v given by (4.6) for (2/,y’) = (x;,y;). On the squares cutting the
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Nd

FIGURE 1

boundary I' define v, by 0. If D denotes the part of €2 covered

e
A //‘ N
[
\ [ -
\ (x.y")

by these

squares cutting the boundary one has for some constant C' independent of

)

(4.8) / v2, + (v?y —2%)? dady < C6.
D

Next, due to (4.4) on each Q; one has

(4.9) / 02, + (02, — 27)? dady < Ces.
Qi

So, we deduce

/ 02, + (02, — 2*)? dady < C6 + Z/ 02, + (02, — 2°)? dady
(4.10) <Ci+y /Q_ 02, + (02, — 22)? drdy

+ Z/Q {ng + (Ugy - 12)2 - U?x - (Ugy
i i

Since for (z,y) € Q;

—22)?} dady.

02, + (v2, = 2%)? =02, — (v2, = 2})?| = (2 —@3) (2 +23) (202, —2® —af)| < CF

€Y
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if N denotes the number of squares ); included in € one deduces from above

ex €y

/ v2, + (v, — 2%)? dady < C§ + NCES.
Q

Now, clearly
N&* < 19|
so that
/ 02, + (02, — 2*)? dady < C{6 + %}
Q
If one selects
5 =¢?
we obtain

ex ey
Q

Taking G = % we end up with

/ 02, + (02, — 2%)? dady < C{e® + 1P},

/ v, + (vgy —2%)% dady < Ces.

Q

This shows that v, is a minimizing sequence and that the infimum (1.3) is
0. Clearly since v is bounded from above by e one has also for e <1

/ v, 4 (02, — 22 +0? dady < Ces
Q

ey
so that the infimum (1.4) is also 0 and v, is a minimizing sequence for (1.4).

REMARK 4.1. We considered here uniformly bounded minimizing se-
quences. Of course it is possible to have unbounded sequences. It is enough
to modify slightly one of the above minimizing sequence. For instance, one
can modify v, defined by (4.1) in one strip of size 2¢ in such a way that on
this strip S

|Uy| = o
Then

ex ey

1
/ v2, + (02, —1)% dzdy < Ce—p—0
S ex

for a < i. Clearly this modified v, is an unbounded minimizing sequence.
However, as we can see, its pattern remains the same.

REMARK 4.2. It is a challenging problem to succeed to obtain numeri-
cally the right pattern for the minimizing sequences associated to problems
studied here. For these questions related to computations we refer the in-
terested reader to [4], [5], [6], [8], [9], [10], [11], [12].
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