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THE EXISTENCE OF HOMOCLINIC
SOLUTIONS FOR HYPERBOLIC EQUATIONS

A. NOWAKOWSKI AND A. ROGOWSKI

Abstract. Studying homoclinic solutions of equations is one of the steps to
go deeper in the understanding of dynamics. As it is known to the authors
there are no papers studying homoclinic solutions of hyperbolic systems. In
the paper we present a new variational method general enough to treat the
problem of the existence of homoclinic solutions for the following semi-linear
wave equation: zu(t,y) —x,,(t,y)+9(t,y,z(t,y)) =0for 0 <y <Y, t € R,
z(t,0) =0, z(t,Y) = 0 for t € R. Our approach covers both sublinear and
superlinear cases.

1. Introduction. Several recent papers have used global variational
methods to establish the existence of multibump solutions of families of
superquadratic finite dimensional Hamiltonian systems. Such solutions are
homoclinic solutions of equations (see e.g. Sere (1992), Bessi (1993) and Coti
Zelati and Rabinowitz (1991), (1992), (1994)). These implies that studying
homoclinic solutions of equations is one of the steps to go deeper in the
understanding of the dynamics. As it is known to the authors there are
no papers studying homoclinic solutions of hyperbolic systems. The reason
is that such problems are especially difficult for topological and analytical
methods. Simultanously, in eighties there were developed many variation
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al methods for obtaining different existence results for hyperbolic partial
differential equations (see e.g. Brezis (1983), Mawhin (1987)). Our purpose
is just to work out a new variational method general enough to treat the
problem of the existence of homoclinic solutions for the following semi-linear
wave equation:

-Itt(t,y) - xyy(tv y) —I—g(t,y,x(t,y)) =0 for0 < Y < Yv te R7 (1)
z(t,0) =0,2(t,Y) =0 forteR.

We shall further develop the ideas presented in our earlier papers — Nowa-

kowski & Rogowski (1993), (1995a), (1995b). It is well known that to work

with variational methods it is necessary to consider (1) as a kind of the

Euler-Lagrange equation for some functional. One of many possibilities

is to counsider (1) as an infinite dimensional Hamiltonian system (see e.g.

Nowakowski (1992))
0 (x H,
ilo) = () &

where the Hamiltonian H (¢, z,p) is defined on R x H§(0,Y) x L?(0,Y) by

1 rY
Ht.o,p) =5 [ Gy () +2,(t.)° +plty))dy,

where G is a primitive of g with respect to x. It is well known that Hamil-
tonian system (2) is the Euler-Lagrange equation for the functional

Jia.p) = [ (< (t).p(t) > ~H(t.a(0).p(0)d,

where < -,- > is a scalar product in H = L2(0,Y), “"= 4 in a weak

sense of the space H, z(t) = z(t,-), p(t) = p(t,-). However the functional
Jg is still unconvenient to study, because the Hamiltonian H does not
depend on the derivative . This is why we calculate the Lagrange functional
corresponding to Jg. It is obtained by Fenchel transform of H(t,z, ) i.e.

L(t7‘/L‘7 ‘/I;) = Sup(< p7x > 7H(t7 z7p))7
peX

where X = H(0,Y). By the form of H we calculate

} 1 D
Lit.2.) = — 2l + 3 ? - Glt.2).

where A = % is an operator in H with the domain X, ||- || denotes the

norm in H and

Y
Glt,z) —/0 Gty z(y))dy for = € L2(0,Y).
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Then the Lagrange functional takes the form:

J(z) = /R L(t, (t), &(¢))dt.

We shall investigate J in the space Wy(R), where Wp(R) = W(R) =

{x € L%(R;X), x € L?(R;H)}. Because of our assumptions on X and

H, x € Wy(R) is continuous as a function z : R — H (see e.g. Lions and

Magenes (1968)) and z(t) — 0 for |t| — 4o00. The space Wy(R) endowed
1

with the norm [|z([yy, = (HAJ;HiQ(R;H) - H‘i‘Hi?(R;H))E becomes a Hilbert
space.

In view of the above, to investigate the homoclinic solutions of (1) it is
enough to study the homoclinic solutions of (2). Since the notions of homo-
clinic solutions arose just for studying dynamics of homoclinic solutions of
finite dimensional hamiltonian systems, thus studying homoclinic solutions
to infinite dimensional Hamiltonian systems (2) i.e. such pairs of functions
(z,p) satisfying (2) that (z,p) € Wo(R) x Wo(R) i.e. z(t), p(t) — 0 as
|t| — 400 is a natural generalization of finite dimensional case. In that way
by homoclinic solutions to (1) we shall understand homoclinic solutions to
(2). Therefore we have a full analogy to the classical meaning of homoclinic
solutions of the equation.

In the sequel we shall need to consider Wy(R) as a closed subspace of
a Cartesian product of two spaces L?(R;H). Let us put Ly = L?*(R; H) x
L2(R;H) so that to each z € Wy(R) we can associate the well defined
vector Qr in Lg given by Qr = (Az, %) € L. Since [|Qz| 1, = [|zly,, @ is
an isometric isomorphism of Wy(R) onto a subspace W C Lo. As Wy(R) is
complete, W is a closed subspace of of Ly. Therefore W endowed with the
scalar product induced from Lo becomes a Hilbert space. Since W is closed
there exists its orthogonal completion W+ in Ly such that Ly = W @ W=,
Denote by P the orthogonal projection from Lo onto W+ and by P* its
transpose acting from W+ to Ly as the map associating functions from W=+
functions in Ls. Let h(v,w) = hi(v) + ho(w) be a lower semicontinuos
convex, finite function on W. We shall compute h* (the Fenchel conjugate
to h).

LEMMA 1. In the above setting let us assume that there exist convex, lower

semicontinuos, finite functions hy : L>(R;H) — R, hy : L*(R;H) — R
such that h(v,w) = hi(v) + hao(w) restricted to W is equal to h. Then the
Fenchel conjugate to h is given by the formulae

R*(v,w) = inf (hi(v+&)+ hi(w+n)).
(v, w) (M)ewL( 1(v+&) + hy(w + 1))

)
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Proof. Since W is the kernel of the projection P we can write, using the
indicator function x of the set {0}: h(v,w) = h(v,w)+x {0} (P(v,w)). By the
definition of P we easily check that 0 belongs to the interior of P(Dom h).
Thus we can apply Corollary 4.4.12 from Aubin and Ekeland (1984) to
calculate h*. Consequently h*(v, w) = inf(¢ eyt (R} (v+&)+hs(w+n)). O

PRrROPOSITION 1. If the sequence {z,} C Wy(R) converges weakly to x in
Wo(R), then {x,} converges strongly to = in L*(R;H).

Proof. Since any weakly convergent sequence in Wy(R) is bounded in the
Wo-norm, therefore ||Azy | 2g g1y and ||Zn| 2(g, ) are are uniformly bounded
by some constant M. To end the proof it is enough to show that for every
g€ > 0 there exists a positive number § > 0 and a compact subset G C R
such that for every n and every h € R with |h| < §:

/|\xn(t+h)—xn(t)||2dt<6 and / |z (£)] 24t < .
R R\G

Choose any n and |h| < §. Then

t+h
/||xn(t+h)—xn(t)|\2dt§// in(s)|*dsdt < 3hM.
R R Jt

Hence if we put § = 35; then we get the first inequality. To obtain the
second one we infer from the boundedness of {z,} in Wy that the functions
t — ||z, (t)]| 5 are uniformly bounded in R. Thus we are able to choose a

compact set G C R such that [, g || (£) ||t < e. O

Through the paper we need the following hypothesis:

(H): G : Rx[0,Y]xR — R is measurable, convex and Gateaux differ-
entiable in the third variable and is subject to the following growth
conditions:

el + bi(t,y) < G(t.y.2) < alal” + blt.y)
for all (¢t,y,z) € Rx[0,Y|xR,
where a1 >0, a >0, b,b; € LY(Rx[0,Y]) and r > 1, r; <2, 7 > 7r1;
The main result of the paper is the following

THEOREM 1. Under the above hypothesis (H) there exists a weak homo-
clinic solution T € W (R) to (1) such that

J(Z) = inf sup  J(x)
zeL?(R;H) Az€L2(R;H)
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This theorem is a direct consequence of Corollary 2 and Theorem 4.

It is worth to note that the growth conditions in hypothesis (H) include
both sublinear and superlinear cases of (1). As it is known to the authors
sublinear and superlinear cases were always treated by different methods. In
this paper however, we establish the general method, developed in Sections 2
and 3, for studying both cases simultaneously  sublinear and superlinear.

2. Duality results. To obtain duality results we need a space over
which a perturbation of J will be built as well as a proper duality pairing
associating it with the space Wy(R) can be defined. In our case we take
just Wo(R) with the scalar product < z,p >y, r)=< Az, Ap >p2g;m) + <
T,p >r2r;m)- Lhe choice of the space Wo(R) is related to the results we
intend to derive from the duality principle.

First we define for each x € Wj(R) the perturbation of J as:

5o = [ (3180 + Mgl + Glt,a(t) +9(0) — 3 (o))

for g € Wy(R). Of course J,.(0) = —J(z). For z € Wy(R), p € Wp(R) we
define a type of conjugate of J by

@) = swp [ (<p0.Ag(t) >+ < B(0) = Ap(0).9(0) > +
(Ag.g)ew /R

1 . 1 a2
— 51 Az(®) + Ag@)II* = G(t, 2(t) + §(1))dt + /R [z ()]]"de.
Using formulae for the conjugate in the space W we compute that

TEe) = min [ (G0 + o]+ G (ti(0) - Ap(e) +

(v,w)eW+
Fu() + g IO ()

Now it is easy to calculate

1
# _ . - 2 * . _
weLg(lff{ HSJ (p) (o, in L/R(2||10(t) + ()| + G (¢, p(t) — Ap(t) +

1
+w(®) =5 p@))dt. (4)
The right-hand side of (4) we shall denote by Jp(p) i.e.

Ioe) = min [ (3lp0) + o0)|? +G7(0.50) ~ Ap(0) +

() - 5 lp@Pdt (6
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and we shall call it the functional dual to J. For g € Wy(R) we put
@) = swp ([ (< p(0).Ag(t) > + < p(O)~Ap(0). 3(2) >)dt ~ TF (p).
(Appew ‘R
We see, taking into accout (3), that for x € Wy(R)
JEH(0) = —J(2).
Using the “min—max” theorem (Brezis (1973)) we are able to compute (see
(4) and (5))

sup inf J¥#(0) =supinf sup —JF(p) =
#€L2(R;H) Az€L2(R;H) @ Az (App)ew

sup supinf —J#(p) = sup —Jp(p).
(App)eW & Az pEWOL(R)

Therefore, we come to the following duality principle.

THEOREM 2. Functionals J and Jp are subject to the following relation

inf sup J(x)= inf Jp(p).
zeL?(R;H) Az€L2(R;H) ( ) peWH(R) ( )

The next result formulates a variational principle for “min max” argu-
ments. However, as it is much more easily to prove that the infimum of
Jp(p) over Wy(R) is attained than “min-max” for J(x), therefore we shall
investigate the dual functional Jp. To this effect define the perturbation of
Jp as:

Ton(@) = = [ GlIp(0)+ v Ol + G (t.5(0) = Ap(e) + w, (1)) +

1 . 2
= 5llp(®) + 97 dt. (6)
where (vp,w,) € W+ is a pair for which a minimum in (4) is attained.

THEOREM 3. Let p € Wy(R) be such that Jp(p) = infpew, Jp(p) > —o0
and let the set 8Jp;(0) be nonempty. Then there exists x € L*(R; H), —x €
0Jpp(0) and T corresponding to T belongs to Wo(R) and satisfies

J(z) = inf sup J(x).
» Az

Furthermore

Jpp(0) +JZ (p) =0,  J(@) —JF(p) =0, (7)
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Proof. By Theorem 2 to prove the first assertion it suffices to show that
Jp(p) > supy; J(Z) = J(Z), where Z(t) is a function in Wy(R) determined
by z, and —x € 0Jp(0). By the definition of Jp;(0) we see that

3 | 1pO+gPa = 5 [ Ipo)fde+ [ < o).~ >
for all g € Wp(R). (8)

This implies, that for all ¢ € L?(R;H) such that g € Wy(R) the following
inequality holds

Top(9) > —Jp(p) + /R < §(t),—a(t) > dt. 9)

After simple transformation and taking into account the definition of J7 (p)
and Jp(p) we obtain from (9):

T ) =swp ([ <o), 30> dt -~ Igld) ) < Ip(p) <+
g MR (10)

where & is a primitive of . Since z satisfies (8) therefore z(t) = —p(t) and
so the primitive of z must belong to Wy(R). Thus & = & € Wy(R). From
(10) we infer that

—sup J(Z) =inf sup —Jf(p) > —Jp(p), i.e supJ(z) < Jp(p).

Az Az peWp(R) Az

By assumption (H) the supremum over AZ is attained i.e. there exist & €
Wp(R) with %i‘(t) = 7, such that sup,; J (%) = J(7).

The second assertion is a simple consequence of two facts: Jpp(0) =
—Jp(p) and —F € 8Jpy(0), which ends the proof. O

From equations (7) we are able to derive a dual to the Euler-Lagrange
equation (2).

COROLLARY 1. Let p € Wy(R) satisfy: inf,ew, Jo(p) = Jp(p) and let
Jpp(0) be finite. Then there exists & € Wo(R) such that the pair (z,p)
(together with suitable vy, wp realizing minimum in (4)) satisfies relations:

F(t) = —p(t), (11)
AZ(t) = —p(t) — vp(0). (12)
P(t) — Ap(t) + wp(t) = g(t.2(t)) (13)
Io(p)= _inf_ Jp(p) = inf sup J(z) = J(@) (14)
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Proof. From the form of Jpz(g) we see that g — Jp;(g) is convex, lower
semicontinuous and finite in Lo(R;H), and therefore continuous in that
space. Hence 0Jp;(0) is nonempty and so the existence of T € Wy(R) is
now clear by Theorem 3. Equations (11)-(13) are a direct consequence of
(7). Relation (14) is a consequence of Theorem 2. O

From the above corollary we infer at once

COROLLARY 2. By the same assumptions as in Corollary 1 there exists
a pair (Z,p) € Wo(R)xWo(R) being a weak solution to (1) and satisfying
(14).

Proof. Since the right-hand side of (11) has the weak derivative in ¢, there

exist also %i in the weak sense. As (v, wz) € W+ we infer from (12) that
for x € Wp(R)

(AZ, Ax)po gy = (P — 0p AT) ooy = (AP @) p2mmy — (Up: AT) L2 mo)
and from (11) and (13) for the same x:
[ (< =050 > + < Aa(t), Ax(t) > + < g(t,2(0)), 2(2) >)dt = 0.
R

The last means that z is a weak solution to (1). O

3. The existence of a minimum for the dual functional Jp. The
last problem which we must solve to obtain the existence of solutions to (1)
or (2) is to prove, in view of Corollary 2 , the existence of p together with
the pair (vp, wp), satisfying:

Ioe) = amin [ (GIpte) + w@ + 6650 -

~ 8p(0) + wp(0) ~ 3 IO (15)

To obtain this we use hypothesis (H) and Proposition 1.

THEOREM 4. Under hypothesis (H) there exist p € Wy(R) along with
(vp, wp) such that (15) holds.

Proof. First note that for each fixed p € Wy(R) minimum over (v,w) € W+
is attained by some (vp,w,) as the space W+ is closed and convex and the
integral in (15) is a lower semicontinuous and convex functional of (v,w)
and tends to +oo as |(v,w)| — +oo in W, Since for each p € Wy(R)
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the pair (p, p— Ap) does not belong to W+ therefore (v,,w,) # (p,p — Ap).
Next we show that the functional Jp is bounded below. Really

To®) 2 [ (< plt)oy(t) > +5 0O )dt +

—}—/—aerp Ap(t) + w, () dt+/b 6, (16)

where % + %/ = 1. Thus Jp(p) is bounded below and satisfies the above
growth conditions. From (16) we infer that for minimizing sequence {p,} C
Wo(R), the sequence {||vp, [|;2} is also bounded and hence {p, } is bounded
in L?(R; H) (because v, minimizes [g [|p(t) + v(t)||?dt). From (16) we also
conclude that the sequence {p,, — Ap,, +w,, } is bounded in L™. Therefore
for each p € L?(R;H) the sequence

<Vp,, D >r2+ < Dp—Apntwy,,p >r2=
=< p—Ap,vp,>r2+<p, — App,p >r2, n=12,...

is bounded (we recall that (Ap,p) € W and (v,,,w,,) € W1). Since the
set of all p with p € Wy(R) is dense in L?(R;H), thus the last means
that the sequence {p, — Ap,} is bounded in L?(R;H). This allows us to
choose a subsequence of {p,}, which we denote again by {p,}, such that
{p,, — Ap,} is weakly convergent to some g € L?(R; H). By the definition of
A it maps X onto H and so A maps also L?(R; X) onto L?(R; H). Moreover
we know that X is dense in H. These imply that {p,,} is weakly convergent
in L2(R; H). Really, for all h € L*(R;X)

< Ppsh >12=<p, — App,h >r2 + < pp, Ah >r2, forn=1,2....

As {< p, — Apn,h >12} and {< p,, Ah >2} are convergent, therefore {<
Dy h >12} is convergent. Similarly we get that {< Ap,, h >} is convergent.
This means that {p,} and {Ap,} are convergent weakly to some ¢; and
q2 respectively. Of course ¢ = a1 + qo. In the same way we are able to
show that go = Ap and next ¢; = p for some p € Wy(R). Hence we obtain
that {p,} C Wp(R) is weakly convergent in Wy(R) to p € Wy(R). By
Proposition {p,} is then strongly in L?(R;H) convergent to p. We can
also choose some subsequence of {p,} (we do not change notations) such
that {v,,} and {w,,} are weakly convergent in L?(R;H) to v; and wj
respectively. Since the functional

1 s, -
p— [ GIP(O) + v + G (t,5(t) = Ap(t) +wy(0)dt
is weakly lower semicontinuous we get that

liminf Jp(p,) > Jp(p)
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with the above (vp, wp), which ends the proof. O
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